Moments and Amplification I

Radu Toma
Mathematisches Institut, Universität Bonn
London Analytic Number Theory Learning Seminar, February 26, 2021

$G L_{2}$ L-functions

Let

$$
f(z)=\sum_{n} a_{f}(n) e(n z)
$$

be a cusp form of weight k for the congruence subgroup $\Gamma_{0}(q)$ with norm 1 . Analytic number theory normalisation:

$$
\psi_{f}(n)=\left(\frac{q(k-1)!}{(4 \pi n)^{k-1}}\right)^{1 / 2} a_{f}(n)
$$

$G L_{2}$ L-functions

Let

$$
f(z)=\sum_{n} a_{f}(n) e(n z)
$$

be a cusp form of weight k for the congruence subgroup $\Gamma_{0}(q)$ with norm 1 . Analytic number theory normalisation:

$$
\psi_{f}(n)=\left(\frac{q(k-1)!}{(4 \pi n)^{k-1}}\right)^{1 / 2} a_{f}(n)
$$

Suppose f is a newform. Then

$$
\lambda(n)=\psi_{f}(n) / \psi_{f}(1)
$$

is the (normalised) Hecke eigenvalue if $(n, q)=1$.

$G L_{2}$ L-functions

Define

$$
L_{f}(s)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{-s}
$$

A newform f is an eigenfunction of the Fricke involution $W f(z)=f \mid\left(q^{-1}\right)$. Suppose that

$$
W f=\varepsilon_{f} f, \varepsilon_{f}= \pm 1 .
$$

Then we have the functional equation

$$
\Lambda_{f}(s)=i^{k} \varepsilon_{f} \Lambda_{f}(1-s),
$$

where

$$
\Lambda_{f}(s)=q^{s / 2}(2 \pi)^{-s} \Gamma(s+(k-1) / 2) L_{f}(s) .
$$

We have the Euler product

$$
L_{f}(s)=\prod_{p}\left(1-\frac{\lambda_{f}(p)}{p^{s}}+\frac{\chi_{0}(p)}{p^{2 s}}\right)^{-1}
$$

Subconvexity. The goal and the methods

The convexity bound is

$$
L_{f}(s) \ll q^{1 / 4} \log ^{2}(q),
$$

for $\Re s=1 / 2$.

Theorem (Duke, Friedlander, Iwaniec)

We have the bound

$$
L_{f}(1 / 2+i t) \ll q^{1 / 4-1 / 192+\varepsilon} .
$$

Methods for proving: moments and amplification + lots of other (deep) ingredients.

Method of moments. General remarks

Let f_{0} be our chosen form for which we want to prove subconvexity. Observe that

$$
\left|L_{f_{0}}(1 / 2)\right|^{2}=\sum_{n, m} \frac{\lambda_{f_{0}}(n) \overline{\lambda_{f_{0}}(m)}}{(n m)^{1 / 2}},
$$

and in general the absolute value to the $2 k$-th power is made up of sums of products of Hecke eigenvalues.

Method of moments. General remarks

Let f_{0} be our chosen form for which we want to prove subconvexity. Observe that

$$
\left|L_{f_{0}}(1 / 2)\right|^{2}=\sum_{n, m} \frac{\lambda_{f_{0}}(n) \overline{\lambda_{f_{0}}(m)}}{(n m)^{1 / 2}},
$$

and in general the absolute value to the $2 k$-th power is made up of sums of products of Hecke eigenvalues.
Recall the Petersson formula

$$
\begin{aligned}
& C_{k}(n m)^{(1-k) / 2} \sum_{f \in \mathrm{ONB}} \overline{a_{f}(n)} a_{f}(m) \\
& =\delta_{m n}+C_{k}^{\prime} \sum_{q \mid c} \frac{S(n, m, c)}{c} J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c}\right)
\end{aligned}
$$

Method of moments. General remarks

Hope: using harmonic analysis (e.g. Petersson, Kuznetsov) could prove the generalised Lindelöf hypothesis on average over a nice family of forms \mathcal{F}, i.e.

$$
\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}}\left|L_{f}(1 / 2)\right|^{2 k} \ll q^{\epsilon}
$$

