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CHAPTER 1

Counting Prime Numbers

1. Introduction

It has been known since the time of Euclid that there are infinitely many prime numbers.
Arguing by contradiction, suppose that there were only finitely many primes p1, . . . , pn . Then
the number p1 · · ·pn+1 must have a prime divisor not equal to any of p1, . . . , pn . In this course
we will be interested in quantifying the infinitude of prime numbers. To do so, we define the
prime counting function

π(x) = #{p ∈P : p É x}.

Euclid’s theorem therefore says that π(x) →∞ as x →∞, but the question is

at what rate?

One can do experiments with prime numbers relatively easily. To do so, the first step is to
produce the list of prime numbers up to a certain limit. A simple and systematic method is
given by the sieve of Eratosthenes:

(1) Write the list of all integers up to X .
(2) Cross out 1 (which isn’t prime).
(3) Keep 2, and cross out all proper multiples of 2.
(4) Keep 3, and cross out all proper multiples of 3 that aren’t already eliminated.
(5) etc.
(6) The first number not crossed out by the preceding steps is automatically prime. Keep

it and cross out all its proper multiples.
(7) etc.

For example, for X = 30 we get

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2 3 5 7 11 13 17 19 23 25 29

2 3 5 7 11 13 17 19 23 29

· · ·
2 3 5 7 11 13 17 19 23 29

Remark 1.1. In the above example, note that we get the list of prime numbers É X at
the third step (where we crossed out multiples of 5). This phenomenon is explained simply
in the following criteria:

An integer n Ê 2 is composite if and only if it has a divisor d satisfying 1 < d Ép
n.
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6 1. COUNTING PRIME NUMBERS

Proof. If n has a divisor 1 < d Ép
n, then n > 1 and d 6= n,1, since

p
n < n. Thus n is

composite. In the opposite direction, if n is composite and d 6= n,1 is a divisor of n, then n/d
is also a divisor of n with 1 < n/d < n. (The divisor n/d of n is called the complimentary
divisor of d .) Set

d ′ = min(d ,n/d).

Then we have 1 < d ′ Ép
n. �

Thus, after the third step (where we cross out all the multiples of 5) we have in fact found all
of the prime numbers < 49, since 72 = 49.

Notice that the spacing between consecutive prime numbers seems to grow, which suggests
that the set of primes P becomes less and less dense. Following much more intensive numerical
experiments, Gauss and Legendre around the year 1795 gave a conjectural asymptotic formula
for the function π(x): the prime number conjecture. About a century later in 1896, this
conjecture was proven by Hadamard and de la Vallée-Poussin, and thus became the prime
number theorem:

Theorem (Prime Number Theorem (PNT)). As x →∞ we have

π(x) ∼ x

log x
.

Remark 1.2. Let us specify some notation once and for all. Let f , g be two functions on
R with g non-zero for x sufficiently large. We write f ∼ g if and only if

f (x)

g (x)
→ 1

as x → ∞. If g is non-negative the notation f = O(g ) means that there exists an absolute
constant C such that

| f (x)| ÉC g (x)

for all x in the domain of f and g . We may also write f ¿ g , which means the exact same
thing as f =O(g ). From time to time we might write f =Oε(g ) or f ¿ε g , which means that
the constant C is also allowed to depend on ε, i.e. C = C (ε). Lastly, we write f = o(g ) if for
all ε> 0 there exists a constant N > 0 such that

| f (x)| É εg (x)

for all x Ê N . Vaguely, this means that f is strictly bounded by g .

Remark 1.3. In the 1830s, Dirichlet formulated the prime number conjecture in a slightly
different form: introducing the following function, called the logarithmic integral

Li(x) =
∫ x

2

d t

log t
,

he conjectured that

π(x) ∼ Li(x).

Seeing as Li(x) ∼ x
log x (do an integration by parts) this formulation of the conjecture is equiv-

alent to the original. However, Dirichlet’s version is better: as we will see later, the proof of
the PNT in fact gives the following asymptotic formula

π(x) = Li(x)+O(x exp(−c
√

log x))
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for some absolute constant c > 0. The celebrated Riemann Hypothesis predicts that

π(x) = Li(x)+O(x1/2(log x)2).

2. Euler’s Method

With some care, Euclid’s proof of the infinitude of primes can be modified to produce an
explicit lower bound on π(x). Such a bound is extremely bad. Euler came up with another
proof of the infinitude of primes, which gives much better result and opened the line of attack
which eventually led to the proof of the prime number theorem. In some sense, Euler’s method
is the starting point for all of analytic number theory. Euler’s method is combinatorial and
analytic in nature, and is based on the zeta function that he introduced himself: for s > 1 one
considers the convergent series

ζ(s) = ∑
nÊ1

1

ns .

By comparison with an integral we have

(1.1) ζ(s) = ∑
nÊ1

1

ns Ê
∫ ∞

1

d x

xs = 1

s −1
,

which tends to +∞ as s → 1+ from the right. The fundamental observation of Euler is that the
fundamental theorem of arithmetic allows one to express ζ(s) in terms of the prime numbers:
for s > 1 consider for each prime number p the series

ζp (s) = 1+ 1

p s +
1

(p2)s +·· ·+ 1

(pα)s +·· · ,

that is to say the series ζp is the series ζ restricted to powers of p. The series ζp (s) is a
geometric series, and therefore we have

ζp (s) = (1− 1

p s )−1.

By the unique factorization of integers,

ζ2(s)ζ3(s) = ∑
α2Ê0

∑
α3Ê0

1

(2α2 3α3 )s

is the series ζ(s) restricted to the integers whose prime factorizations contain only powers of
2 and 3. Likewise, ζ2(s)ζ3(s)ζ5(s) is the series ζ(s) restricted to integers whose prime factor-
izations only contain powers of 2,3, and 5, and so on.

Supposing that

P = {2,3,5, . . . , pmax}

is finite, we get the identity

(1.2) ζ(s) = ∑
nÊ1

1

ns = ∏
p∈P

ζp (s) = ∏
p∈P

(1− 1

p s )−1.

As the product
∏

p∈P (1− 1
p s )−1 is finite, and for each prime number p the series ζp (s) is well

defined at s = 1 (it takes the value ζp (1) = (1− 1
p )−1), we see that ζ(s) should have a finite limit

as s → 1+. This contradicts (1.1), therefore P is infinite.
In fact we shall soon see that even though P is infinite, the identity (1.2) holds for all s > 1

(that is to say the infinite product converges and is equal to ζ(s)). Then, Euler’s method allows
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for precise quantitative results on counting prime numbers. Indeed, taking the logarithm of
(1.2) we see that for s > 1

log(ζ(s)) =−∑
p

log(1− 1

p s ) =∑
p

(
1

p s +O(
1

p2s )) =∑
p

1

p s +O(1).

On the other hand, we saw in (1.1) that

log(ζ(s)) Ê log(
1

s −1
) =− log(s −1).

Taking the limit as s tends to 1, we have (by the monotone convergence theorem) the following.

Theorem. The series ∑
p∈P

1

p

is divergent.

3. Chebyshev’s Method

We begin with the follow result of Chebyshev (circa 1850), which only uses elementary
methods and which gives the correct order of magnitude for the function π(x).

Theorem 1.4. There exist constants 0 < c <C such that for x Ê 2 one has

c
x

log x
Éπ(x) ÉC

x

log x
.

Proof. Let n Ê 1 and consider its factorial

n! = ∏
1ÉkÉn

k.

Chebyshev’s method is based on the fact that this number n! is divisible by and only divisible
by all of the prime numbers É n. Let us recall the following definition.

Definition 1.5 (p-adic valuation). For n ∈ Z− {0} and p a prime number, the p-adic
valuation of n, written vp (n), is the largest integer αÊ 0 such that pα divides n. That is to
say, such that pα | n and pα+1 - n. In particular, one has

n = ∏
p|n

pvp (n) = ∏
p∈P

pvp (n).

If n = 0 we set vp (0) =∞.

Notation: We will denote by N= {0,1,2, . . .} the set of non-negative integers.
Note that vp (mn) = vp (n)+ vp (m) for all n,m ∈N. Therefore we have

n! = ∏
pÉn

pvp (n!),

and moreover that vp (n!) Ê 1 for all p É n. Therefore, taking the logarithm of this expression
we have

log(n!) = ∑
pÉn

vp (n!) log p.

We proceed by evaluating the two sides of this equations by different means. Consider first
the left hand side

log(n!) = ∑
kÉn

logk.
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Such a sum can be evaluated by comparison against the integral∫ n

1
log t d t = n logn −n +1

(for more details, see Chapter 2) and we find

(1.3) log(n!) = ∑
kÉn

logk = n logn −n +O(logn).

Thus, we get ∑
pÉn

vp (n!) log p = n logn −n +O(logn).

Now we need to evaluate the valuation vp (n!). Let k be an integer. Then the valuation vp (k)
is

vp (k) = max{αÊ 0 : pα | k} = ∑
αÊ1
pα|k

1

and so

vp (n!) = ∑
1ÉkÉn

vp (k) = ∑
1ÉkÉn

∑
αÊ1
pα|k

1 = ∑
αÊ1

∑
1ÉkÉn

pα|k

1 = ∑
αÊ1

b n

pα
c,

where
x 7→ bxc = ∑

1ÉkÉx
1 = x − {x}

is the integer part function of x (and {x} designates the fractional part of x). Above, we used
the identity ∑

1ÉkÉn
pα|k

1 = ∑
1Ék ′Én/pα

1 = b n

pα
c.

We have therefore that

(1.4)
∑

pÉn
log p

∑
αÊ1

pαÉn

b n

pα
c = n logn −n +O(logn).

Now we evaluate the sum ∑
αÊ1

pαÉn

b n

pα
c.

Seeing as bxc É x, this sum is bounded by∑
αÊ1

pαÉn

b n

pα
c É ∑

αÊ1

n

pα
= n

p(1−1/p)
= n

p
(1+O(

1

p
)) = n

p
+O(

n

p2 ).

Therefore we have

n logn −n +O(logn) É n
∑

pÉn
log p(

1

p
+O(

1

p2 )) = n
∑

pÉn

log p

p
+O(n)

since ∑
pÉn

log p

p2 =O(1).

Dividing by n we find that ∑
pÉn

log p

p
Ê logn +O(1),
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which shows again that P is infinite.

3.1. The binomial coefficient. Unfortunately it is not possible to extract the prime
counting function from the above approach. The problem is, essentially, that the “weights”
vp (n!) vary too much as p runs between 2 and n. To fix this shortcoming, Chebyshev consid-

ered instead of the integer n! the binomial coefficient
(2n

n

)= (2n)!/(n!)2.
First of all, by (1.3) we find

log

(
2n

n

)
= (2n log2n −2n +O(logn))−2(n logn −n +O(logn)) = (log4)n +O(log2n).

Remark 1.6. It is possible to get this asymptotic formula in a more elementary way. We
have

2n∑
k=0

(
2n

k

)
= (1+1)2n

and we know that among the 2n +1 terms in the above sum,
(2n

n

)
is the largest. Thus

(1+1)2n

2n +1
É

(
2n

n

)
É (1+1)2n .

So, taking logarithms, we find

log

(
2n

n

)
= 2n(log2)+O(logn).

Note that
(2n

n

)
is divisible by all of the prime numbers in the interval (n,2n]. Setting

θ(x) = ∑
pÉx

log p,

we therefore have

(1.5) log

(
2n

n

)
= ∑

pÉ2n
vp (

(
2n

n

)
) log p Ê ∑

n<pÉ2n
log p = θ(2n)−θ(n).

We get that for all n Ê 2

θ(2n)−θ(n) É (log2)2n.

Given a real number x Ê 2 there always exists an even number 2n such that 0 É x−2n É 2. For
such a choice of 2n we have

θ(x)−θ(2n) É log x,

and

0 É θ(x/2)−θ(n),

so that we see for all x Ê 2

θ(x)−θ(x/2) É (log2)x +O(log x).

Using this inequality with x, x/2, x/4, . . . etc. (in fact O(log x) times) we deduce that

θ(x) = ∑
kÊ0

θ(x/2k )−θ(x/2k+1) É ∑
0Ék¿log x

(log2)
x

2k
É (2log2)x +O((log x)2).
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From this last formula we can easily deduce an upper bound for π(x) of the correct order of
magnitude. We have

π(x) = ∑
pÉx

1 = ∑
pÉx1/2

1+ ∑
x1/2<pÉx

1.

The first term is bounded by x1/2, and the second term satisfies∑
x1/2<pÉx

1 É 1

log(x1/2)

∑
x1/2<pÉx

log p = 2

log x
(θ(x)−θ(x1/2)) É 2(log4)

x

log x
+O(x1/2)

and therefore

π(x) É 2(log4)
x

log x
+O(x1/2).

Remark 1.7. By a slightly more developed argument (integration by parts, see Chapter
2), one can show that

π(x) É (log4)
x

log x
(1+O(

1

log x
)),

as x →∞.

3.2. The lower bound. To get a lower bound, we need to be more precise about the
value of vp (

(2n
n

)
). We have

vp (

(
2n

n

)
) = vp (2n!)−2vp (n!) = ∑

αÊ1
b2n

pα
c−2b n

pα
c = ∑

αÊ1
$(

n

pα
)

where
$(x) = b2xc−2bxc = 2{x}− {2x}.

The function $(x) is periodic with period 1 and is given by

$(x) =
{

0 if x ∈ [0,1/2)

1 x ∈ [1/2,1).

In particular, notice that $(x) varies much less than the function x 7→ bxc. Note that for p É 2n
the number of non-zero terms in the sum ∑

αÊ1
$(

n

pα
)

is bounded by αÉ log2n/log p, and seeing as $(n/pα) É 1, we get the upper bound

(1.6) log

(
2n

n

)
= (log4)n +O(logn) = ∑

pÉ2n
log p

∑
αÊ1

$(
n

pα
) É ∑

pÉ2n
log p

log2n

log p
= (log2n)π(2n).

Thus we get the lower bound

(log2)
2n

log2n
+O(1) Éπ(2n)

and more generally, for every integer x Ê 2

(log2)
x

log x
(1+O(

log x

x
)) Éπ(x).

From this we deduce a lower bound for the function θ(x).

θ(x) = ∑
pÉx1/2

log p+ ∑
x1/2<pÉx

log p Ê (log x1/2)(π(x)−π(x1/2))+O(x1/2 log x) = 1

2
(log x)π(x)+O(x1/2 log x),
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and therefore

(1.7) θ(x) Ê log2

2
x(1+O(

log x

x1/2
)).

Thus, we have shown the existence of constants 0 < c <C such that for all x Ê 2

(1.8) cx É θ(x) ÉC x, and c
x

log x
Éπ(x) ÉC

x

log x
.

�

Remark 1.8. With a bit more care, we can show that the constants c and C can be taken
to be arbitrarily close to log2 and 2log2, respectively.

From Chebyshev’s theorem, we can deduce the following useful asymptotic formula.

Theorem (Mertens). We have ∑
pÉx

log p

p
= log x +O(1).

Proof. Recall the formula (1.4): for all n Ê 2∑
pÉn

log p
∑
αÊ1

pαÉn

b n

pα
c = n logn −n +O(logn).

The contribution of the αÊ 2 to the left hand side of the above is bounded by∑
pÉn

log p
∑
αÊ2

pαÉn

b n

pα
c É ∑

pÉn
log p

∑
2Éα

n

pα
¿ n

∑
pÉn

log p

p2 =O(n).

Considering the remainder, and writing bn/pc = n/p +O(1) we get∑
pÉn

log p
n

p
+O(

∑
pÉn

log p) = n logn −n +O(logn)+O(n).

Chebyshev’s theorem gives us that θ(n) ¿ n, and so we find that∑
pÉn

log p
n

p
= n logn +O(n).

�



CHAPTER 2

Sums of arithmetic functions

In this chapter, we will present several basic methods to evaluate sums over the integers.
The terms of these sums will be called arithmetic function.

Definition 2.1. An arithmetic function is a complex-valued function on the positive in-
tegers, f :NÊ1 →C. We write A for the C-vector space of arithmetic functions.

Example(s) 2.2. (1) The constant function

1 : n 7→ 1,

(2) The delta function at 1

δ : n 7→
{

1 n = 1

0 n 6= 1,

(3) The characteristic function of the set of prime numbers

1P : n 7→
{

1 n = p ∈P

0 n 6∈P ,

(4) The same function weight by the logarithm

log.1P : n 7→ log(n)1P (n),

(5) The von Mangolt function

Λ : n 7→
{

log p n = pα, αÊ 1

0 n 6= pα.

Despite its artificial appearance, the last function above arises naturally in the study of
prime numbers, where it plays a fundamental role.

Definition 2.3. Let f be an arithmetic function. The summation function of f is the
function defined on RÊ0 by

x 7→ M f (x) = ∑
1ÉnÉx

f (n).

The summation function of f is a piecewise constant function, and in this chapter, we will
present methods to study the following question:

Problem. Given an arithmetic function f , determine the behavior of M f (x) as x →∞.

Example(s) 2.4. (1) M1(x) =∑
1ÉnÉx 1 = bxc = x +O(1).

(2) π(x) = M1P
(x) =∑

pÉx 1.
(3) θ(x) = Mlog.1P

(x) =∑
pÉx log p.

(4) ψ(x) = MΛ(x) =∑
1<pαÉx log p.