If $f_{0} \in \mathcal{F}$, by positivity we get

$$
\left|L_{f_{0}}(1 / 2)\right| \ll|\mathcal{F}|^{\frac{1}{2 k}} q^{\epsilon}
$$

and we win if

$$
|\mathcal{F}|^{\frac{1}{2 k}} \ll q^{1 / 4-\delta} .
$$

In a tight situation: amplification

Would like to

- take short enough families (hard in level aspect)
- take high enough moments (k can be increased only by an integer)

In a tight situation: amplification

Would like to

- take short enough families (hard in level aspect)
- take high enough moments (k can be increased only by an integer) Sometimes we can prove Lindelöf on average, but barely miss subconvexity. Taking a higher moment would be much more difficult. Iwaniec's solution is amplification: make use of the extra symmetries of the family (Hecke operators) to amplify the contribution of $L_{f_{0}}$ and break convexity.

Amplification. General remarks

We introduce an extra shorter linear form

$$
A(f)=\sum_{I \leq L} c_{l} \lambda_{f}(I)
$$

for some parameter L usually a small power of q. We hope that

$$
\frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}}\left|L_{f}(1 / 2)\right|^{2 k}|A(f)|^{2} \ll q^{\varepsilon} \sum\left|c_{l}\right|^{2}
$$

Then we might (try to) construct $A(f)$ so that

$$
\sum_{I \leq L}\left|c_{1}\right|^{2} \ll q^{\varepsilon} L^{\alpha+\varepsilon} \quad \text { and } \quad\left|A\left(f_{0}\right)\right| \gg q^{-\varepsilon} L^{\alpha-\varepsilon},
$$

for some $\alpha>0$. Then we prove subconvexity.

Constructing the amplifier

In previous talks, we had sums \sum_{χ}^{*} and the amplifier was $A(\chi)=\sum_{/} c_{I} \chi(I)$. Using orthogonality of characters we had a great amplifier

$$
A(\chi)=\sum_{I} \overline{\chi_{0}(I)} \chi(I),
$$

with $\alpha=1$.
In our case, the natural choice $c_{l}=\overline{\lambda_{f_{0}}(I)}$ creates difficulties in the general. Iwaniec made clever use of the Hecke relation

$$
\lambda_{f}(p)^{2}-\lambda_{f}\left(p^{2}\right)=1
$$

to bypass these and obtained an amplifier with $\alpha=1 / 2$. Watch this in action in the next episode of Moments and amplification, presented by Félicien.

Hecke relations. Towards the fourth moment

Hecke eigenvalues are multiplicative:

$$
\lambda(m) \lambda(n)=\sum_{d \mid(m, n)} \lambda\left(\frac{m n}{d^{2}}\right),
$$

for $(m n, q)=1$. This is how we get the Euler product

$$
U_{f}(s)=\sum_{(n, q)=1} \lambda_{f}(n) n^{-s}=\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-1} .
$$

Tempted by the method of moments, we note that

$$
\begin{aligned}
\zeta_{q}(2 s)^{-1} U_{f}(s)^{2} & =\prod_{p \nmid q}\left(1-\lambda_{f}(p) p^{-s}+p^{-2 s}\right)^{-2}\left(1-p^{-2 s}\right) \\
& =\sum_{(n, q)=1} \tau(n) \lambda_{f}(n) n^{-s}=: U_{\tau f}(s) .
\end{aligned}
$$

Calculus. Rankin-Selberg convolution

Where does this come from? For instance, say $X=p^{-s}$ so that the Euler factor of $U_{\tau f}$ is

$$
\sum_{k}(k+1) \lambda\left(p^{k}\right) X^{k},
$$

recalling that $\tau\left(p^{k}\right)=k+1$ and τ is multiplicative. Then the above is

$$
\left(\sum_{k} \lambda\left(p^{k}\right) X^{k+1}\right)^{\prime}=\left(\frac{X}{1-\lambda(p) X+X^{2}}\right)^{\prime}=\frac{1-X^{2}}{\left(1-\lambda(p) X+X^{2}\right)^{2}}
$$