13



14 2. SUMS OF ARITHMETIC FUNCTIONS

Guided by the above examples, we will compare θ(x) and ψ(x). Observe first of all that

θ(x) Éψ(x).

More precisely, we have

ψ(x) = θ(x)+ ∑
pαÉx
αÊ2

log p.

We have ∑
pαÉx
αÊ2

log p = ∑
pÉpx

log p
∑

pαÉx
αÊ2

1 É ∑
pÉx1/2

log pb log x

log p
c

É log x
∑

pÉx1/2

1

¿ x1/2 log x.

Thus

ψ(x) = θ(x)+O(x1/2 log x).

We saw that by Chebyshev’s method θ(x) À x (see (1.7)) and we deduce that

(2.1) ψ(x) ∼ θ(x).

1. Approximation by integrals, integration by parts

If f is the restriction to NÊ1 of a continuous function on R, then M f (x) is often well
approximated by ∫ x

1
f (t )d t .

For example, if f is monotone we have

Theorem 2.5 (Monotone comparison). If f is monotone we have

(2.2) M f (x) =
∫ x

1
f (t )d t +O(| f (1)|+ | f (x)|).

Proof. Suppose that f is monotone increasing. The result is deduced by summing the
following inequality over n Ê 2:∫ n

n−1
f (t )d t É f (n) É

∫ n+1

n
f (t )d t .

�

For example, we have

(2.3) Mlog(x) = ∑
nÉx

log(n) =
∫ x

1
log(t )d t +O(log(x)) = x log x −x +O(log x).

The following result allows one to evaluate the summation function of a product of an arith-
metic function by a “smooth” function:
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Theorem 2.6 (Integration by parts). Let g be an arithmetic function. Let a < b ∈R>0

and f : [a,b] →C a C 1([a,b]) function. We have

M f g (b)−M f g (a) = ∑
a<nÉb

f (n)g (n) = [ f (t )Mg (t )]t=b
t=a −

∫ b

a
Mg (t ) f ′(t )d t

= f (b)Mg (b)− f (a)Mg (a)−
∫ b

a
Mg (t ) f ′(t )d t

Proof. Suppose first of all that b = a +1 = n +1 ∈NÊ1. Then

[ f (x)Mg (x)]x=b
x=a −

∫ b

a
Mg (x) f ′(x)d x = Mg (n +1) f (n +1)−Mg (n) f (n)−Mg (n)( f (n +1)− f (n))

= f (n +1)g (n +1)

= M f g (n +1)−M f g (n).

By summing the above formula up, we extend to arbitrary a É b ∈NÊ1, and then to a,b general
real numbers. �

Remark 2.7. Note the analogy between the above formula and the classical integration
by parts formula: if f is C 1 and g is continuous, we have∫ b

a
f (t )g (t )d t = [ f (t )G(t )]t=b

t=a −
∫ b

a
f ′(t )G(t )d t ,

where

G(x) =
∫ x

1
g (t )d t

is an anti-derivative (or, a primitive) of g .

Example(s) 2.8. We have

θ(x) = ∑
pÉx

log(p) = ∑
2ÉnÉx

log(n)1P (n)

=π(x) log(x)−
∫ x

1.5
π(t )

d t

t

=π(x) log(x)+O(1)+O

(∫ x

2

d t

log(t )

)
=π(x) log(x)+O

(
x

log x

)
,

where the second to last equality is due to Chebyshev’s theorem. In particular, as π(x) À
x/log x we see that

θ(x) =π(x) log(x)(1+o(1)).

Thus by (2.1) we have the following equivalent statements of the prime number theorem

π(x) ∼ x

log x
⇐⇒ θ(x) ∼ x ⇐⇒ψ(x) ∼ x.

In fact, it’s the last asymptotic formula that Hadamard and de la Vallée-Poussin showed in
their proof of the prime number theorem.
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Corollary 2.9 (Euler-MacLaurin Formula). Let f be a C 1 function on R>0, and let

ψ1(x) = x −bxc−1/2 = {x}−1/2.

We have for all x > 1 that

M f (x) =
∫ x

1
f (t )d t +

∫ x

1
ψ1(t ) f ′(t )d t −ψ1(1) f (1)−ψ1(x) f (x),

in particular ∣∣∣∣M f (x)−
∫ x

1
f (t )d t

∣∣∣∣É ∫ x

1
| f ′(t )|d t +| f (1)|+ | f (x)|.

Proof. Exercise. �

Remark 2.10. We have ψ1(x) = B1({x}), where B1(x) = x −1/2. This polynomial is called
the first Bernoulli polynomial.

Remark 2.11. The important thing about this formula is that the function f is not
necessarily monotone.

2. Dirichlet Convolution

The Dirichlet convolution is a composition law on the set of arithmetic functions that
realizes the multiplicative structure of the integers.

Let f , g ∈A , and define f ∗ g ∈A by setting

f ∗ g (n) = ∑
ab=n

f (a)g (b) = ∑
d |n

f (d)g (n/d).

Proposition 2.12. The triple (A ,+,∗) has the structure of a commuative, associative
C-algebra with multiplicative identity element δ (recall example 2.2). The set of invertible
element of the algebra A is

A × = { f ∈A : f (1) 6= 0}.

For f ∈A ×, we write f (−1) for its convolution inverse.

Proof. We only verify certain parts of this proposition, the remainder is left to the
reader.

• Commutativity

f ∗ g (n) = ∑
ab=n

f (a)g (b) = ∑
ab=n

g (a) f (b) = g ∗ f (n)

• Identity element

f ∗δ(n) = ∑
d |n

f (n/d)δ(d) = f (n/1) = f (n)

• Units: If f is invertible with inverse f (−1), then

f ∗ f (−1)(1) = δ(1) = 1 = f (1) f (−1)(1).

Therefore f (1) 6= 0. Let f be such that f (1) 6= 0. We seek a g ∈ A that satisfies
f ∗ g = δ, in particular f ∗ g (1) = f (1)g (1) = 1. Therefore g (1) = 1/ f (1). For any n > 1

f ∗ g (n) = δ(n) = 0 = ∑
d |n

f (d)g (n/d) = g (n) f (1)+ ∑
d |n
d>1

f (d)g (n/d)
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Thus

g (n) =− 1

f (1)

∑
d |n
d>1

f (d)g (n/d).

As n/d < n since d > 1, the value g (n) is determined by the values of g at integers
É n/2. Therefore the function g is defined by recurrence.

�

Notation. If f is an arithmetic function, and k ∈N, we will denote the k-fold iterated
convolution by

f (∗k) = f ∗ f ∗·· ·∗ f︸ ︷︷ ︸
k times

,

and if f is invertible, we extend the above notation to all k ∈Z in the evident manner:

f (∗−k) = ( f (−1))(∗k).

Example(s) 2.13. (1) 1∗1(n) =∑
d |n 1 = d(n) is the number of divisors of n.

(2) 1∗1∗1(n) = ∑
abc=n 1 = d3(n) is the number of representations of n as a product of

three integers. More generally, we write

dk (n) = 1(∗k)(n) = 1∗·· ·∗1(n) = ∑
d1···dk=n

1

for the number of representations of n as a product of k integers.
(3) We have

log =Λ∗1, i.e. log(n) = ∑
d |n

Λ(d).

Indeed, if n =∏
p pαp then

log(n) = log

(∏
p

pαp

)
=∑

p
αp log(p)

=∑
p

∑
1ÉαÉαp

log(p)

= ∑
pα|n

log(p) = ∑
d |n

Λ(d).

Möbius inversion formula: The Möbius function is by definition the inverse of the
constant function 1:

µ= 1(−1), µ(1) = 1, µ(n) =− ∑
d |n
d<n

µ(d) for n Ê 2.

In the following section we will show that

(1) If n is divisible by a square not equal to 1 (i.e. there exists a prime p such that
p2 | n), then µ(n) = 0.

(2) If n is square-free, and has r prime factors (i.e. n = p1 · · ·pr ), then µ(n) = (−1)r .

Theorem 2.14 (Möbius inversion formula). Let f , g ∈ A . The following identities are
equivalent

(1) For all n, f (n) =∑
d |n g (d).

(2) For all n, g (n) =∑
d |n µ(d) f (n/d).
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Proof. The first identity is equivalent to f = g∗1 and the second is equivalent to g = f ∗µ.
Then it is clear that

f = g ∗1 ⇐⇒ f ∗µ= g ∗1∗µ⇐⇒ f ∗µ= g ∗ (1∗µ) ⇐⇒ f ∗µ= g .

�

Thus, we have for example

Λ(n) = ∑
d |n

µ(d) log(n/d) = ∑
d |n

µ(d) log(n)−∑
d |n

µ(d) log(d) =−∑
d |n

µ(d) log(d).

3. Application to counting prime numbers

Theorem 2.15 (Mertens). We have

(2.4)
∑

nÉx

Λ(n)

n
= log(x)+O(1)

(2.5)
∑

pÉx

log p

p
= log(x)+O(1),

(2.6)
∑

pÉx

1

p
= loglog(x)+O(1).

Proof. We have already seen a proof of (2.5) of the statement of the theorem, but
Dirichlet convolution will give us a very short way to show it. We have already seen that∑

pαÉx
αÊ2

log p

pα
=O(1),

and as ∑
nÉx

Λ(n)

n
= ∑

pÉx

log p

p
+ ∑

pαÉx
αÊ2

log p

pα
,

we have that (2.4) holds if and only if (2.5) holds. The formula (2.6) follows from (2.5) by
integration by parts. So it suffices to show (2.4). To show (2.4), we evaluate the sum

Mlog(x) = ∑
nÉx

log(n)

in two different ways. On the one hand we have already seen that∑
nÉx

log(n) = x log x +O(x).

On the other hand, log =Λ∗1 and∑
nÉx

log(n) = ∑
nÉx

∑
d |n

Λ(d)

= ∑
dÉx

Λ(d)
∑

mÉx/d
1

= ∑
dÉx

Λ(d)b x

d
c

= ∑
dÉx

Λ(d)
x

d
+O

( ∑
dÉx

Λ(d)

)
.
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By Chebychev’s theorem,∑
dÉx

Λ(d) = ∑
pÉx

log p + ∑
pÉx1/2

∑
pαÉx

log p =O(x)+O(x1/2 log x) =O(x).

Therefore,

x log x +O(x) = ∑
nÉx

log(n) = x
∑

dÉx

Λ(d)

d
+O(x),

which proves the theorem. �

4. Multiplicative functions

Definition 2.16. A non-zero arithmetic function f is called multiplicative if and only if
for all m,n Ê 1 with (m,n) = 1 we have f (mn) = f (m) f (n). A non-zero arithmetic function is
called completely multiplicative if for all m,n Ê 1 we have f (mn) = f (m) f (n).

In particular, a multiplicative function satisfies f (1) = 1, and it is determined completely
by its values on prime powers. A completely multiplicative function is determined by its
values on the primes. Let us write pα‖n if pα | n but pα+1 - n. That is to say, pα‖n if and
only if vp (n) =α. If n =∏

pαp ‖n pαp , then we have

f (n) = f (
∏

pαp ‖n

pαp ) = ∏
pαp ‖n

f (pαp ).

If f is completely multiplicative, then we have

f (n) = ∏
pαp ‖n

f (p)αp .

Proposition 2.17. If f and g are multiplicative, then f ∗ g and f (−1) are as well.

Proof. If (m,n) = 1, then the set of divisors of mn, i.e. {d Ê 1 : d | mn}, is in bijection
with the set {(d1,d2) : d1 | m,d2 | n} of pairs of divisors of m and n. The bijection is given the
following two maps, which are inverse to each other

d 7→ ((d ,m), (d ,n))

(d1,d2) 7→ d1d2.

Given two multiplicative functions f , g and m,n relatively prime, we have

f ∗ g (mn) = ∑
d |mn

f (d)g (
mn

d
) = ∑

d1|m

∑
d2|n

f (d1d2)g (
m

d1

n

d2
)

= ∑
d1|m

∑
d2|n

f (d1) f (d2)g (
m

d1
)g (

n

d2
) =

( ∑
d1|m

f (d1)g (
m

d1
)

)( ∑
d2|n

f (d2)g (
n

d2
)

)
.

In similar fashion, let g = f (−1), and suppose f is multiplicative. We show g is multiplicative
by induction. We have f (1) = 1 and g (1) = 1. Let m,n > 1 be relatively prime, and suppose
as the induction hypothesis that for all m′,n′ relatively prime such that m′n′ < mn we have
g (m′n′) = g (m′)g (n′). Then we have

g (mn) = f (1)g (mn) =− ∑
d |mn
d>1

f (d)g (
mn

d
) =− ∑

d1|m

∑
d2|n

d1d2>1

f (d1) f (d2)g (
m

d1
)g (

n

d2
)

=− f ∗ g (m) f ∗ g (n)+ f (1)g (m) f (1)g (n) = g (m)g (n),

since f ∗ g (m) = f ∗ g (n) = 0. �
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Remark 2.18. On the other hand, if f is completely multiplicative, it is not necessarily
the case that f (−1) is also completely multiplicative. Consider, for example, 1 and µ.

4.1. Examples. Seeing as the functions 1 and Id are multiplicative, µ = 1(−1) is also
multiplicative, and so are also d = 1∗1, dk = dk−1 ∗1, and ϕ= Id∗µ. Therefore to determine
these functions, it suffices to calculate them on prime powers: for αÊ 0, the set of divisors of
pα is of the form {pβ : 0 ÉβÉα}. We therefore find that

d(pα) = |{β : 0 ÉβÉα}| =α+1,

and more generally
dk (pα) = |{(β1, . . . ,βk ) ∈Nk :β1 +·· ·+βk =α}|.

The relation µ∗1 = δ gives for αÊ 1

µ(1) = 1, and
∑

0ÉβÉα
µ(pβ) = 0.

Therefore we have that

µ(1) = 1, µ(p) =−1, µ(pα) = 0, for all αÊ 2.

Using the equality ϕ= Id∗µ, we have

ϕ(1) = 1, ϕ(pα) = pα−pα−1 = pα(1− 1

p
).

Therefore for n =∏
pα‖n pα, we have

d(n) = ∏
pα‖n

(α+1), µ(n) = ∏
pα‖n

µ(pα), ϕ(n) = ∏
pα‖n

(pα−pα−1) = n
∏
p|n

(1− 1

p
).



CHAPTER 3

Dirichlet Series

1. Review of Power Series

Given a sequence a = (an)nÊ0, its associated power series is the series

F (a, q) = ∑
nÊ0

an qn .

Let ρ be its radius of convergence, which we suppose is strictly positive (in particular, |an | =
o(( 1.01

ρ )n), say, as n →∞). The series F (a, q) therefore defines a holomorphic function in the

open disk {q ∈ C, |q | < ρ} and the data of this function F (a, q) determines the sequence a by
the Cauchy integral formula. Let b be another sequence with associated power series

F (b, q) = ∑
nÊ0

bn qn

of radius of convergence ρ′ > 0, so that the product F (a, q)F (b, q) defines a power series with
radius of convergence ρ′′ Ê min(ρ,ρ′) given by

F (c, q) = F (a, q)F (b, q) = ∑
nÊ0

cn qn , where cn = ∑
`+m=n

a`bm .

This type of relation opens the door to the study of arithmetic problems by analytic means.
For example, consider a = (rä(n))nÊ0:

an = rä(n) = |{m ∈Z : m2 = n}| =


2 if n is a square Ê 1,

1 if n = 0,

0 else.

The associated power series is

F (q) = 1+2
∑

mÊ1
qm2 = ∑

m∈Z
qm2

,

and its radius of convergence is 1. The powers of this series are of the form (when k Ê 1)

F (q)k = ∑
nÊ0

rk (n)qn ,

where

rk (n) = |{(m1, . . . ,mk ) ∈Z : m2
1 +·· ·+m2

k = n}|
is the number of ways of writing n as a sum of k integer squares. The function F (q) has nice
analytic properties (it is an example of a modular form) that permit one to study the number
of representations rk (n). On the other hand, as we will see later, this function (up to a change
of variables) is strongly connected to the Riemann zeta function ζ(s).

21
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2. Dirichlet Series

Dirichlet series are to arithmetic functions as power series are to sequences of numbers.
Let f ∈A be an arithmetic function. The Dirichlet series associated to f is the series in the
complex variable s given by

s 7→ L(s, f ) = ∑
nÊ1

f (n)

ns .

Definition 3.1. An arithmetic function f :NÊ1 →C is of polynomial growth if it satisfies
one of the following equivalent conditions.

• There exists a constant A ∈R (depending on f ) such that | f (n)| =O(n A).
• There exists σ ∈R such that the series L(σ, f ) is absolutely convergent.

In this case we write

σ f = inf{σ ∈R : L(σ, f ) converges absolutely } ∈R∪ {−∞};

The number σ f is called the abscissa of convergence of L(s, f ).

We leave the equivalence of the above two conditions as an exercise.
The abscissa of convergence is the analogue for Dirichlet series of the radius of convergence

for power series.

Proposition 3.2. Let f be an arithmetic function with polynomial growth, and let σ f

be its abscissa of convergence. For all σ > σ f , the series L(s, f ) converges absolutely and
uniformly in the half-plane {s ∈ C : Re(s) Ê σ}. In this domain, the derivative of L(s, f ) is the
Dirichlet series of the arithmetic function

− log. f : n 7→ − log(n) f (n),

that is to say,

L′(s, f ) = L(s,− log. f ) = ∑
nÊ1

− log(n) f (n)

ns ,

which has abscissa of convergence σ f as well.

Proof. Let σ>σ f . Then uniformly for Re(s) Êσ, we have

| f (n)|
|ns | É | f (n)|

nσ

and thus the sum of holomorphic functions
∑

nÊ1 f (n)n−s is uniformly and absolutely conver-
gent. It is bounded above by the absolutely convergent series

∑
nÊ1 | f (n)|n−σ, and so converges

uniformly in Re(s) Ê σ, and defines a holomorphic function on Re(s) Ê σ. It follows from the
Cauchy integral formula that the derivative L′(s, f ) is given by the sum of the derivatives, that
is

L′(s, f ) = ∑
nÊ1

f (n)
d

d s
(n−s) = ∑

nÊ1

− log(n) f (n)

ns = L(s,− log. f ).

This Dirichlet series is therefore convergent for s such that Re(s) > σ f . Applying the same
reasoning as above to the arithmetic function n 7→ − log(n) f (n), we see that L(s,− log. f ) is
absolutely convergent for Re(s) > σ f . In other words, σ− log. f É σ f . On the other hand, as
| f (n)| log(n) Ê | f (n)| for n Ê 3, σ− log. f Êσ f . Therefore σ f =σ− log. f . �

The following lemma is very useful: it shows that an arithmetic function of polynomial
growth is determined by its Dirichlet series.
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Lemma 3.3. Let f , g be two arithmetic functions of polynomial growth. We suppose that
for all s contained in a non-empty open subset of the half-plane {s : Re(s) > max(σ f ,σg )} we
have L(s, f ) = L(s, g ). Then f = g .

Proof. We may assume without loss of generality that g ≡ 0 by replacing f by f −g and
g by 0. Therefore, we may assume that L(s, f ) = 0 for s in an open subset of the half-plane
{s : Re(s) > σ f }. As this function is holomorphic, it is identically zero in the half-plane. By
replacing f by

f .Id−(σ f −1) : n 7→ f (n)n−(σ f −1)

we may assume without loss of generality that σ f É 1 and in particular that f (n) = O(1).
Suppose that f 6≡ 0 and let n0 be the smallest integer such that f (n0) 6= 0. We have for
Re(s) > 2 that

0 = ∑
nÊn0

f (n)

ns = f (n0)

ns
0

(1+ ns
0

f (n0)

∑
nÊn0+1

f (n)

ns ),

so we have

0 = 1+ ns
0

f (n0)

∑
nÊn0+1

f (n)

ns

because f (n0)/ns
0 does not vanish. Since f is bounded, we see (by comparison with an integral)

that for Re(s) > 2 ∑
nÊn0+1

f (n)

ns =O

(
1

Re(s −1)(n0 +1)Re(s)−1

)
and so

0 = 1+ ns
0

f (n0)

∑
nÊn0+1

f (n)

ns = 1+O

(
1

Re(s −1)

)
,

which is a contradiction when Re(s) →∞. �

The main reason to introduce Dirichlet series is the following.

Theorem 3.4. Let f , g ∈A , with σ f ,σg <∞. Then, σ f ∗g É max(σ f ,σg ), and for Re(s) >
max(σ f ,σg ) we have

L(s, f ∗ g ) = L(s, f )L(s, g ).

Proof. Let Re(s) > max(σ f ,σg ), so that∑
nÊ1

| f ∗ g (n)|
|ns | = ∑

nÊ1

∣∣∑
ab=n f (a)g (b)

∣∣
nRe(s)

É ∑
nÊ1

∑
ab=n

| f (a)||g (b)|
(ab)Re(s)

= ∑
a,bÊ1

| f (a)||g (b)|
(ab)Re(s)

= ∑
aÊ1

| f (a)|
aRe(s)

∑
bÊ1

| f (b)|
bRe(s)

<∞.

All of the above identities and swaps of order of summation above are justified by the fact
that we are summing positive terms. We have thus shown that σ f ∗g É max(σ f ,σg ). Moreover,
for Re(s) > max(σ f ,σg ), we have by absolute convergence that we can regroup the terms
arbitrarily, and so we have

L(s, f )L(s, g ) = L(s, f ∗ g ).

�
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Corollary 3.5. Suppose that f is invertible for the Dirichlet convolution, and that σ f ,
σ f (−1) <∞, so that for Re(s) > max(σ f ,σ f (−1) ) we have

L(s, f )L(s, f (−1)) = 1.

In particular, L(s, f ) does not vanish in the half-plane {s : Re(s) > max(σ f ,σ f (−1) )}.

2.1. Examples.

• For f ≡ 1 we have

L(s,1) = ∑
nÊ1

1

ns = ζ(s),

and σ1 = 1. The Möbius function is the inverse of the 1 function. We saw that
|µ(n)| É 1 and so σµ É 1. Moreover, we have∑

nÊ1

|µ(n)|
n

Ê ∑
pÊ2

1

p
=∞.

So we have that σµ = 1. We therefore see that for Re(s) > 1, the function ζ(s) does
not vanish, and that

L(s,µ) = ∑
nÊ1

µ(n)

ns = 1

ζ(s)
.

• Let d be the divisor function: we have that d = 1∗1, and so σd É 1. Since d(n) Ê 1,
we have σd = 1. For Re(s) > 1 we have

L(s,d) = ζ(s)2.

• The Euler function ϕ is µ∗Id and as σId = 2, and σµ = 1, we have σϕ É 2. For Re(s) > 2
we have

L(s,ϕ) = L(s,µ)L(s, Id) = ζ(s −1)

ζ(s)
.

• The von Mangolt function Λ= log∗µ. We have

L(s,Λ) = L(s, log)L(s,µ) =−ζ
′(s)

ζ(s)
.

We have σΛ É 1 and seeing as the series
∑

nÊ1
Λ(n)

n diverges, σΛ = 1. As ζ(s) doesn’t

vanish for Re(s) > 1, we have ζ′(s)
ζ(s) is holomorphic on that domain. Since {s : Re(s) > 1}

is simply connected, the primitive of ζ′(s)
ζ(s) exists and is holomorphic, and this function

is the logarithm logζ(s). We have

(logζ(s))′ = ζ′(s)

ζ(s)
,

i.e. the logarithmic derivative of ζ(s).

3. Dirichlet series and multiplicative functions

Theorem 3.6. Let f ∈A be a multiplicative function of polynomial growth, then for all
σ>σ f we have
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(1) For all p prime, the series

Lp (s, f ) := ∑
αÊ0

f (pα)

pαs

converges absolutely and uniformly in the half plane Re(s) Ê σ. We call Lp (s, f ) the
local factor of f at p.

(2) Moreover, we have

L(s, f ) =∏
p

Lp (s, f ) = lim
P→∞

∏
pÉP

Lp (s, f ),

and the convergence is uniform in this half-plane.
(3) More precisely, if we write

L>P (s, f ) = lim
P ′→∞

∏
P<pÉP ′

Lp (s, f ),

then as P →∞ we have

L>P (s, f ) → 1

uniformly in every half-plane Re(s) Êσ, σ>σ f .
(4) Conversely, if f is an arithmetic function such that σ f <∞ and f (1) = 1 and if L(s, f )

satisfies

L(s, f ) =∏
p

Lp (s, f ) = lim
P→∞

∏
pÉP

Lp (s, f )

for s sufficiently large, then f is multiplicative.

Proof. (1) Let Re(s) Êσ, then∑
αÊ0

| f (pα)|
|pαs | É ∑

nÊ1

| f (n)|
nσ

<∞,

from which follows the absolute and uniform convergence of Lp (s, f ).
(2) For P Ê 2 write

p1 < p2 < ·· · < pk É P

for the set of prime numbers É P , so∏
pÉP

Lp (s, f ) = ∑
α1,...,αkÊ0

f (pα1
1 ) · · · f (pαk

k )

(pα1
1 · · ·pαk

k )s
= ∑
α1,...,αkÊ0

f (pα1
1 · · ·pαk

k )

(pα1
1 · · ·pαk

k )s
= ∑

nÊ1
p|n⇒pÉP

f (n)

ns .

Thus, an integer that doesn’t appear in the previous sum has at least one prime
divisor > P and so ∣∣∣∣∣L(s, f )− ∏

pÉP
Lp (s, f )

∣∣∣∣∣É ∑
n>P

| f (n)|
nσ

→ 0,

as P →∞ with uniform convergence.
(3) We will now show that as P →∞ that

L>P (s, f ) = ∏
p>P

Lp (s, f )

tends to 1 uniformly in every half-plane Re(s) Êσ>σ f . We have
∏

p>P Lp (s, f ) is the
Dirichlet series of the multiplicative function fP , which is 0 if n has a prime factor
É P and f (n) if not (if n = 1, then f (1) = 1 since 1 doesn’t have any prime factors,
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and in particular has no prime factors É P). It is clear that σ fP É σ f . We have

L>P (s, f ) = L(s, fP ) and

L(s, fP ) = ∏
p>P

Lp (s, f ) = ∑
nÊ1

p|n⇒p>P

f (n)

ns = 1+ ∑
n>1

p|n⇒p>P

f (n)

ns

and so ∣∣∣∣∣ ∏
p>P

Lp (s, f )−1

∣∣∣∣∣É ∑
n>1

p|n⇒p>P

| f (n)|
nσ

É ∑
n>P

| f (n)|
nσ

→ 0.

(4) Conversely, let f̃ be the unique multiplicative function defined by

f̃ (n) = ∏
pα‖n

f (pα).

Then σ f̃ É σ f + 1. Indeed, for σ > σ f , we have | f (n)|/nσ = o(1) and thus for n

sufficiently large (say, n > N) we have | f (n)|/nσ < 1. From this we deduce

| f̃ (n)|
nσ

= ∏
pα‖n

| f (pα)|
pασ

= ∏
pα‖n
pαÉN

| f (pα)|
pασ

∏
pα‖n
pα>N

| f (pα)|
pασ

< ∏
pα‖n
pαÉN

| f (pα)|
pασ

=O f (1),

since there are only finitely many (the number depends on N = N ( f )) values of
f (pα)/pασ as factors in this last product. Thus, L(s, f̃ ) converges absolutely for
Re(s) >σ+1 and so

L(s, f̃ ) =∏
p

Lp (s, f̃ ) =∏
p

Lp (s, f ).

We therefore have for s with Re(s) sufficiently large that

L(s, f̃ ) = ∑
nÊ1

f̃ (n)

ns = L(s, f ) = ∑
nÊ1

f (n)

ns ,

which by Lemma 3.3 implies that for all n Ê 1 that f (n) = f̃ (n).
�

Corollary 3.7. If f is completely multiplicative, then for Re(s) >σ f we have

L(s, f ) =∏
p

(1− f (p)

p s )−1.

These factorization results into Euler products allow a further localization of the zeros of
L(s, f ).

Proposition 3.8. Let f ∈ A × be a multiplicative function. Let σ > σ f . The number of
local factors Lp (s, f ) that have a zero in the half-plane Re(s) Êσ is finite and the zeros of L(s, f )
in this half-plane are exactly the zeros of the local factors Lp (s, f ). More precisely, there exists
P such that ∏

p>P
Lp (s, f ) = L(s, f )∏

pÉP Lp (s, f )

does not vanish in Re(s) Êσ. Thus, the zeros of L(s, f ) in this half-plane of absolute convergence
are exactly the zeros of the local factors Lp (s, f ).
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Proof. Let σ>σ f . We saw that if p is sufficiently large, for all s with Re(s) Êσ that

|Lp (s, f )−1| É 1

2
,

thus the number of local factors that vanish in the half-plane Re(s) Êσ is finite. On the other
hand, we saw previously that if P is sufficiently large and Re(s) Êσ that

|L>P (s, f )−1| É ∑
n>P

| f (n)|
nσ

< 1/2,

so L>P (s, f ) does not vanish in the half-plane Re(s) Êσ. �

3.1. Examples. For Re(s) > 1, we have

ζ(s) = ∑
nÊ1

1

ns =∏
p

(1− 1

p s )−1

and
1

ζ(s)
= ∑

nÊ1

µ(n)

ns =∏
p

(1− 1

p s ).

The function ζ(s) does not vanish for Re(s) > 1. Moreover, we have for Re(s) > 1 that

L(s,d) = ∑
nÊ1

d(n)

ns = ζ2(s) =∏
p

(1− 1

p s )−2,

and

L(s,d (−1)) = ζ(s)−2 =∏
p

(1− 2

p s +
1

p2s ).

Now, if Re(s) > 2 we have

L(s,ϕ) = ζ(s −1)

ζ(s)
=∏

p
(

1−p−s

1−p1−s ) =∏
p

(1+ (1− 1

p
)
∑
αÊ1

1

pα(s−1)
).

Here is a more interesting example. Let µ2 ∈ A × be the multiplicative function defined on
prime powers by

µ2(pα) =


1 if α= 0

−1 if α= 1 and p 6= 2

−4 if α= 1 and p = 2

0 if αÊ 2.

That is to say, µ2 is similar to the Möbius function, but where the value at 2 has been modified.
Note that |µ2(n)| É 4 for all n Ê 1, so that σµ2 É 1. We have

L2(s,µ2) = 1− 4

2s ,

which has a zero at s = 2, and whenever Re(s) > 1 that

L(s,µ2) = ∑
nÊ1

µ2(n)

ns = (1− 4

2s )
∏
p 6=2

(1− 1

p s ).
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Therefore the only zero of L(s,µ2) in Re(s) > 1 is at s = 2. Let us now check that this does not

contradict Corollary 3.5. We compute µ(−1)
2 . By Proposition 2.17, µ(−1)

2 is multiplicative, so
it suffices to compute it on prime powers. Computing using the recursive definition we find

µ(−1)
2 (pα) =

{
1 if p 6= 2

4α if p = 2.

Let σ> 2. We have for s with Re(s) Êσ that

|L(s,µ(−1)
2 )| É ∑

nÊ1

|µ(−1)
2 (n)|

nσ
= (1− 4

2σ
)−1

∏
p 6=2

(1− 1

pσ
)−1 = (1− 1

2σ )

(1− 4
2σ )

ζ(σ) <∞,

so σµ(−1)
2

É 2. On the other hand,

∑
nÊ1

|µ(−1)
2 (n)|

n2 Ê ∑
αÊ0

µ(−1)
2 (2α)

22α = ∑
αÊ0

1 =∞.

So σµ(−1)
2

= 2. Therefore the example of µ2 does not contradict Corollary 3.5.



CHAPTER 4

Primes in Arithmetic Progressions

Definition 4.1. An arithmetic progression is a doubly-infinite subset of Z satisfying the
following property: There exists a positive integer q > 0 such that the distance between two
consecutive integers of this subset is always q. The integer q is called the modulus of the
arithmetic progression.

It is easy to see that arithmetic progressions of modulus q are of the form

Lq,a = a +qZ⊆Z,

where a is an integer. We remark that if a ≡ a′ (mod q), that we have Lq,a = Lq,a′ . Thus
arithmetic progressions of modulus q are indexed by the congruence classes modulo q (i.e.
by the ring Z/qZ). There are therefore q of them.

Thus n belongs to Lq,a if and only if n ≡ a (mod q). The class a of a modulo q is called
the class of the arithmetic progression. We will write indifferently Lq,a or Lq,a and by abuse
of language, we will talk about the integer a of the class of the arithmetic progresssion.

As Lq,a is infinite, it is natural to ask oneself if its intersection with the prime numbers
P is as well. That is almost always the case.

Theorem 4.2 (Dirichlet’s theorem on primes in arithmetic progressions). Let a, q > 0 be
two relatively prime integers. Then, the set

Pq,a =P ∩Lq,a

is infinite. Said differently, there exist infinitely many prime numbers p ≡ a (mod q).

Remark 4.3. The condition that a and q be relatively prime is necessary. Indeed, if
(a, q) 6= 1, then there exists at most one prime p of the form a+qn, and the only possibility is
p = (a, q). In other words the congruence classes containing an infinite number of primes are
exactly those of (Z/qZ)×.

In the vein of the prime number theorem, we can pose more precise questions on the
density of the set Pq,a . We therefore set

π(x; q, a) = |Pq,a ∩ [1, x]| = |{p É x : p ≡ a (mod q)}| = ∑
p≡a (mod q)

pÉx

1

the counting function of the primes p ≡ a (mod q). At the beginning of the 20th century,
Landau showed this generalization of the prime number theorem:

Theorem 4.4 (Landau). Let a, q > 0 be relatively prime integers. Then

π(x; q, a) = 1

ϕ(q)
π(x)(1+o(1)) = 1

ϕ(q)

x

log x
(1+o(1)).

29
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If p > q, then p necessarily occurs in some arithmetic progression modulo q for which the
class is relatively prime to q. Dirichlet’s theorem says that each of these congruence classes
is attained infinitely often. Landau’s theorem says that the asymptotic proportion of prime
numbers falling into each of these classes does not depend on that class. That is to say,
asymptotically there are no “privileged” congruence classes. In this chapter, we will not prove
Landau’s theorem, but instead we will more simply give the analogue of Merten’s theorem.

Theorem 4.5. We have

(4.1)
∑

nÉx
n≡a (mod q)

Λ(n)

n
= 1

ϕ(q)
log(x)+O(1)

(4.2)
∑

pÉx
p≡a (mod q)

log p

p
= 1

ϕ(q)
log(x)+O(1),

(4.3)
∑

pÉx
p≡a (mod q)

1

p
= 1

ϕ(q)
loglog(x)+O(1).