A good way to think about this: $U_{\tau f}$ is the Rankin-Selberg convolution of f with an Eisenstein series. More precisely, we have

$$
\left.\frac{\partial}{\partial s} E(z, s)\right|_{s=1 / 2}=y^{1 / 2} \log y+4 y^{1 / 2} \sum_{1}^{\infty} \tau(n) K_{0}(2 \pi n y) \cos (2 \pi n x)
$$

The fourth moment

Taking f a newform we can deal with the ramified places and then

$$
L_{f}^{2}(s)=\zeta_{q}(2 s) L_{\tau f}(s), \quad L_{\tau f}(s)=\sum_{n} \tau(n) \psi_{f}(n) n^{-s} .
$$

Bounding the fourth moment thus essentially boils down to bounding

$$
\begin{aligned}
& \sum_{f}\left|\sum_{n} \tau(m) \psi_{f}(m) V(m)\right|^{2} \\
& =\sum_{f} \sum_{m} \sum_{n} \tau(m) \tau(n) \psi_{f}(m) \psi_{f}(n) V(m, n),
\end{aligned}
$$

for certain rapidly decaying functions V by the usual approximate functional equation argument.

DFI Theorem 1

We start with estimating the second moment of general linear forms

$$
\mathcal{L}_{f}(\boldsymbol{a})=\sum_{n \leq N} a_{n} \psi_{f}(n) .
$$

We choose \mathcal{F} to be an orthonormal basis of the space $S_{k}\left(\Gamma_{0}(q)\right)$ with respect to the measure $y^{-2} d x d y, k \geq 2$.

Theorem (Theorem 1 of DFI)

For a sequence $\boldsymbol{a}=\left(a_{n}\right)$ we have

$$
\sum_{f \in \mathcal{F}}\left|\mathcal{L}_{f}(\mathbf{a})\right|^{2}=(k-1) \cdot[q+O(N \log N)] \cdot\|\boldsymbol{a}\|^{2}
$$

Notation: $\|\boldsymbol{a}\|^{2}=\sum\left|a_{n}\right|^{2}$.

Proof of Theorem 1

We open up

$$
S_{q}(\boldsymbol{a}):=\sum_{f \in \mathcal{F}}\left|L_{f}(\boldsymbol{a})\right|^{2}=\sum_{n} \sum_{m} a_{m} \overline{a_{n}} \Delta(m, n),
$$

where $\Delta(m, n)=\sum_{f \in \mathcal{F}} \psi_{f}(m) \overline{\psi_{f}(n)}$. Recall Petersson's formula

$$
\begin{aligned}
\Delta(m, n)= & (k-1) q \delta_{m n} \\
& +2 \pi i^{k}(k-1) q \sum_{q \mid c} \frac{S(n, m, c)}{c} J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c}\right) .
\end{aligned}
$$

To deal with Kloosterman sums we have the Weil bound and the mean value theorem for Dirichlet polynomials.

Bounding Kloosterman sums

Recall the mean value theorem

$$
\sum_{d(\bmod c)}\left|\sum_{n \leq N} b_{n} e\left(\frac{d n}{c}\right)\right|^{2}=(c+O(N))\|\boldsymbol{b}\|^{2}
$$

From this we deduce using Cauchy-Schwarz that

$$
\begin{aligned}
\sum_{n \leq N} \sum_{m \leq N} b_{m} \overline{b_{n}} S(m, n ; c) & =\sum_{d(\bmod c)} \sum_{m} b_{m} e(m d / c) \sum_{n} \overline{b_{n}} e(n \bar{d} / c) \\
& \ll(c+N)\|\boldsymbol{b}\|^{2} .
\end{aligned}
$$

Using Weil's bound $S(m, n ; c) \ll(m, n, c)^{1 / 2} c^{1 / 2} \tau(c)$ and the above we obtain

$$
\sum_{n \leq N} \sum_{m \leq N} b_{m} \overline{b_{n}} S(m, n ; c) \ll \min \left(c+N, c^{1 / 2} \tau^{2}(c) N\right)\|\boldsymbol{b}\|^{2}
$$

Finishing up

Let $q \gg N$. Using standard bounds of J_{k} we derive that

$$
\begin{aligned}
& \sum_{m} \sum_{n} a_{m} \overline{a_{n}} S(m, n ; c) J_{k-1}(4 \pi \sqrt{m n} / c) \\
& \ll \frac{N}{c(k-1)!} \min \left(c, c^{1 / 2} \tau^{2}(c) N\right)\|a\|^{2}
\end{aligned}
$$