The method (due to Dirichlet) will consist of finding a nice expression (from an analytic
point of view) for the congruence condition

n ≡ a (mod q),

then treating it in the sum over prime numbers. The crucial point is the group structure of
the set (Z/qZ)×.

1. Characters of a finite abelian group

Let G be a finite abelian group, we write e for the identity element. Let

C (G) =CG = { f : G →C},

the vector space of functions from G to C. It is a complex vector space (and even an algebra
under multiplication of two functions) of dimension |G|. A C-basis of C (G) is given by the set

B0 = {δg : g ∈G}, where δg (g ′) =
{

1 g = g ′

0 g 6= g ′.

The point is that for any f ∈C (G), we have the decomposition

f =∑
g

f (g )δg ,

so B0 spans C (G). It is also easy to see that B0 is linearly independent.
The space C (G) is equipped with a hermitian scalar product

(4.4) 〈 f , f ′〉 = 1

|G|
∑

g∈G
f (g ) f ′(g )

for which the basis B0 is orthogonal:

〈δg ,δg ′〉 = 1

|G|δg=g ′ = 1

|G|

{
1 g = g ′

0 g 6= g ′.
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Note that the above facts hold for G any finite set. That is to say, we have not yet used
the group structure of G at all. On the other hand, we will soon see that for G an abelian
group, C (G) possesses a canonical orthonormal basis coming from the structure of the group
G.

As G is a group, it acts on itself by right translations. This action induces an action of G
on C (G): to each element g of G we associate the endomorphism Tg ∈ End(C (G)) defined by

Tg : f 7→ Tg f , where Tg f : g ′ 7→ Tg f (g ′) = f (g ′g ).

We can verify easily that

Tg ◦Tg ′ = Tg g ′ , and Te = IdC (G),

from which we deduce that Tg is invertible, the inverse being

(Tg )−1 = Tg−1

and thus the operator

T : g 7→ Tg

in fact defines a group homomorphism

T : G → Aut(C (G)).

Moreover, as G is abelian, the elements Tg , g ∈G commute:

Tg ◦Tg ′ = Tg g ′ = Tg ′g = Tg ′ ◦Tg .

What is more, we have

〈Tg f ,Tg f ′〉 = 1

|G|
∑

g ′∈G
f (g ′g ) f ′(g ′g ) = 1

|G|
∑

g∈G
f (g ) f ′(g ) = 〈 f , f ′〉.

Thus {Tg : g ∈ G} is a set of commuting isometries for the scalar product (4.4). Recall the
spectral theorem.

Theorem (Spectral Theorem). Let (V ,〈,〉) be a finite-dimensional hermitian vector space,
and T ⊂ End(V ) a set of pairwise commuting endomorphisms. Then there exists an orthonor-
mal basis of V given by simultaneous eigenvectors of all of the elements of T if and only if
each T ∈T is normal (that is to say, T T ∗ = T ∗T ).

In the situation at hand, the spectral theorem implies that C (G) possesses an orthonormal
basis of eigenvectors of all of the Tg . In fact, up to permutation, this basis is unique.

Theorem 4.6. There exists a unique orthonormal basis Ĝ of C (G) consisting of eigen-
vectors for all of the Tg , such that for all χ ∈ Ĝ we have χ(e) = 1. We have an equality

Ĝ = HomZ(G ,C×),

where HomZ(G ,C×) designates the set of group homomorphisms from G to C×. This set is a
group: the group of characters of G, or also the dual of G.

Proof. The set {Tg : g ∈ G} is a family of unitary operators, so T ∗
g = Tg−1 , and therefore

normal and pairwise commuting. By the spectral theorem, this family is diagonalizable with
respect to an orthonormal basis. Let B be such a basis. The ψ ∈ B are thus non-zero
eigenvectors of all of the Tg and we have for all g that

(4.5) Tgψ(x) =ψ(xg ) =χψ(g )ψ(x),
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where χψ(g ) denotes the eigenvalue of Tg associated to the eigenvalue ψ. We therefore asso-
ciate to every ψ a function χψ ∈C (G) defined by

χψ : g 7→χψ(g ).

I claim that Ĝ = {χψ}ψ∈B is the basis that we are looking for. We have

Teψ= Id(ψ) =χψ(e)ψ=ψ,

Tg ◦Tg ′ψ= Tg g ′ψ=χψ(g )χψ(g ′)ψ=χψ(g g ′)ψ

T −1
g ψ= Tg−1ψ=χψ(g−1)ψ= (χψ(g ))−1ψ,

thus (since ψ 6= 0) we have for all g , g ′ ∈G that

χψ(e) = 1, χψ(g g ′) =χψ(g )χψ(g ′), χψ(g−1) =χψ(g )−1.

In other words, χψ is a group homomorphism from G to C×. We still need to show that Ĝ is
an orthonormal basis of eigenvectors for C (G). Up to this point, we only know that B is such
a basis.

Note also that as G is finite, we have by Lagrange’s theorem that for all χ ∈ HomZ(G ,C×),

χ(g |G|) =χ(e) = 1 =χ(g )|G|,

and so χ takes values in µ|G| ⊂ C×, the set of |G|th roots of unity. In particular, χψ(g ) is a
complex number of modulus 1 for all g and

(4.6) 〈χψ,χψ〉 = 1

|G|
∑

g∈G
χψ(g )χψ(g ) = 1

|G|
∑

g∈G
1 = 1.

As ψ is non-zero, there exists g be such that ψ(g ) 6= 0. By (4.5), we have for all g that
ψ(g ) =χψ(g )ψ(e) and so ψ(e) 6= 0, thus

χψ(g ) = 1

ψ(e)
ψ(g ), and so χψ = 1

ψ(e)
ψ.

That is to say, χψ belongs to the subspace C.ψ generated by ψ. Seeing as all of the χψ
are non-zero (recall χψ(e) = 1), the family {χψ} = Ĝ is an orthonormal basis of C (G) which is
contained in Hom(G ,C×).

Now we show conversely that every element of HomZ(G ,C×) belongs to Ĝ. Let ψ ∈
HomZ(G ,C×). Then ψ ∈ C (G) and as ψ 6≡ 0 (we have ψ(e) = 1), there exists χ ∈ Ĝ such that
〈ψ,χ〉 6= 0. Thus, we have for all g

0 6= 〈ψ,χ〉 = 〈Tgψ,Tgχ〉 = 1

|G|
∑

g ′∈G
ψ(g ′g )χ(g ′g ) =ψ(g )χ(g )〈ψ,χ〉,

from which it follows that for all g we have ψ(g )χ(g ) = 1. That is, ψ(g ) =χ(g ). �

1.1. Properties of characters. Let us extract from the above proof the following im-
portant properties.
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1.1.1. Group structure. The set Ĝ = HomZ(G ,C×) has a natural group structure (called
the dual group of G) via multiplication of functions. For all χ,χ′ ∈ Ĝ, we define

χ.χ′ : g 7→χ(g )χ′(g ), χ−1 : g 7→χ(g )−1.

The functions χ.χ′ and χ−1 are clearly themselves characters. The identity element of Ĝ is
the constant function 1, which we write

χ0 : g 7→ 1

and which we call the trivial character.
Said differently, in a pedantic fashion, Ĝ is a subgroup of the group of units of the algebra

C (G) with the structure of multiplication of functions f , f ′ ∈C (G) given by

f . f ′ : g 7→ f (g ) f ′(g ).

1.1.2. Unitary structure. We showed that

|Ĝ| = dimC (G) = |G|.
In particular, (Lagrange’s theorem) for all χ ∈ Ĝ, we have χ|G| = χ0, that is to say that for all
g ∈G

χ(g )|G| = 1,

said otherwise, characters take their values in the |G|th roots of unity

µ|G| = {ζ ∈C : ζ|G| = 1}.

We say that they are unitary. In particular, for all g

χ(g )−1 =χ(g ), i.e. χ−1 =χ,

the complex conjugate of χ.
1.1.3. Orthogonality relations.

Proposition 4.7. We have

(4.7) δχ=χ′ = 1

|G|
∑

g ′∈G
χ(g ′)χ′(g ′)

(4.8) δg=g ′ = 1

|G|
∑
χ∈Ĝ

χ(g )χ(g ′)

Proof. The first relation is the orthogonality

〈χ,χ′〉 = δχ=χ′ .

To show the second relation, let us consider the decomposition of δg in the basis Ĝ:

(4.9) δg =∑
χ
〈δg ,χ〉χ= 1

|G|
∑
χ

( ∑
g ′∈G

δg (g ′)χ(g ′)

)
.χ= 1

|G|
∑
χ
χ(g )χ.

Evaluating this identity at g ′, we obtain the relation (4.8). �

Remark 4.8. The expression (4.9) is the Fourier decomposition of the function δg . This
expression will be very useful to us in what follows.
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1.2. Characters of a cyclic group. Let G = 〈g 〉 be a cyclic group generated by g . Let
q be its order. A character χ of G is completely determined by its value on g , i.e. χ(g ).
Indeed, for all g ′ ∈ G, write g ′ = g m with m ∈ Z and χ(g ′) = χ(g )m . Note that this does not
depend on the choice of m ∈Z: if g ′ = g m′

then m′ ≡ m (mod q) and

χ(g m′
) =χ(g )mχ(g )m′−m =χ(g m),

since χ(g ) is a qth root of unity. Thus all qth roots of unity ζ define uniquely a character of
G by taking

χ(g m) = ζm .

In other words, we have the following proposition.

Proposition 4.9. Let G be a cyclic group of order q. The choice of a generator of G
determines an isomorphism between the group of qth roots of unities and the group Ĝ. This
isomorphism is given by

ζ ∈µq 7→χ, where χ : g m 7→χ(g m) = ζm .

In the case of the group Z/qZ, the characters (called additive characters) are given ex-
plicitly by the functions

ψn : x (mod q) 7→ e2πi n x
q .

Note that ψn only depends on the class of n modulo q and

n (mod q) 7→ψn

is the searched for isomorphism.

Remark 4.10. Note that µq is a cyclic group of order q generated by the complex
exponential

ζq = e(
1

q
), where e(x) = e2πi x .

We therefore have
Ĝ 'µq 'Z/qZ'G .

Note that this isomorphism is not canonical since it depends on the choice of generator g .
More generally, for any finite abelian group G we have G ' Ĝ.

2. Dirichlet Characters

Now we apply the above theory to the multiplicative groups (Z/qZ)×.

Definition 4.11. Let q Ê 1 be an integer. The characters of the abelian group (Z/qZ)×
are called Dirichlet characters of modulus q. The trivial character (i.e. the constant function
equal to 1) is denoted χ0.

2.1. The arithmetic function associated to a Dirichlet character. Let χ ∈ á(Z/qZ)×
be a character. We extend this character by 0 to be a function on Z/qZ, and extend this
function by periodicity to all of Z. That is to say, we define an arithmetic function χ by

χ(n) =
{
χ(n (mod q)) (n, q) = 1

0 (n, q) > 1.

By abuse of language, the arithmetic function χ thus obtained is also called a Dirichlet
character. In fact, when mathematicians talk about Dirichlet characters they most often mean
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the arithmetic function and not the character of (Z/qZ)×. In particular, χ ∈A is periodic of
period q, vanishes on integers not relatively prime to q, and is completely multiplicative:

χ(mn) =χ(m)χ(n) for all m,n ∈NÊ1.

The orthogonality relations (4.7) and (4.8) are therefore written

(4.10) δχ=χ′ = 1

ϕ(q)

∑
a (mod q)

χ(a)χ′(a),

and for (ab, q) = 1

(4.11) δa≡b (mod q) =
1

ϕ(q)

∑
χ (mod q)

χ(a)χ(b),

where the sum runs over all Dirichlet characters modulo q.
Next we consider the Dirichlet series associated to a Dirichlet character

L(s,χ) = ∑
nÊ1

χ(n)

ns .

As |χ(n)| É 1, this series converges absolutely for Re(s) > 1, and in this domain we have

L(s,χ) =∏
p

(1− χ(p)

p s )−1.

Proposition 4.12. Let χ (mod q) be a Dirichlet character.

• If χ=χ0, we have for Re(s) > 1

L(s,χ0) = ∏
p|q

(1− 1

p s )ζ(s),

which admits an analytic continuation to the half plane Re(s) > 0 with a simple pole
at s = 1.

• If χ 6=χ0, the series L(s,χ) converges uniformly on compacta in the half-plane Re(s) > 0
and thus defines a holomorphic function in this domain. More precisely, we have for
Re(s) > 0

(4.12)
∑

1ÉnÉX

χ(n)

ns = L(s,χ)+O(
q|s|
σ

X −σ).

Proof. If χ=χ0, then

L(s,χ0) =∏
p

(1− χ0(p)

p s )−1 = ∏
(p,q)=1

(1− 1

p s )−1 = ∏
p|q

(1− 1

p s )ζ(s).

Therefore the result follows from the analytic continuation of ζ(s) to the domain Re(s) > 0 (see
exercises).

If χ is non-trivial, we have for every interval I of the form [·, ·) of length exactly q∑
n∈I

χ(n) = 0.

Indeed, I contains exactly one time each congruence class of Z/qZ since it is length q and
the equality above follows from the orthogonality relation (4.10). Therefore for all t we have

|Mχ(t )| É q.
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By integration by parts we therefore have∑
1<nÉX

χ(n)

ns = X −s Mχ(X )−1+ s
∫ X

1
Mχ(t )t−s−1 d t .

Since Mχ(t ) is bounded, we have that the first term tends to 0 when σ= Re(s) > 0. Moreover,
the integral converges absolutely as X → ∞ for s in the same domain. Thus, the series
converges. By the same argument, we have

L(s,χ)− ∑
1ÉnÉX

χ(n)

ns = ∑
n>X

χ(n)

ns = [
Mχ(t )t−s]∞

X + s
∫ ∞

X
Mχ(t )t−s−1 d t ¿ q X −σ+ |s|

σ
q X −σ,

which tends to 0 as X →∞. This proves (4.12). This upper bound proves that
∑

1ÉnÉX
χ(n)

ns

converges uniformly towards L(s,χ) on compact subsets of the half-plane Re(s) > 0. We deduce
from this the holomorphy of L(s,χ) in that domain. �

3. Beginning of the proof of Mertens theorem in arithmetic progressions

We already saw in our final proof of the classic Mertens theorem 2.15 that it suffices to
show that ∑

nÉx
n≡a (mod q)

Λ(n)

n
= 1

ϕ(q)
log x +O(1).

By (4.11) we have

(4.13)
∑

nÉx
n≡a (mod q)

Λ(n)

n
= 1

ϕ(q)

∑
χ (mod q)

χ(a)Sχ(x),

where

Sχ(x) = ∑
nÉx

χ(n)

n
Λ(n).

If χ=χ0,

Sχ0 (x) = ∑
nÉx

(n,q)=1

Λ(n)

n
= ∑

nÉx

Λ(n)

n
−∑

p|q
log p

∑
αÊ1

pαÉx

1

pα
= log x +O(log q),

and thus the contribution of this term to the sum (4.13) is of size

log x +Oq (1).

To finish the proof of Mertens theorem in arithmetic progressions, it suffices to show that for
all χ 6=χ0

Sχ(x) = ∑
nÉx

χ(n)

n
Λ(n) =Oq (1).

In order to calculate Sχ(x), we consider the sum

Tχ(x) = ∑
nÉx

(logn)
χ(n)

n
.

By integration by parts and using the fact that Mχ(x) is bounded if χ 6=χ0, we see that

Tχ(x) =O(q).
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On the other hand, using the equality log = 1∗Λ, we have by (4.12)

Tχ(x) = ∑
aÉx

χ(a)

a
Λ(a)

∑
bÉx/a

χ(b)

b

= ∑
aÉx

χ(a)

a
Λ(a)

(
L(1,χ)+O(q

a

x
)
)

= L(1,χ)Sχ(x)+Oq (1)

by Chebyshev’s theorem. Thus, if we show that

L(1,χ) 6= 0,

we will have shown

(4.14) Sχ(x) =Oq (1),

which will conclude the proof of Mertens theorem. The non-vanishing of L(s,χ) at s = 1 is in
fact the key point in the proof of Dirichlet’s theorem on primes in arithmetic progressions.

4. Non-vanishing of Dirichlet L-functions at the point s = 1

Theorem 4.13 (Dirichlet). Let χ (mod q) be a non-trivial Dirichlet character. Then

L(1,χ) 6= 0.

We will give two different proofs of this theorem. One only uses real analysis (given in
the exercises), and the other goes by complex analysis. Whatever the proof is, a key point
will always be an argument relying on positivity.

4.1. Proof by complex analysis. The idea is the following. We consider the product
of all of the Dirichlet L-functions:∏

χ (mod q)
L(s,χ) = L(s,χ0)

∏
χ 6=χ0

L(s,χ) =: Lq (s).

The function Lq (s) thus defined is actually a Dirichlet series. The associated arithmetic func-
tion n 7→ aq (n) is multiplicative and given by the Dirichlet convolution of all of the Dirichlet
characters modulo q, i.e. aq =∗χ (mod q)χ. We have

Lq (s) = ∑
nÊ1

aq (n)

ns ,

and we will soon see that the coefficients aq (n) satisfy aq (n) Ê 0 for all n Ê 1. We will also
show for all n relatively prime to q that

aq (nϕ(q)) Ê 1.

From these facts we deduce that the abscissa of convergence σq of aq satisfies σq Ê 1/ϕ(q).
We also have à priori that σq É 1 since aq is a convolution of arithmetic functions whose

abscissae of convergence are equal to 1. Indeed, setting σ= 1
ϕ(q) we have

∑
nÊ1

aq (n)

nσ
Ê ∑

mÊ1
(m,q)=1

aq (mϕ(q))

mϕ(q)σ
Ê ∑

mÊ1
(m,q)=1

1

m
=∞.
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Lemma 4.14 (Landau). Let

L(s) = ∑
nÊ1

f (n)

ns

be a Dirichlet series of abscissa of convergence σ f <∞ and such that the coefficients f (n) are
non-negative. Then L(s) does not admit an analytic continuation in a neighborhood of the
point s =σ f .

By Landau’s lemma, Lq (s) does not admit analytic continuation to some neighborhood
of σq , which itself satisfies 1/ϕ(q) É σq É 1. But by proposition 4.12, Lq (s) does admits a
meromorphic continuation to the half-plane Re(s) > 0 in which the only possible pole in this
domain is at s = 1. If there existed a character χ for which L(s,χ) vanished at s = 1, then the
function Lq (s) will be holomorphic at s = 1 and therefore have an analytic continuation to the
whole half-plane {s : Re(s) > 0}, since the pole of L(s,χ0) at 1 is simple. Contradiction!

So, the proof of L(1,χ) 6= 0 reduces to:

(1) showing that aq (n) Ê 0 for all n Ê 1,

(2) showing that aq (nϕ(q)) Ê 1 for all (n, q) = 1,
(3) proving Landau’s lemma.

We start with the third of these.

Proof of Landau’s lemma. Without loss of generality, we can suppose that σ f = 0 by
replacing L(s) with L(s −σ f ). Let us suppose that L(s) admits an analytic continuation in
an open disk D centered at σ f = 0. Thus L(s) and all of its derivatives define holomorphic
functions in the domain D ∪ {s : Re(s) > 0}.

Our strategy will be to show that the series L(σ) converges absolutely for σ= 0 and in fact
for σ ∈ D with σ < 0. This will be a contradiction with the fact that σ f = 0. First we show
that ∑

nÊ1
f (n) = L(0).

This is a consequence of the monotone convergence theorem, and we recall the argument now.
As f (n) Ê 0, the function

σ ∈ (0,1] 7→ L(σ) = ∑
nÊ1

f (n)

nσ

is decreasing and is bounded above by its limit as σ→ 0+ which is L(0). This isn’t quite what
we want, however. The series

∑
n f (n) is defined as limN→∞

∑
nÉN f (n). But we have for all

N Ê 1 that ∑
nÉN

f (n) = lim
σ→0+

∑
nÉN

f (n)

nσ
É lim
σ→0+ L(σ) = L(0).

Thus we have shown that the sum
∑

nÊ1 f (n) converges by the monotone convergence theorem
(it has non-negative terms). We calculate the limit by noting that for all σ> 0 we have

L(σ) = ∑
nÊ1

f (n)

nσ
É ∑

nÊ1
f (n),

and by letting σ tend to 0.
Now we show that L(σ) converges for σ< 0 and σ ∈ D. Let us consider the kth derivative

of L(s): By Proposition 3.2, for Re(s) > 0 it is given by

L(k)(s) = (−1)k
∑

nÊ1

f (n)(logn)k

ns .
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As f (n)(logn)k is non-negative, the same argument as before give that

(−1)k
∑

nÊ1
f (n)(logn)k = L(k)(0).

If σ ∈ D, then L(σ) is calculated by its Taylor series at 0:

L(σ) = ∑
kÊ0

L(k)(0)

k !
σk = ∑

kÊ0

(−σ)k

k !

∑
nÊ1

f (n)(logn)k .

Suppose σ < 0, then as (−σ)k Ê 0 the terms of this double sum are all non-zero and we can
permute them as we like:

L(σ) = ∑
nÊ1

f (n)
∑
kÊ0

(−σ logn)k

k !
= ∑

nÊ1
f (n)exp(−σ logn) = ∑

nÊ1

f (n)

nσ
.

Thus the series converges for σ< 0, which contradicts the fact that σ f = 0. �

4.2. Positivity of the aq (n). Since the function n 7→ aq (n) is multiplicative, it suffices

to show that aq (pk ) Ê 0 for p prime and k Ê 0. It therefore suffices to show that the coefficients
of

Lq,p (s) =∏
χ

Lp (s,χ) =∏
χ

(1−χ(p)p−s)−1 = ∑
kÊ0

aq (pk )

pks

are non-negative. If p | q then Lq,p (s) = 1. We can therefore suppose that p is relatively prime
to q. Setting z = p−s (note |z| < 1 if Re(s) > 0), we consider the convergent power series

E(z) =∏
χ

(1−χ(p)z)−1 = ∑
kÊ0

aq (pk )zk .

Taking the logarithm, we have

logE(z) =∑
χ

log((1−χ(p)z)−1) =∑
χ

∑
kÊ1

χ(p)k zk

k
=∑

χ

∑
kÊ1

χ(pk )
zk

k

= ∑
kÊ1

zk

k

∑
χ
χ(pk ) =ϕ(q)

∑
kÊ1

pk≡1(mod q)

zk

k
.

We thus see that log(E(z)) is a power series with non-negative coefficients. Since

E(z) = exp(log(E(z))) = 1+ log(E(z))+ log(E(z))2

2
+·· ·+ (log(E(z)))`

`!
+·· ·

we see that the coefficients of E(z) are themselves also non-negative.
Now we show that aq (nϕ(q)) Ê 1. Note that for k =ϕ(q) we have

pk = pϕ(q) ≡ 1(mod q)

by Lagrange’s theorem (here the group is (Z/qZ)×). We see that the ϕ(q)th coefficient of
logE(z) is equal to 1, and from this we deduce that the ϕ(q)th coefficient of E(z) is Ê 1. This
already permits us to deduce that the abscissa of convergence of Lq (s) is Ê 1/ϕ(q).

We can do a little better and completely calculate Lq (s). Let ep be the order of p (mod q)
in the group (Z/qZ)×. We have

log(E(z)) = ϕ(q)

ep

∑
kÊ1

zep k

k
= ϕ(q)

ep
log((1− zep )−1) = log((1− zep )

− ϕ(q)
ep )
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and so

E(z) = 1

(1− zep )
ϕ(q)
ep

= (1+ zep + z2ep +·· · )
ϕ(q)
ep ,

and so

Lq,p (s) = 1

(1−p−ep s)
ϕ(q)
ep

= ∑
kÊ0

aq (pk )

pks
.

We deduce from this that the aq (pk ) are non-negative integers such that aq (pk ) Ê 1 for all k
which are multiples of ϕ(q) and so for all n prime with q we have

aq (nϕ(q)) Ê 1.



CHAPTER 5

Riemann’s Memoir

More than 150 years ago, in 1859, Riemann published his celebrated memoir Über die
Anzahl der Primzahlen unter einer gegebenen Grösse. In this memoir, Riemann presented
the foundations for the study of the analytic properties of the zeta function

(5.1) ζ(s) = ∑
nÊ1

1

ns =∏
p

(
1− 1

p s

)−1

, Re(s) > 1

as a function of a complex variable s, and the relation between these and the problem of
counting prime numbers.

In his memoir, Riemann mentioned an “explicit” formula, shown later by von Mangolt,
relating the summation function of the function Λ

MΛ(x) = ∑
nÉx

Λ(n)

to a sum over the zeros of ζ(s). Sufficient information on the location of the zeros of ζ(s)
then implies an asymptotic formula for MΛ(x) as x →∞. Riemann showed that there are an
infinity of “non-trivial” zeros of ζ, and gave an asymptotic formula for their number. He also
formulated in his memoir the celebrated Riemann hypothesis, which predicts that all of the
non-trivial zeros of ζ(s) are situated on the line Re(s) = 1/2. The proof of this hypothesis is
one of the most important problems in mathematics. The Riemann hypothesis is one of the
famous Millenium Prize Problems, and the Clay mathematics institute has offered a 1000000
USD reward for its solution.

Riemann showed the following in his memoir.

Analytic continuation. The function ζ(s) admits a meromorphic continuation to C.
It is holomorphic everywhere except for s = 1 where it has a simple pole of residue equal to 1.

Functional equation. Let

ξ(s) = ζ∞(s)ζ(s) where ζ∞(s) =π−s/2Γ(s/2).

Then ξ(s) admits a meromorphic continuation to C with two simple poles at s = 0,1 and
satisfies for s 6= 0,1

ξ(s) = ξ(1− s).

In this statement, Γ(s) is the Euler gamma function defined for Re(s) > 0 by

Γ(s) =
∫ ∞

0
e−t t s d t

t
.

The analytic properties of Γ(s) are well-understood, and you will work some of them out on
exercise sheet 8.

We saw that, taking into account the Euler product (5.1), that ζ(s) does not vanish for
Re(s) > 1. As Γ(s) doesn’t vanish for any s ∈ C, we deduce from the functional equation that
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ξ(s) has no zeros in Re(s) < 0 or Re(s) > 1. On the other hand, since Γ(s/2) has simple poles at
negative even numbers, ζ(s) vanishes to order 1 at s =−2,−4, . . .. These zeros are called trivial
zeros of ζ, and the non-trivial zeros of ζ are the same as the zeros of ξ(s) and are contained
in the critical strip

{s ∈C : Re(s) ∈ [0,1]}.

Riemann gave an asymptotic formula for their number:

Count of zeros. For T Ê 0, let

N (T ) = |{ρ =β+ i t : ζ(ρ) = 0,β ∈ [0,1], |t | É T }|
be the number of non-trivial zeros of ζ(s) of height É T . We have

N (T ) = T

π
log

(
T

2πe

)
+O(log(2+|T |)).

This formula for the count of zeros can be deduced from the following formula which
relates the zeros of ζ to prime numbers.

Explicit formula. Let f ∈C ∞
c (R>0) and let

f̃ (s) =
∫ ∞

0
f (x)xs d x

x

be its Mellin transform. Let f̌ (x) = x−1 f (x−1). We have the identity∑
nÊ1

( f (n)+ f̌ (n))Λ(n) = f̃ (1)+ 1

2πi

∫
Re(s)=1/2

(
ζ′∞
ζ∞

(s)+ ζ′∞
ζ∞

(1− s)

)
f̃ (s)d s − ∑

ζ(ρ)=0
Re(ρ)∈[0,1]

f̃ (ρ).

In the next several chapters, we prove the above facts from Riemann’s memoir, and
generalize them to Dirichlet L-functions L(s,χ).



CHAPTER 6

The functional equation

1. Some integral transforms

The theory of the Fourier transform describes the structure of vector spaces of functions
on the real line R, taking into account the fact that (R,+) is a commutative group under
addition. It permits one to write functions (or at least sufficiently “nice” ones) on R as “linear
combinations” of functions adapted to the group structure of R, and these functions are the
characters which we saw examples of before in the case of finite abelian groups.

1.1. The characters of R.

Definition 6.1. Let (G ,+) be an abelian topological group, that is an abelian group equipped
with the structure of a topological space for which addition + : (x1, x2) 7→ x1 + x2 and inversion
[−1] : x 7→ −x are continuous maps. The set of character of G is the set Homc (G ,C×) of
continuous group homomorphisms from G to (C×,×). This set is an abelian group under
multiplication of functions.

A character is called unitary if it takes its values on the unit circle S1 = {z ∈ C× : |z| = 1}.
We write Ĝ for the subgroup of unitary characters.

Remark 6.2. If G is compact, then every character is unitary. Indeed, let ψ ∈ Homc (G ,C×)
be a character. Then ψ(G) is a compact subgroup of C× and is thus contained in S1. (If there
existed z ∈ ψ(G) such that |z| 6= 1 then for all n ∈ Z, zn ∈ ψ(G), we either have zn → 0 or ∞
according to |z| < 1 or |z| > 1.)

We write e(x) = exp(2πi x).

Theorem 6.3. The map
y ∈C 7→ψy : x 7→ e(x y)

is an isomorphism of groups
(C,+) ' Homc (R,C×).

The restriction of this map to R is an isomorphism of groups

(R,+) ' R̂.

Proof. It is not hard to see that this map is an injective group homomorphism: if y is
such that for all x, x 7→ e(x y) = 1, then y must be 0, since it derivative (in x) is 2πi ye(x y) = 0.
Now we show that the map is surjective. Let ψ ∈ Homc (R,C×) and

Ψ(x) =
∫ x

0
ψ(t )d t

its anti-derivative (ψ is continuous, hence integrable). We have

Ψ(x + y) =
∫ x+y

0
ψ(t )d t =

∫ x

0
ψ(t )d t +

∫ y

0
ψ(x + t )d t =Ψ(x)+ψ(x)Ψ(y).
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We fix y such that Ψ(y) 6= 0 (such a y exists, since otherwise Ψ′(y) =ψ(y) = 0 for all y , which
is impossible). We deduce from the previous identity that x 7→ψ(x) is differentiable and that

ψ(x + y) =ψ(x)ψ(y) =ψ(x)+ψ′(x)Ψ(y)

and thus
ψ′(x)

ψ(x)
= ψ(y)−1

Ψ(y)
.

Setting u = ψ(y)−1
Ψ(y) we see that

ψ(x) =C exp(ux)

and moreover we have C = 1 by evaluating both sides of the preceding equality at x = 0. �

Corollary 6.4. The map
n ∈Z 7→ψn : x 7→ e(nx)

is an isomorphism of groups

(Z,+) ' Homc (R/Z,C×) = �R/Z.

Proof. The equality Homc (R/Z,C×) = �R/Z follows from the fact that R/Z is compact.
The fact that the map is an injective group homomorphism is the same as in the proof of
Theorem 6.3. We show the surjectivity. Let ψ ∈ �R/Z, then ψ defines a unitary character
on R which is 1 on Z and thus by Theorem 6.3 is of the form ψ(x) = e(nx) with n ∈R. As
ψ(1) = 1 = exp(2πi n) we have that n ∈Z. �

1.2. The Schwartz class. We say that a function f : R→ C belongs to the Schwartz
class S (R) of functions if f ∈ C ∞(R) and if f and all its derivatives are of rapid decrease.
Stated differently, f is Schwartz class if for all A Ê 0 and every integer j Ê 0 we have

f ( j )(x) ¿ j ,A (1+|x|)−A .

1.3. Fourier transform. Let f ∈S (R). The Fourier transform of f is the function

f̂ : y 7→
∫
R

f (x)e(−x y)d x.

As f is of rapid decrease, we see that the preceding integral converges absolutely and uniformly
on R and that it defines an infinitely differentiable function with derivatives

(6.1) f̂ ( j )(y) =
∫
R

(−2πi x) j f (x)e(−x y)d x = �M j f (y), with M f : x 7→ (−2πi x) f (x).

Also note that by integration by parts, we have for all y 6= 0 that

(6.2) f̂ (y) = 1

2πi y

∫
R

f ′(x)e(−x y)d x = 1

2πi y
f̂ ′(y),

and iterating this, we obtain for all j Ê 1 that

f̂ (y) =
(

1

2πi y

) j

f̂ ( j )(y).

This calculation is justified by the rapid decrease of the derivatives of f . Thus, for |y | Ê 1, we
have for all j Ê 0

f̂ (y) ¿ j |y |− j
∫
R
| f ( j )(x)|d x ¿ j , f |y |− j ,

so f̂ (y) is of rapid decrease. Seeing as for all j Ê 0, M j f ∈S (R), using (6.1), we see that its
derivatives are also of rapid decrease. In other words, we have proved the following.
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Proposition 6.5. The Fourier transform is a linear map from S (R) to S (R).

1.3.1. Behavior of the Fourier transform under translations. Let h ∈R. We write [+h] for
the translation map on the space of functions on R defined by

[+h] f : x 7→ f (x +h).

The map [+h] is an invertible linear map S (R) →S (R). By changing variables, we have�[+h] f (y) = e(−hy) f̂ (y).

In particular, by considering the Fourier transform of the quotient

[+h] f (x)− f (x)

h
= f (x +h)− f (x)

h
,

and passing to the limit, we have another proof of (6.2)

(6.3) : f̂ ′(y) = (2πi y) f̂ (y),

and for all j Ê 0 that

(6.4) f̂ ( j )(y) = (2πi y) j f̂ (y).

1.3.2. Behavior of the Fourier transform under dilations. Let λ ∈R× and denote by [×λ]
the “dilation by λ” on the space of functions on R

[×λ] f : x 7→ f (λx).

Thus, by changing variables, we have for all f ∈S (R)

�[×λ] f (y) = 1

|λ| f̂ (y/λ) = 1

|λ| [×λ
−1] f̂ (y).

1.3.3. Fourier inversion formula. This is perhaps the most important result in the theory
of the Fourier transform. For f ∈S (R),

(6.5) ̂̂f = [×−1] f that is, ̂̂f (x) = f (−x)

1.3.4. Fourier transform of the Gaussian. Let f (x) = e−πx2
. Then

(6.6) f̂ (y) = f (y).

1.4. Poisson Summation.

Proposition 6.6. Let f ∈S (R). For all u ∈R we have∑
n∈Z

f (n +u) = ∑
n∈Z

f̂ (n)e(nu).

Proof. Let

fZ(u) = ∑
n∈Z

f (n +u).