For finally summing over c note that

$$
\sum_{q \mid c} c^{-2} \min \left(c, c^{1 / 2} \tau^{2}(c) N\right) \ll q^{-1} \log N
$$

so that

$$
S_{q}(\boldsymbol{a})=\left[q(k-1)+O\left(\frac{N \log N}{(k-2)!}\right)\right]\|\boldsymbol{a}\|^{2} .
$$

This proves the theorem, at least for $q \gg N$. For the rest, see trick in DFI.

Corollary 1

We would like to bound more general sums

$$
B(r, s)=\sum_{m} \sum_{n} a_{m} b_{n} \Delta(r m, s n) F(m, n)
$$

where F is smooth, supported on $[M, 2 M] \times[N, 2 N]$ with $F^{(i j)} \ll M^{-i} N^{-j}$.

Corollary

If $(q, r s)=1$ we have

$$
B(r, s)<_{\varepsilon, k}(r s M N)^{\varepsilon}(q+M)^{1 / 2}(q+N)^{1 / 2}\|\boldsymbol{a}\|\|\boldsymbol{b}\|
$$

Important remark in the proof: From Petersson's formula we see that $\Delta(m, n)$ does not depend on the chosen ONB. So we choose an ONB of Hecke eigenfunctions.

Proof of Corollary 1

Extreme oversimplification: $\psi_{f}(m)=\lambda_{f}(m)$ and the λ_{f} 's are completely multiplicative. Then

$$
\begin{aligned}
\sum_{m \asymp M} \sum_{n \asymp N} a_{m} b_{m} \Delta(r m, s n) & =\sum \sum a_{m} b_{m} \sum_{f} \psi_{f}(r m) \psi_{f}(s n) \\
& =\sum_{f} \psi_{f}(r) \psi_{f}(s) \sum_{n} a_{n} \psi_{f}(n) \sum_{m} b_{m} \psi_{f}(m)
\end{aligned}
$$

We apply Deligne's bound $\psi_{f}(r) \ll r^{\varepsilon}$. For bounding F we use Fourier inversion: the analytic properties of F imply $\|\hat{F}\|_{1} \ll 1$. Then we apply Theorem 1 .

The (ugly) truth about Hecke eigenvalues

Computing with Euler factors or just the multiplicativity relations we derive

$$
\lambda_{f}(a n)=\sum_{\substack{a_{1} n^{\prime}=n \\ a_{0} a_{1}=a}} \mu\left(a_{1}\right) \lambda_{f}\left(a_{0}\right) \lambda_{f}\left(n^{\prime}\right)
$$

Also

$$
\tau(n) \lambda_{f}(n) \lambda_{f}(a)=\sum_{\substack{a_{1} a_{2}^{2} n^{\prime}=n \\ a_{0} a_{1} a_{2}=a}} \mu\left(a_{1}\right) \tau\left(a_{1}\right) \tau\left(n^{\prime}\right) \lambda_{f}\left(a_{0} a_{1} n^{\prime}\right)
$$

and

$$
\begin{aligned}
\tau(m) \tau(n) \psi(r m) \psi(s n)= & \sum_{\substack{\alpha \beta \gamma a b c^{2}=r \\
\gamma \delta=s,(\alpha \beta, \delta)=1}} \mu(\beta) \mu(b c) \mu(c) \tau(\alpha) \tau(\beta) \\
& \sum_{b c^{2} d^{2} m^{\prime}=m \alpha \beta^{2} n^{\prime}=n} \tau\left(m^{\prime}\right) \tau\left(n^{\prime}\right) \psi\left(m^{\prime}\right) \psi\left(\beta \delta a n^{\prime}\right)
\end{aligned}
$$

Theorem 2

Recall that for the subconvexity problem we need to bound the $B(r, s)$ in the special case

$$
B(r, s)=\sum_{m} \sum_{n} \tau(m) \tau(n) \Delta(r m, s n) F(m, n)
$$

We need a better bound than Corollary 1.