Since f ∈S (R), the series that defines fZ converges uniformly, as well as the series constructed
from the derivatives of f . Thus, we deduce that fZ ∈C ∞(R). Moreover, fZ is periodic of period
1. Thus by decomposition into Fourier series we have

fZ(u) = ∑
n∈Z

c fZ(n)e(nu),
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with

c fZ(n) =
∫ 1

0
fZ(u)e(−nu)du =

∫ 1

0

( ∑
m∈Z

f (m +u)

)
e(−nu)du

=
∫ 1

0

( ∑
m∈Z

f (m +u)e(−n(u +m))

)
du = ∑

m∈Z

∫ 1

0
f (m +u)e(−n(u +m))du

= ∑
m∈Z

∫ m+1

m
f (u)e(−nu)du = f̂ (n).

�

We can use this formula to analyze the summation function of a function in arithmetic
progressions.

Corollary 6.7. Let q, a ∈Z, q 6= 0. We have∑
n≡a (mod q)

f (n) = 1

q

∑
n∈Z

f̂ (
n

q
)e(

an

q
).

Proof. We have∑
n≡a (mod q)

f (n) = ∑
n∈Z

f (qn +a) = ∑
n∈Z

f (q(n + a

q
)) = ∑

n∈Z
[×q] f (n + a

q
)

= ∑
n∈Z

�[×q] f (n)e(
an

q
) = 1

q

∑
n∈Z

f̂ (
n

q
)e(

an

q
).

�

2. The Mellin transform

Let f ∈C ∞(RÊ0) be a function that decays rapidly as x →∞ along with all its derivatives.
The Mellin transform of f is defined for Re(s) > 0 by

f̃ (s) =
∫
RÊ0

f (x)xs d×x,

where we have set

d×x = d x

x
.

It is the measure on (R>0,×) which is invariant by translations x 7→ y x. The integral f̃ (s)
converges at 0 because Re(s) > 0 and at ∞ because f is of rapid decay. The convergence is
uniform on compacts subsets of {s : Re(s) > 0} and so defines a holomorphic function of s in
that domain. Note that if we further assume that f (x) = O(xN ) as x → 0 then f̃ (s) defines a
holomorphic function in the domain Re(s) >−N .

By integration by parts, if Re(s) > 1 we have

(6.7) f̃ ′(s) =−(s −1) f̃ (s −1).

Define

g (s) =−1

s
f̃ ′(s +1)

in the domain Re(s) > −1, since f ′ decays rapidly as x → ∞. In the domain Re(s) > 0, the
function g (s) matches f̃ (s), and so by analytic continuation g (s) is the unique analytic function
extending f̃ (s). Thus we define f̃ (s) to be equal to g (s) in the domain Re(s) ∈ (−1,0].
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The residue at s = 0 of f̃ (s) is − f̃ ′(1) = −∫
R>0

f ′(y)d y = f (0). If moreover f vanishes at 0

then f̃ (s) is holomorphic for Re(s) >−1 and more generally if all of the derivatives of f up to
order n Ê 0 vanish at 0 then f̃ (s) is holomorphic for Re(s) >−(n +1).

Furthermore, iterating (6.7) we have

(6.8) f̃ (s) = (−1)n

s(s +1) · · · (s +n −1)
f̃ (n)(s +n),

which implies that for all n Ê 0, |Re(s)| Éσ and | Im(s)| Ê 1 we have

(6.9) | f̃ (s)|¿σ, f ,n
1

|s|n .

2.1. The Gamma Function. The Gamma function Γ is by definition the Mellin trans-
form of the function x 7→ e−x .

Γ(s) = ẽ−x (s) =
∫ ∞

0
e−x xs d×x.

This function verifies for all Re(s) > 0

sΓ(s) = Γ(s +1), and Γ(n +1) = n!.

Thus Γ(s) admits a meromorphic continuation to C with simple poles at s = −n, n ∈ N of
residues (−1)n/n!.

2.2. Dilations. Let λ> 0. We have�[×λ] f (s) =λ−s f̃ (s).

2.3. The Mellin Transform and the Fourier transform. Let f ∈C ∞
c (R>0), we define

g ∈C ∞
c (R) by changing variables

f (y) = g (log y), g (x) = f (exp(x))

In particular f̃ (s) defines a holomorphic function on C. We have, setting s =σ+ i t

f̃ (s) =
∫ ∞

0
g (log y)exp(s log y)

d y

y

=
∫ ∞

−∞
g (x)exp(sx)d x

=
∫ ∞

−∞
g (x)exp(σx)e(

xt

2π
)d x

= ág exp(σx)(− t

2π
).

In particular, by Fourier inversion we have that∫ ∞

−∞
f̃ (σ+ i t )d t =

∫ ∞

−∞
ág exp(σx)(− t

2π
)d t = 2πg (0) = 2π f (1),

which we may write as
1

2πi

∫
(σ)

f̃ (s)d s = f (1).

Replacing f by [×y] f we obtain the Mellin inversion formula: For all y > 0 and every σ ∈R
1

2πi

∫
(σ)

f̃ (s)y−s d s = f (y).

Note that if f ∈S (R) instead, the Mellin inversion formula remains valid for σ> 0.
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3. The functional equation of the Riemann zeta function

Theorem 6.8. Let

ξ(s) = ζ∞(s)ζ(s), where ζ∞(s) =π−s/2Γ(s/2), Re(s) > 1.

This function has a meromorphic continuation to C, is holomorphic on C− {0,1}, and has
simple poles at s = 0,1. It satisfies the functional equation

ξ(s) = ξ(1− s).

In particular, the function ζ(s) = ∑
nÊ1 n−s , defined initially for Re(s) > 1 extends to a

meromorphic function on C, holomorphic in C− {1}, with a simple pole at s = 1 with residue
1. It satisfies the functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Proof. The second part of the Theorem concerning ζ(s) is derived from the first and
the fact that ζ∞(s) does not vanish on C, and has a simple pole at s = 0. The idea of the
proof of the first part consists of making ζ(s) appear via the invariance property of the Mellin
transform under dilations. More precisely, let f ∈S (R) and Re(s) > 1. We have for all n Ê 1�[×n] f (s) = f̃ (s)n−s

and so

f̃ (s)ζ(s) = ∑
nÊ1

�[×n] f (s) = ∑
nÊ1

∫ ∞

0
f (nx)xs d×x =

∫ ∞

0

( ∑
nÊ1

f (nx)

)
xs d×x.

In the last equality, the interchange of the sum and the integral is justified since for all x > 0
and all A Ê 2 ∑

nÊ1
| f (nx)|¿A

∑
nÊ1

(1+nx)−A ¿A min(x−1, x−A)

as we may see by considering the cases x < 1 and x Ê 1 separately. Thus the double sum is
absolutely and uniformly convergent in the vertical strip {s ∈C : Re(s) ∈ [a,b]} with 1 < a É b.

In fact, the above integral is absolutely convergent at +∞ for all s ∈ C but could diverge
at 0 if Re(s) < 1. Thus we divide the integral into two∫ ∞

0
· · · =

∫ 1

0
· · ·+

∫ ∞

1
· · ·

For the first, we make the change of variables x ↔ 1/x and thus obtain

f̃ (s)ζ(s) =
∫ ∞

1

( ∑
nÊ1

f (n/x)

)
x−s d×x +

∫ ∞

1

( ∑
nÊ1

f (nx)

)
xs d×x.

Suppose that f is even (thus f̂ is also even). We have then∑
nÊ1

f (n/x) = 1

2

∑
n∈Z

f (n/x)− 1

2
f (0)

applying the Poisson summation formula to the first term and applying the formula for the
behavior of the Fourier transform under dilations, we get∑

nÊ1
f (n/x) = 1

2

(
f̂ (0)x − f (0)

)+x
∑

nÊ1
f̂ (nx).
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We have ∫ ∞

1

1

2

(
f̂ (0)x − f (0)

)
x−s d×x =−1

2

(
f̂ (0)

1− s
+ f (0)

s

)
and so

(6.10) f̃ (s)ζ(s) =−1

2

(
f̂ (0)

1− s
+ f (0)

s

)
+

∫ ∞

1

( ∑
nÊ1

f (nx)

)
xs d×x +

∫ ∞

1

( ∑
nÊ1

f̂ (nx)

)
x1−s d×x.

Since f and f̂ are of rapid decay as x →∞, we have for all A Ê 0 and all x Ê 1 that∑
nÊ1

f (nx),
∑

nÊ1
f̂ (nx) ¿A x−A

and that the two preceding integrals converge absolutely and uniformly in every vertical strip
{s ∈C : Re(s) ∈ [a,b]} with a < b ∈R. These integrals therefore define holomorphic functions on
C. Thus the function

s 7→ f̃ (s)ζ(s)

admits a meromorphic continuation to C, holomorphic on C− {0,1} and with at most two
simple poles at s = 0,1.

On the other hand, replacing f by f̂ and s by 1− s in the above identity, and we usê̂f (x) = f (−x) = f (x),

we obtain the functional equation:

Theorem 6.9. Let f ∈S (R) be an even function. Then the function defined for Re(s) > 1
by

s 7→ f̃ (s)ζ(s)

admits a meromorphic continuation to C with at most two simple poles at s = 0,1 of residues
at 0,1 given by

− f (0)

2
, and

f̂ (0)

2
and satisfies the functional equation

f̃ (s)ζ(s) = ˜̂f (1− s)ζ(1− s).

In particular, if f is such that f̂ = f then we obtain

f̃ (s)ζ(s) = f̃ (1− s)ζ(1− s).

An example of such a function is the Gaussian

(6.11) f (x) = exp(−πx2)

whose Mellin transform is

f̃ (s) = 1

2
π−s/2ẽ−y (s/2) = 1

2
π−s/2Γ(s/2).

�

Remark: there are many functions such that f = f̂ . Another example is (cosh(πx))−1. See
[GR7, 3.523.3] for its Mellin transform.
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4. Primitive Characters, Gauss Sums, and Dirichlet L-functions

4.1. Primitive Characters. Let χ be a Dirichlet character modulo q. There is a natural
number associated to χ called its conductor.

Definition 6.10. The minimal q? | q such that χ = χ0χ
? with χ? a Dirichlet character

modulo q? and χ0 the trivial character modulo q is called the conductor of χ modulo q. If
q? = q then χ is called primitive.

Given χ modulo q, the character χ? modulo q? in the above factorization is unique, and
is called the primitive character inducing χ. Note that we have

χ(a) =χ?(a) if (a, q) = 1.

However, the two characters could take different values if (a, q?) = 1 but (a, q) 6= 1.

4.2. Gauss sums. Let χ modulo q be a Dirichlet character.

Definition 6.11. The quantity

τ(χ) = ∑
b (mod q)

χ(b)e

(
b

q

)
is called the Gauss sum of χ.

We have

(6.12) e

(
a

q

)
= 1

ϕ(q)

∑
χ (mod q)

χ(a)τ(χ) if (a, q) = 1,

by the orthogonality relations for Dirichlet characters. The equation (6.12) is the Fourier
expansion of the additive character as a function on the group (Z/qZ)×. Similarly,

(6.13) χ(a)τ(χ) = ∑
b (mod q)

χ(b)e

(
ab

q

)
if (a, q) = 1,

since we have by a change of variables b = na−1 (mod q)∑
b (mod q)

χ(b)e

(
ab

q

)
= ∑

b∈(Z/qZ)×
χ(b)e

(
ab

q

)

= ∑
n∈(Z/qZ)×

χ(na−1)e

(
n

q

)

=χ(a)
∑

n∈(Z/qZ)×
χ(n)e

(
n

q

)

=χ(a)
∑

n (mod q)
χ(n)e

(
n

q

)
=χ(a)τ(χ).

If τ(χ) 6= 0, then we get the expansion of χ(a) in terms of additive characters e(·).
Lemma 6.12. If χ is primitive, then (6.13) holds for all a modulo q.

Proof. Suppose that (a, q) > 1, and let

a

q
= a1

q1
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with (a1, q1) = 1 and q1 | q, q1 < q. If a is a multiple of q then (6.13) holds by the orthogonality
of characters anyway, so we may also suppose that q1 > 1.

Our goal is to show ∑
b (mod q)

χ(b)e

(
a1b

q1

)
= 0.

Let q = q1q2 and let b = uq1 + v where

0 < u É q2 and 0 < v É q1.

Then
q1∑

v=1
e

(
va1

q1

)
S(v),

where

S(v) =
q2∑

u=1
χ(uq1 + v).

Note that S(v) is periodic modulo q1. So let c be such that

(c, q) = 1, and c ≡ 1(mod q1).

Then

χ(c)S(v) =
q2∑

u=1
χ(cuq1 + cv) =

q2∑
u=1

χ(uq1 + cv) = S(v).

If we can construct such a c for which χ(c) 6= 1, then it will show that S(v) = 0 for all v , which
will finish the proof. The construction of c is where we use primitive. Indeed, there exist
c1,c2 such that

(c1c2, q) = 1, c1 ≡ c2 (mod q1), and χ(c1) 6=χ(c2),

since if χ(c1) = χ(c2) for all such c1,c2, then χ would not be primitive. Finally, we let c =
c1c−1

2 (mod q), which finishes the proof. �

Lemma 6.13. If χ is primitive, then we have

|τ(χ)| =p
q .

Proof. We have

|χ(a)|2|τ(χ)|2 = ∑
m1 (mod q)

∑
m2 (mod q)

χ(m1)χ(m2)e

(
a(m1 −m2)

q

)
.

Then we take the sum over all a (mod q) of both sides and use the fact that

δm1≡m2 (mod q) =
1

q

∑
a (mod q)

e

(
a(m1 −m2)

q

)
to conclude that

|τ(χ)|2 ∑
a (mod q)

|χ(a)|2 = q
∑

m (mod q)
|χ(m)|2,

from which the Lemma follows, since the sum is non-zero. �
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4.3. The functional equation for Dirichlet L-functions. Let

κ= 1

2
(1−χ(−1)) =

{
0 if χ is even

1 if χ is odd.

Theorem 6.14. Let χ be a primitive character modulo q > 1. Let

Λ(s,χ) = L∞(s,χ)L(s,χ), where L∞(s,χ) =
( q

π

)s/2
Γ

( s +κ
2

)
.

Then Λ(s,χ) admits a holomorphic continuation to all of C and satisfies

Λ(s,χ) = ε(χ)Λ(1− s,χ)

where

ε(χ) = i−κ
τ(χ)p

q

is called the root number of χ, and satisfies |ε(χ)| = 1.

Proof. Let f ∈S (R) be an even function if χ is even, and let f be an odd function if χ
is odd. Let Re(s) > 1. Then since �[×n] f (s) = n−s f̃ (s), we have

f̃ (s)L(s,χ) = ∑
nÊ1

χ(n) �[×n] f (s) = ∑
nÊ1

∫ ∞

0
χ(n) f (nx)xs d×x =

∫ ∞

0

( ∑
nÊ1

χ(n) f (nx)

)
xs d×x.

As before in the proof of Theorem 6.8, we have that∑
nÊ1

χ(n) f (nx) ¿A
1

x
min(1, x−A),

so the interchange of summation and integration is justified for Re(s) > 1. Then, following the
previous proof, we have

(6.14) f̃ (s)L(s,χ) =
∫ ∞

1

( ∑
nÊ1

χ(n) f (nx)

)
xs d×x +

∫ ∞

1

( ∑
nÊ1

χ(n) f (n/x)

)
x−s d×x.

We have in either case of χ being even or odd that∑
nÊ1

χ(n) f (n/x) = 1

2

∑
n∈Z

χ(n) f (n/x),

since χ(0) = 0. Splitting over residue classes, we have∑
nÊ1

χ(n) f (n/x) = 1

2

∑
a (mod q)

χ(a)
∑

n≡a (mod q)
f (n/x)

= 1

2

∑
a (mod q)

χ(a)
∑

n≡a (mod q)
[×x−1] f (n)

= 1

2

∑
a (mod q)

χ(a)
1

q

∑
n∈Z

á[×x−1] f

(
n

q

)
e

(
an

q

)

= 1

2

x

q

∑
a (mod q)

χ(a)
∑

n∈Z
f̂

(
nx

q

)
e

(
an

q

)
,
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by Corollary 6.7 and the rule for the the behavior of Fourier transforms under dilations. Now
using the fact that χ is primitive, we have by Lemma 6.12 that∑

nÊ1
χ(n) f (n/x) = 1

2

x

q

∑
n∈Z

f̂

(
nx

q

) ∑
a (mod q)

χ(a)e

(
an

q

)

= 1

2

x

q
τ(χ)

∑
n∈Z

χ(n) f̂

(
nx

q

)
.

Since the Fourier transform of an even function is even and the Fourier transform of an odd
function is odd, we have ∑

nÊ1
χ(n) f (n/x) = x

q
τ(χ)

∑
nÊ1

χ(n) f̂

(
nx

q

)
.

Thus we have shown that when Re(s) > 1 and χ primitive that

(6.15) f̃ (s)L(s,χ) = τ(χ)

q

∫ ∞

1

( ∑
nÊ1

χ(n) f̂

(
nx

q

))
x1−s d×x +

∫ ∞

1

( ∑
nÊ1

χ(n) f (nx)

)
xs d×x.

The right hand side of (6.15) is actually holomorphic in all of C, and so defines the unique
analytic continuation of f̃ (s)L(s,χ) to C. We have

τ(χ)

q s
˜̂f (1− s)L(1− s,χ) =

τ(χ)τ(χ)

q s q1−s

∫ ∞

1

( ∑
nÊ1

χ(n) ̂̂f (nx)

)
xs d×x + τ(χ)

q s

∫ ∞

1

( ∑
nÊ1

χ(n) f̂ (nx)

)
x1−s d×x.

Now, by an easy change of variables, we have τ(χ) = χ(−1)τ(χ), so by Fourier inversion and
Lemma 6.13, we have that

(6.16)
τ(χ)

q s
˜̂f (1− s)L(1− s,χ) = f̃ (s)L(s,χ).

Let

(6.17) f (x) =
{

e−πx2
if χ is even

xe−πx2
if χ is odd.

We can compute

f̂ (y) =
{

f (y) if χ is even

−i f (y) if χ is odd,

and

f̃ (s) =
{

1
2π

−s/2Γ( s
2 ) if χ is even

1
2
p
π
π−s/2Γ( s+1

2 ) if χ is odd.

Then we derive from (6.16) the formula in the Theorem. �





CHAPTER 7

The Hadamard Factorization

In this chapter, we will establish a formula (called the Hadamard factorization) which
expresses a holomorphic function on C as an infinite product indexed by its zeros.

1. Functions of bounded order

Definition 7.1. Let α Ê 0. A holomorphic function f : s 7→ f (s) on C is said to be of
bounded order if there exists a constant αÊ 0 such that for all s ∈C and all ε> 0, we have

| f (s)|¿ε, f exp(|s|α+ε).

We will say that such a function f is of order É α. We say that f is of order α if it is of
order Éα but not of order Éα′ for any α′ <α.

Example(s) 7.2. A polynomial is a function of order 0. The exponential function s 7→
exp(s) is of order 1. More generally, a function of the form s 7→ exp(P (s)) with P a polynomial
is of order deg(P ).

This last example is a function of order α= deg(P ) which does not vanish on C. We have
the following converse statement.

Lemma 7.3. A function of order Éα which does not vanish on C is of the form

f (s) = exp(P (s))

with P a polynomial of degree Éα.

Proof. Since f (s) doesn’t vanish, the logarithm g (s) = log( f (s)) is well-defined and holo-
morphic on C (indeed a holomorphic function on a simply-connected domain has a well-defined
primitive). Consider its Taylor series development around s = 0

g (s) = ∑
nÊ0

cn sn .

We will show that cn = 0 if n > α, which will give us the result. We have for R > 0 by the
Cauchy integral formula

cn = 1

Rn

∫ 1

0
g (R.e(x))e(−nx)d x.

By hypothesis, we have for some positive Cε, f that

Re(g (s)) = log | f (s)| ÉCε, f Rα+ε, where |s| É R.

Note this is a weaker assertion than ¿ε, f , since the left hand side could be negative. Suppose
that we had the stronger upper bound

|g (s)|¿ε, f Rα+ε where |s| É R,

then we would have that
|cn |¿ε, f Rα+ε−n ,

55
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which, taking R →∞ implies the conclusion of the Lemma.
Unfortunately, we only have an upper bound for the real part of g (s), and so we are forced

to perform several contortions to get around this fact. We decompose cn into its real and
imaginary part, cn = an + i bn . Setting s = R.e(x), we have

Re(g (s)) = ∑
nÊ0

anRn cos(2πnx)− ∑
nÊ1

bnRn sin(2πnx)

and thus

anRn =
{

2
∫ 1

0 Re(g (s))cos(2πnx)d x if n Ê 1∫ 1
0 Re(g (s))d x if n = 0

and so

|an |Rn É 2
∫ 1

0
|Re(g (R.e(x)))|d x = 2

∫ 1

0

(|Re(g (R.e(x)))|+Re(g (R.e(x)))
)

d x −2a0,

since

2
∫ 1

0
Re(g (R.e(x)))d x = 2a0.

We note that

|Re(g (R.e(x)))|+Re(g (R.e(x))) = 2max(0,Re(g (R.e(x)))) ÉCε, f Rα+ε,

and so, for n >α
|an | É (Rα+ε−n +2|a0|R−n) → 0, R →∞.

The same reasoning ( replacing cos(2πnx) by sin(2πnx)) shows that for n >α we have bn = 0
and thus cn = 0. �

Remark 7.4. Note that the conclusion of Lemma 7.3 remains valid if the following
condition (à priori weaker) on f is satisfied:

There exists a sequence of positive real numbers (Rn)nÊ0 satisfying Rn →∞, n →∞ and
such that for all n Ê 0, every ε> 0 and all s ∈C of modulus |s| = Rn we have

f (s) ¿ f ,ε exp(|s|α+ε).

In fact, by the maximum principle, this last condition implies that f is of order Éα.

2. First estimation of zeros

For R > 0 we write

Z ( f ,R) = {ρ ∈C : f (ρ) = 0, |ρ| É R} ⊆ Z ( f ) = {ρ ∈C : f (ρ) = 0},

for the set of zeros of f contained in the disk of radius R, and the set of all zeros of f in C,
respectively. In the following, the following convention will be useful: given k : Z ( f ) → C a
function defined on Z ( f ), the expressions∑

ρ∈Z ( f ,R)
k(ρ), and

∏
ρ∈Z ( f ,R)

k(ρ)

will be used as shorthand for the sum and product∑
ρ∈Z ( f ,R)

m(ρ)k(ρ), and
∏

ρ∈Z ( f ,R)
k(ρ)m(ρ),
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where m(ρ) is the order of vanishing of f at ρ (otherwise known as the multiplicity of ρ). In
particular, the notation

N ( f ,R) := ∑
ρ∈Z ( f ,R)

1

will designate the number of zeros of f of modulus É R, counted with multiplicity.

Theorem 7.5. Let f be a function of order Éα, for all R and all ε> 0, we have the upper
bound

N ( f ,R) ¿ε, f Rα+ε+
{

1 if f (0) = 0

0 if f (0) 6= 0
.

In particular, the series ∑
ρ∈Z ( f )

1

1+|ρ|α+ε
converges.

Note that the second assertion of Theorem 7.5 follows from the first assertion. Indeed, we
have ∑

ρ∈Z ( f ,R)

1

1+|ρ|α+ε =
∫ R

0
N ( f ,r )

d

dr

(
1

1+ rα+ε

)
dr = (α+ε)

∫ R

0

N ( f ,r )rα+ε

r (1+ rα+ε)2 dr

by integration by parts. Then, by the first part of the Theorem we have

N ( f ,r ) ¿ f ,ε rα+
1
2 ε,

so that ∑
ρ∈Z ( f ,R)

1

1+|ρ|α+ε ¿ f ,ε

∫ R

0

r 2α+ 3
2 ε

r (1+ rα+ε)2 dr ¿ f ,ε 1

as R →∞. So the sum converges absolutely.
The proof of the first assertion of Theorem 7.5 uses the following formula.

Proposition 7.6 (Jensen). Let R > 0 and f be a holomorphic function in a neighborhood
of the disk {s ∈C : |s| É R}. Suppose that f does not vanish at 0, nor on the circle of radius R,
that is {s ∈C : |s| = R}. We have the equation∫ 1

0
log | f (R.e(t ))/ f (0)|d t = log

∏
ρ

R

|ρ| =
∑
ρ

log
R

|ρ|
where ρ runs over the set of zeros of f of modulus É R (counted with multiplicity).

Proof. We factor f (s) as

f (s) = F (s)
∏
ρ

(s −ρ)

with F (s) a holomorphic function that does not vanish for |s| É R. So we have

log | f (s)/ f (0)| = log |F (s)/F (0)|+∑
ρ

log |(s −ρ)/ρ|,

and by integrating each term it suffices to prove the proposition to show

(1) ∫ 1

0
log

∣∣∣∣F (R.e(t ))

F (0)

∣∣∣∣ d t = 0,
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(2) ∫ 1

0
log

∣∣∣∣R.e(t )−ρ
ρ

∣∣∣∣ = log
R

|ρ| .
For the first assertion we have log |F (s)/F (0)| = Re(logF (s)/F (0)) and logF (s)/F (0) is a holomor-
phic function in a neighborhood of the disk of radius R that vanishes at the point s = 0 (since,
again, F (s)/F (0) is holomorphic and has no zeros in a simply-connected domain). Then,∫ 1

0
log(F (R.e(t ))/F (0))d t = 1

2πi

∫
CR

log
F (z)

F (0)

d z

z
= 0,

where CR is the circle of radius R, by the change of variables R.e(t ) = z and the Cauchy integral
formula. For the second assertion, we note that∣∣∣∣R.e(t )−ρ

ρ

∣∣∣∣= R

|ρ| |e(t )− ρ

R
| = R

|ρ| |1−
ρ

R
e(t )|

and so

log

∣∣∣∣R.e(t )−ρ
ρ

∣∣∣∣= log(R/|ρ|)+ log

∣∣∣∣1− ρ

R
e(t )

∣∣∣∣ .

Then, the fact that ∫ 1

0
log

∣∣∣∣1− ρ

R
e(t )

∣∣∣∣ d t = 0

comes from the fact that the function s 7→ log(1− ρ
R s) is a holomorphic function in a neighbor-

hood of the unit disk vanishing at 0, and the second assertion follows by the Cauchy integral
formula in the same fashion as above. �

Proof of Theorem 7.5. Suppose for now that f (0) 6= 0 and that f has no zeros in the
circle of radius 2R. Let ρ ∈ Z ( f ,R), then log(2R/|ρ|) Ê log2 and thus Jensen’s formula gives us
that

(log2)N ( f ,R) É ∑
|ρ|ÉR

log(2R/|ρ|) É ∑
|ρ|<2R

log(2R/|ρ|) =
∫ 1

0
log | f (2R.e(t ))/ f (0)|d t .

As f is of order Éα, this last integral is bounded above by ¿ε (2R)α+ε for all ε> 0.
Now consider the case that f has a zero on the circle of radius 2R. We can always find

a R ′ > R such that R ′−R ∈ [0,1] and f has no zero on the circle of radius 2R ′. Note that we
may assume that R À f 1, since there exists some sufficiently small neighborhood of 0 where
f has no zeros. Then

N ( f ,R) É N ( f ,R ′) ¿ε, f (R ′)α+ε¿ f Rα+ε,

since R À f 1. Now suppose f vanishes to order m at 0. We have

N ( f ,R) = N ( f (s)/sm ,R)+m ¿ε, f Rα+ε+1

by the previous result. �

Theorem 7.7 (Hadamard Factorization). Let f be an entire function of order at most 1
such that f (0) 6= 0. Then we have

f (s) = A exp(bs)
∏

ρ∈Z ( f )
(1− s

ρ
)e s/ρ

with A = f (0), b = f ′(0)/ f (0), and the product is uniformly convergent on compacts of C.
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Proof. Let K ⊆ C be a compact set. Then K ∩ Z ( f ) is finite, and for s ∈ K and ρ 6∈ K a
zero of f , we have

(1− s

ρ
)e s/ρ = 1+OK (

1

|ρ|2 ).

Since the series
∑
ρ

1
|ρ|2 converges (we can ignore finitely many zeros when showing conver-

gence), we deduce the uniform convergence of the infinite product on any compact K ⊂C.
Consider the infinite product

h(s) = ∏
ρ∈Z ( f )

(1− s

ρ
)e s/ρ .

By construction the function f (s)/h(s) is holomorphic and does not vanish on C. We will now
show that the quotient is a function of order at most 1, from which by Lemma 7.3 we can
conclude that f (s)/h(s) = exp(a +bs), which will (almost) finish the theorem. More precisely,
we will show that f /h satisfies the condition of remark 7.4.

According to Theorem 7.5, there exists an n0 such that for all n Ê n0 there exists Rn ∈
[n,n +1) satisfying

(7.1) ||ρ|−Rn | Ê 1/(4n2)

for all zeros ρ ∈ Z ( f ).
To see (7.1), it suffices to decompose the annulus of width 1

{s ∈C : |s| ∈ [n,n +1)}

in 2(n +1)2 disjoint sub-annuli of thickness 1/(2(n +1)2). If each of these annuli contained a
zero of f , the disk of radius n + 1 would contain Ê 2(n + 1)2 zeros, which would contradict
Theorem 7.5 for n sufficiently large.

Let n Ê n0 +100 and s such that |s| = Rn . We would like to give a lower bound for |h(s)|,
and to do so it suffices to give an upper bound for

log(|h(s)|−1) =−∑
ρ

log |(1− s

ρ
)e s/ρ|.

We decompose the sum in three parts

log(|h(s)|−1) =− ∑
|ρ|É|s|−1

· · ·− ∑
|ρ|−|s|∈(−1,1]

· · ·− ∑
|ρ|Ê|s|+1

· · · .

Let ρ be one of the ρ appearing in the first term. We have

− log |(1− s

ρ
)e s/ρ| = − log |1− s

ρ
|−Re(

s

ρ
) É logRn + |s|

|ρ|
and so the first term is bounded by∑

|ρ|ÉRn−1
logRn + Rn

|ρ| ¿ε N ( f ,Rn) logRn + ∑
|ρ|ÉRn−1

R1+ε
n

|ρ|1+ε ¿ε R1+ε
n .

In this upper bound we have used the fact that for all ε> 0

|Rn

ρ
| Ê 1 ⇒|Rn

ρ
|1+ε Ê |Rn

ρ
|.

The second term is bounded above in absolute value by∑
|ρ|−|s|∈(−1,1]

log(R3
n) ¿ε, f R1+ε

n ,
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since for such ρ we have by (7.1)

R−3
n ¿|(1− s

ρ
)e s/ρ|¿ 1.

The third term is bounded above in absolute value by∑
|ρ|Ê1+Rn

log(1+O(
|s|2
|ρ|2 )) ¿ ∑

|ρ|Ê1+Rn

R2
n

|ρ|2 É R1+ε
n

∑
|ρ|Ê1+Rn

1

|ρ|1+ε ¿ε R1+ε
n ,

since as |s|/|ρ| < 1 we see by the Taylor series expansion that (1− s
ρ )e s/ρ = 1+O(|s|2/|ρ|2). Thus

we get the upper bound
|h(s)|−1 ¿ε, f exp(R1+ε

n )

for all ε> 0.
Therefore there exists a sequence (Rn)nÊ0 with Rn →∞ such that for all n, and every ε> 0

and s of modulus Rn we have

| f (s)

h(s)
|¿ε exp(R1+ε

n ).

By remark 7.4 we get that (since f (s)/h(s) does not have any zeros in C)

f (s)/h(s) = exp(a +bs)

for a,b ∈C.
Note that for all ρ

(1− s

ρ
)e s/ρ|s=0 = 1, and

d

d s
(1− s

ρ
)e s/ρ|s=0 = 0

and so
h(0) = 1, h′(0) = 0, ea = f (0), b = f ′(0)/ea = f ′(0)/ f (0).

�

Corollary 7.8. For all s ∈C−Z ( f ), we have

d

d s
(log f (s)) := f ′(s)

f (s)
= b + ∑

ρ∈Z ( f )

1

ρ
− 1

ρ− s
.

Moreover, the convergence of the series on the right is uniform on compacts K ⊆C such that
K ∩Z ( f ) =∅.

Proof. Since the infinite product in Theorem 7.7 converges uniformly on compacts, we
have by the Cauchy integral formula

f ′(s) = b f (s)+ A exp(bs)
∑
ρ

((1− s

ρ
)e s/ρ)′

∏
ρ′ 6=ρ

(1− s

ρ
)e s/ρ′ = b f (s)+ A exp(bs)h(s)

∑
ρ

((1− s
ρ )e s/ρ)′

(1− s
ρ )e s/ρ

and so for all s 6∈ Z ( f )

f ′(s)

f (s)
= b +∑

ρ

((1− s
ρ )e s/ρ)′

(1− s
ρ )e s/ρ

= b + ∑
ρ∈Z ( f )

1

ρ
− 1

ρ− s
.

Pick K ∩Z ( f ) =∅ a compact, and let s ∈ K . We have

1

ρ
− 1

ρ− s
=OK (

1

|ρ|2 ),

so the series for f ′(s)/ f (s) converges uniformly on compacts which avoid Z ( f ). �



CHAPTER 8

The explicit formula

Let us write

ξ0(s) = s(1− s)ξ(s),

which is an entire function on C.
We we apply the theory of entire functions that we have just developed to the functions

ξ0(s), and Λ(s,χ),

for χ primitive modulo q > 1.

Proposition 8.1. The function ξ0(s) is of growth order É 1.

Proof. By the functional equation we have

ξ0(s) = ξ0(1− s),

and so we are free to suppose that Re(s) Ê 1/2 in the below calculations. By (6.10) taking

f (x) = e−πx2
(see (6.11)), we have

(8.1) ξ0(s) =−1+2s(1− s)
∫ ∞

1

( ∑
nÊ1

e−πn2x2
)

xs d×x +2s(1− s)
∫ ∞

1

( ∑
nÊ1

e−πn2x2
)

x1−s d×x.

For x Ê 1, we have ∑
nÊ1

e−πn2x2 ¿ e−πx2

and for Re(s) Ê 1/2 we have∫ ∞

1

( ∑
nÊ1

e−πn2x2
)

xs d×x ¿
∫ ∞

1
e−πx2

xσd×x ¿π−σ/2Γ(
σ

2
) ¿ε exp(|s|1+ε),

by exercise 2 from exercise sheet 8 (this is called Stirling’s approximation for the gamma
function). On the other hand, we have for Re(s) Ê 1/2 that∫ ∞

1

( ∑
nÊ1

e−πn2x2
)

x1−s d×x ¿ 1,

which finishes the proof. �

Proposition 8.2. For any χ primitive modulo q > 1, the function Λ(s,χ) is of growth
order É 1.