Theorem (Theorem 2 in DFI)

Let $(q, r s)=1$ and $M, N \ll q^{1+\epsilon}$. We have

$$
B(r, s) \ll q^{\epsilon}\left[q(r, s)(r s)^{-1 / 2}+q^{11 / 12}(r s)^{3 / 4}\right](M N)^{1 / 2} .
$$

Proving Theorem 2 is hard. We start the proof today and Félicien will finish it and derive corollaries and subconvexity from it next time.

Petersson again and reduction to Kloosterman sums

We start with the case $r=1$ and generalise later using the Hecke relations. We now have

$$
B(s)=B(1, s)=\sum_{m} \sum_{n} \tau(m) \tau(n) \Delta(m, s n) F(m, n) .
$$

Using Petersson's formula we write

$$
B(s)=(k-1) q T(0)+2 \pi i^{k}(k-1) q \sum_{c \equiv 0(\bmod q)} c^{-2} T(c),
$$

where

$$
T(0)=\sum_{n} \tau(s n) \tau(n) F(s n, n)
$$

and

$$
T(c)=c \sum_{m} \sum_{n} \tau(m) \tau(n) S(m, s n ; c) J_{k-1}\left(\frac{4 \pi \sqrt{s m n}}{c}\right) F(m, n) .
$$

Estimating $T(0)$

Recall that $M, N \ll q$ and F has support on $[M, 2 M] \times[N, 2 N]$. Then

$$
T(0)=\sum_{n} \tau(s n) \tau(n) F(s n, n) \ll \min (M / s, N) q^{\epsilon} \leq\left(\frac{M N}{s}\right)^{2} q^{\epsilon}
$$

This is good enough.

Splitting of $T(c)$

For $T(c)$ we execute the summation only over m first, using a Poisson/Voronoi type formula of Jutila.

Theorem (Jutila's summation formula)

Let g be a smooth compactly supported function on \mathbb{R}^{+}and let $(c, d)=1$. Then we have

$$
\begin{aligned}
c \sum_{m=1}^{\infty} \tau(m) e & \left(\frac{d m}{c}\right) g(m)=\int_{0}^{\infty}(\log x+2 \gamma-2 \log c) g(x) d x \\
& -2 \pi \sum_{m=1}^{\infty} \tau(m) e\left(\frac{-\bar{d} m}{c}\right) \int_{0}^{\infty} Y_{0}\left(\frac{4 \pi \sqrt{m x}}{c}\right) g(x) \\
& +4 \sum_{m=1}^{\infty} \tau(m) e\left(\frac{\bar{d} m}{c}\right) \int_{0}^{\infty} K_{0}\left(\frac{4 \pi \sqrt{m x}}{c}\right) g(x) .
\end{aligned}
$$

Splitting of $T(c)$

Accordingly, we split $T(c)$ as

$$
T(c)=T^{*}(c)+T^{-}(c)+T^{+}(c),
$$

where

$$
T^{*}(c)=\sum_{n} S(0, s n ; c) G^{*}(n)
$$

and

$$
\begin{aligned}
T^{ \pm}(c) & =\sum_{m} \sum_{n} \tau(m) \tau(n) S(0, s n \pm m ; c) G^{ \pm}(m, n) \\
& =\sum_{h} S(0, h ; c) T_{h}^{ \pm}(c)
\end{aligned}
$$

where $T_{h}^{ \pm}(c)=\sum_{m \pm s n=h} \tau(m) \tau(n) G^{ \pm}(m, n)$. Next time, we will talk about how to evaluate these sums.

What to remember for next time

We prove subconvexity in the level aspect using the fourth moment over a basis of Hecke eigenforms.
The fourth moment reduces to the second moment of linear forms with coefficients given by divisor functions (the second moment of convolution L-functions). We also apply an amplifier, so we need to bound the more complicated $B(r, s)$. This we have reduced to more tractable sums $T^{ \pm}, T^{*}, T_{h}^{ \pm}$, etc.
We bound this for $r=1$ first, and then use Hecke relations to get the general result.

Bibliography

W. Duke, J.B. Friedlander, and H. Iwaniec. "Bounds for automorphic L-functions II". In: Invent Math 115 (1994).
Philippe Michel. "Analytic Number Theory and Families of L-Functions. Park City lectures". 2006.