Proof. Exactly the same as the proof of Proposition 8.1, but using (6.15) and (6.17) in
place of (6.10) and (6.11). �

61
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1. Application to counting zeros of ζ(s)

Recall that the set Z (ξ0) of zeros of ξ0(s) is exactly the set of non-trivial zeros of ζ(s) (the
zeros which are not negative even integers). Note that by the functional equation, the fact
that Γ(s) does not vanish on C and the fact that ζ(s) does not vanish for Re(s) > 1, we have

Z (ξ0) ⊂ {s,Re(s) ∈ [0,1]}.

We will use the following generic notation for such a zero

ρ =β+ iγ, β ∈ [0,1], γ ∈R.

Taking the logarithmic derivative, we see that

(8.2)
ξ′0
ξ0

(s) = 1

s
+ 1

s −1
+ ζ′∞
ζ∞

(s)+ ζ′(s)

ζ(s)
= b + ∑

ρ∈Z (ξ0)

1

ρ
− 1

ρ− s
.

Note that

ξ0(s) = ξ0(s),

since ξ0(s) takes real values on the real line and is holomorphic. It follows that the multi-
set Z (ξ0) is stable under complex conjugation (ρ → ρ preserves the set of zeros and their
multiplicity). Thus ∑

ρ∈Z (ξ0)

1

ρ
− 1

ρ− s
= 1

2

( ∑
ρ∈Z (ξ0)

1

ρ
+ 1

ρ
− 1

ρ− s
− 1

ρ− s

)
.

In this last sum, we isolate the terms 1/ρ+1/ρ: we have

1

ρ
+ 1

ρ
= 2β

|ρ|2 , β ∈ [0,1]

and thus ∑
ρ∈Z (ξ0)

1

ρ
+ 1

ρ
¿∑

ρ

1

|ρ|2 <∞.

It follows that the series
1

2

( ∑
ρ∈Z (ξ0)

1

s −ρ + 1

s −ρ

)
is uniformly convergent on compacts of C−Z (ξ0). Thus we have shown

Proposition 8.3. We have for all s 6∈ Z (ξ0),

ξ′0
ξ0

(s) = ∑∗
ρ∈Z (ξ0)

1

s −ρ +O(1),

and moreover

−ζ
′

ζ
(s) = 1

s
+ 1

s −1
− ∑∗
ρ∈Z (ξ0)

1

s −ρ + ζ′∞
ζ∞

(s)+O(1).

In the above summation, the ∗ indicates the convention that we group the terms of the sum
in pairs (ρ,ρ): ∑∗

ρ∈Z (ξ0)

1

s −ρ = 1

2

∑
ρ∈Z (ξ0)

1

s −ρ + 1

s −ρ ,

since otherwise the sums would not converge absolutely.
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We will now make use of this identity to more finely count the zeros of ξ0. Let

N (T ) = #{ρ =β+ iγ ∈ Z (ξ0) : |γ| É T }.

Corollary 8.4. For every T Ê 1,

N (T +1)−N (T ) ¿ log(2+T )

and
N (T ) ¿ T log(2+T ).

Proof. Let s = 2+ i T . By Proposition 8.3, the Dirichlet series for ζ′/ζ, and exercise 4
from exercise sheet 11, ∑∗

ρ∈Z (ξ0)

1

s −ρ ¿ log(2+T ),

Taking the real part of this identity we have

Re

(
1

s −ρ
)
= 2−β

|s −ρ|2 Ê 1

|2−β|2 +|γ−T |2 Ê 1

4+|γ−T |2 Ê 1

5
δ|γ−T |É1

and so

N (T +1)−N (T −1) É 10
∑∗

ρ∈Z (ξ0)
Re

(
1

s −ρ
)
¿ log(2+T ).

The second part follows from the first by summing up. �

Let us also note the following two byproducts of this proof:∑∗
ρ∈Z (ξ0)

1

4+|γ−T |2 ¿ log(2+T ),

and

(8.3)
ξ′0
ξ0

(σ+ i T ) = ∑∗
ρ∈Z (ξ0)
|γ±T |É1

1

s −ρ +O(log(2+|T |)),

for all −1 ÉσÉ 2.

2. Application to counting zeros of L(s,χ)

Suppose that χ is primitive modulo q > 1. Recall that κ= 1
2 (1−χ(−1)) and

L∞(s,χ) =
(
π

q

)−s/2

Γ
( s +κ

2

)
Λ(s,χ) = L∞(s,χ)L(s,χ).

We have in similar fashion to the zeta function that

Z (Λ) ⊂ {s ∈C : Re(s) ∈ [0,1]}.

We have, applying the Hadamard factorization, that

Λ′

Λ
(s,χ) = L′∞

L∞
(s,χ)+ L′

L
(s,χ) = b(χ)+ ∑

ρ∈Z (Λ)

(
1

ρ
− 1

ρ− s

)
.

Here note that the constant b(χ) now depends on χ and

b(χ) = Λ′

Λ
(0,χ).
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It seems to be a difficult problem to estimate b(χ) as a function of q. However, we can get
around this problem by exploiting the functional equation for Λ.

Since χ may take complex values, we no longer have the symmetry that the zeros of Λ are
preserved by ρ 7→ ρ. However, recalling the functional equation for Λ we have

Λ(s,χ) = ε(χ)Λ(1− s,χ) = ε(χ)Λ(1− s,χ),

by the Dirichlet series for L(s,χ) and analytic continuation. Therefore the set Z (Λ) is preserved
by ρ 7→ 1−ρ.

We can use this to eliminate b(χ) from the above formulas as follows. Note that b(χ) = b(χ)
since L(s,χ) = L(s,χ), and also

b(χ) = Λ′

Λ
(0,χ) =−Λ

′

Λ
(1,χ) =−b(χ)− ∑

ρ∈Z (Λ(χ))

(
1

1−ρ + 1

ρ

)
by the functional equation. Putting these facts together, we find

2Re(b(χ)) =− ∑
ρ∈Z (Λ(χ))

(
1

1−ρ + 1

ρ

)
.

But since the zeros are preserved under ρ 7→ 1−ρ, we may write

Re(b(χ)) =−1

2

∑
ρ∈Z (Λ(χ))

(
1

ρ
+ 1

ρ

)
=− ∑

ρ∈Z (Λ(χ))
Re(

1

ρ
).

This re-arrangement is justified because all of the re-arranged terms are non-negative, and
re-arrangement of non-negative terms does not alter the sum.

Remark 8.5. Note that if χ is a real-valued character, then b(χ) is negative. If χ had a
zero very close to 1, then b(χ) could be extremely large.

We have therefore derived the following:

Proposition 8.6. We have for all s 6∈ Z (Λ),

Re(
Λ′

Λ
(s,χ)) = ∑∗

ρ∈Z (Λ)
Re(

1

s −ρ ),

and

−Re(
L′

L
(s,χ)) =− ∑∗

ρ∈Z (Λ)
Re(

1

s −ρ )+Re(
L′∞
L∞

(s,χ)),

where the ∗ on the sum means we follow the same convention as in Proposition 8.3.

We can use this proposition to count the zeros of Λ(s,χ). Let

N (T,χ) = #{ρ =β+ iγ ∈ Z (Λ) : |γ| É T }.

Corollary 8.7. For every T Ê 1,

N (T +1,χ)−N (T,χ) ¿ log(q(2+T ))

and

N (T,χ) ¿ T log(q(2+T )).
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Proof. Let s = 2+i T . Exactly as before, by Proposition 8.6, and exercise 4 from exercise
sheet 11, ∑∗

ρ∈Z (Λ)
Re(

1

s −ρ ) ¿ log(q(2+T )),

and

Re

(
1

s −ρ
)
Ê 1

4+|γ−T |2 Ê 1

5
δ|γ−T |É1

and so

N (T +1,χ)−N (T −1,χ) É 10
∑∗

ρ∈Z (Λ)
Re

(
1

s −ρ
)
¿ log(q(2+T )).

�

We also have ∑∗
ρ∈Z (Λ)

1

4+|γ−T |2 ¿ log(q(2+T )),

and

(8.4)
Λ′

Λ
(σ+ i T ) = ∑∗

ρ∈Z (Λ)
|γ±T |É1

1

s −ρ +O(log(q(2+|T |))),

for all −1 ÉσÉ 2.

3. Weil’s explicit formula

In this section we prove the following theorem.

Theorem 8.8. Let f ∈C ∞
c (R>0) and

f̃ (s) =
∫ ∞

0
f (x)xs d x

x

its Mellin transform. Let f̌ (x) = x−1 f (x−1). We have the identity∑
nÊ1

( f (n)+ f̌ (n))Λ(n) = f̃ (1)+ f̃ (0)+ 1

2πi

∫
(1/2)

(
ζ′∞
ζ∞

(s)+ ζ′∞
ζ∞

(1− s)

)
f̃ (s)d s − ∑

ρ∈Z (ξ0)
f̃ (ρ).

Recall that the notation
∫

(c) denotes the integral
∫ c+i∞

c−i∞ along the vertical line, oriented
counter-clockwise.

Proof. We calculate the following integral in two different ways:

1

2πi

∫
(3/2)

f̃ (s)
ξ′0
ξ0

(s)d s.

For Re(s) > 1 we have
ξ′0
ξ0

(s) = 1

s
+ 1

s −1
+ ζ′∞
ζ∞

(s)− ∑
nÊ1

Λ(n)

ns

so that inverting summation and integration we get thanks to the Mellin inversion formula

(8.5)
1

2πi

∫
(3/2)

f̃ (s)
ξ′0
ξ0

(s)d s = 1

2πi

∫
(3/2)

(
1

s
+ 1

s −1
+ ζ′∞
ζ∞

(s)

)
f̃ (s)d s − ∑

nÊ1
Λ(n)

1

2πi

∫
(3/2)

f̃ (s)n−s d s

= 1

2πi

∫
(3/2)

(
1

s
+ 1

s −1
+ ζ′∞
ζ∞

(s)

)
f̃ (s)d s − ∑

nÊ1
Λ(n) f (n).
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Now we calculate the integral on the left hand side of (8.5) by deforming the contour. Let
T > 0 and RT the rectangle whose corners are at 3/2± i T and −1/2± i T . We can choose T as
large as we would like so that for all ρ ∈ Z (ξ0), we have

|T ±γ|À 1

log(2+T )
.

Choosing this special T and applying it in (8.3), we find for this special T and all −1 ÉσÉ 2

ξ′0
ξ0

(σ+ i T ) ¿ log(2+|T |)2.

We have (integrating counterclockwise)

1

2πi

∫
RT

f̃ (s)
ξ′0
ξ0

(s)d s = ∑
ζ(ρ)=0

β∈[0,1], |γ|ÉT

ress=ρ f̃ (s)
ξ′0
ξ0

(s) = ∑
ζ(ρ)=0

β∈[0,1], |γ|ÉT

f̃ (ρ).

As T →∞, the integrals along the horizontal segments tend to 0. We therefore get∑
ζ(ρ)=0
β∈[0,1]

f̃ (ρ) = 1

2πi

∫
(3/2)

f̃ (s)
ξ′0
ξ0

(s)d s − 1

2πi

∫
(−1/2)

f̃ (s)
ξ′0
ξ0

(s)d s.

Note that the series converges, since f̃ (s) ¿ (1+| Im(s)|)−A for all A À 0 by (6.9).
Now we do the change of variables s ↔ 1− s and we use the functional equation

ξ′0
ξ0

(s) =−ξ
′
0

ξ0
(1− s),

which gives

∑
ζ(ρ)=0
β∈[0,1]

f̃ (ρ) = 1

2πi

∫
(3/2)

(
f̃ (s)+ f̃ (1− s)

) ξ′0
ξ0

(s)d s

= 1

2πi

∫
(3/2)

(
1

s
+ 1

s −1
+ ζ′∞
ζ∞

(s)

)(
f̃ (s)+ f̃ (1− s)

)
d s − ∑

nÊ1
Λ(n)

(
f (n)+ f̌ (n)

)
,

since

f̌ (n) = 1

2πi

∫
(3/2)

f̃ (1− s)n−s d s.

It remains to calculate

1

2πi

∫
(3/2)

(
1

s
+ 1

s −1

)(
f̃ (s)+ f̃ (1− s)

)
d s = f̃ (1)+ f̃ (0)+ 1

2πi

∫
(1/2)

(
1

s
+ 1

s −1

)(
f̃ (s)+ f̃ (1− s)

)
d s

by moving the contour (we pass a pole at s = 1 of residue f̃ (1)+ f̃ (0)). Making the change of
variables s ↔ 1− s we get

1

2πi

∫
(1/2)

(
1

s
+ 1

s −1

)(
f̃ (s)+ f̃ (1− s)

)
d s = 1

2πi

∫
(1/2)

(
1

1− s
− 1

s

)(
f̃ (s)+ f̃ (1− s)

)
d s = 0.

�

The same method of proof can also be used to show the following generalization.
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Theorem 8.9. With the same hypotheses as Theorem 8.8, we have the identity∑
nÊ1

(
χ(n) f (n)+χ(n) f̌ (n)

)
Λ(n) = 1

2πi

∫
(1/2)

(
L′∞(s,χ)

L∞(s,χ)
+ L′∞(1− s,χ)

L∞(1− s,χ)

)
f̃ (s)d s − ∑

L(ρ,χ)=0
Re(ρ)∈[0,1]

f̃ (ρ).

Proof. See exercise 2 of sheet 13. �

We will now show how a zero-free region for the zeta function implies the prime number
theorem with an explicit error term. In the next chapter, we will show the following theorem.

Theorem 8.10 (Hadamard and de la Vallée-Poussin). There exists an absolute constant
c > 0 such that ζ(s) does not vanish in the region (s =σ+ i t )

σÊ 1− c

log(2+|t |) .

Remark: In fact, c = 1/5.69693 is admissible (Kadiri 2005).

Corollary 8.11. There exists C > 0, such that for f ∈C ∞
c (R>0) and X Ê 2∑

nÊ1
Λ(n) f (

n

X
) = X

∫
R

f (x)d x +O f

(
X exp(−C

√
log X )

)
.

Proof. Let fX (x) = f (x/X ). We have

f̃X (s) = f̃ (s)X s

and the explicit formula gives for X sufficiently large (so that f (X n) = 0 for all n Ê 1)∑
nÊ1

Λ(n) f (
n

X
) = X

∫
R

f (x)d x+
∫
R

f (x)
d x

x
+ 1

2πi

∫
(1/2)

(
ζ′∞
ζ∞

(s)+ ζ′∞
ζ∞

(1− s)

)
f̃ (s)X s d s− ∑

ζ(ρ)=0
Re(ρ)∈[0,1]

f̃ (ρ)X ρ .

The second term above is O f (1), the third is O f (X 1/2) (since |X s | = X 1/2 for Re(s) = 1/2) and
for the fourth we have ( writing ρ =β+ iγ)∑
ζ(ρ)=0

Re(ρ)∈[0,1]

| f̃ (β+ iγ)|X β É X
∑

ζ(ρ)=0
Re(ρ)∈[0,1]

| f̃ (β+ iγ)|X − c
log(2+|γ|) = X

∑
ζ(ρ)=0

Re(ρ)∈[0,1]

| f̃ (β+ iγ)|exp(− c log X

log(2+|γ|) ).

Next we split the sum over zeros as follows

(8.6)
∑

ζ(ρ)=0
Re(ρ)∈[0,1]

(· · · ) = ∑
ζ(ρ)=0

Re(ρ)∈[0,1]

log(2+|γ|)É
p

log X

(· · · )+ ∑
ζ(ρ)=0

Re(ρ)∈[0,1]

log(2+|γ|)>
p

log X

(· · · )

The first term is bounded by

¿ exp(−c
√

log X )
∑

ζ(ρ)=0
Re(ρ)∈[0,1]

| f̃ (β+ iγ)|¿ exp(−c
√

log X ).

For the second, we use the fact that

| f̃ (β+ iγ)|¿ (1+|γ|)−2



68 8. THE EXPLICIT FORMULA

as γ→∞ to see that the second term in (8.6) is bounded by

¿ ∑
ζ(ρ)=0

Re(ρ)∈[0,1]

log(2+|γ|)>
p

log X

| f̃ (β+ iγ)|¿ ∑
ζ(ρ)=0

Re(ρ)∈[0,1]

log(2+|γ|)>
p

log X

exp(−1
2

√
log X )

(1+|γ|)3/2
¿ exp(−1

2

√
log X ).

�

Remark 8.12. The above corollary counts prime numbers p in a window of size ∼
X when they are weighted by (log p) f (p/X ) for f a fixed smooth function with compact
support. This choice permits us to use the rapid decay of | f̃ (β+ iγ)|, which comes from
integration by parts applied two times to the Mellin transform. The implicit constant in the
term O f (X exp(−C

√
log X )) depends thus directly on the size of f and its first two derivatives.

Choosing a sequence of functions f depending on X , we can by approximation arguments
replace the term f (n/X ) by the characteristic function of the interval [1, X ] and obtain

(8.7)
∑

nÉX
Λ(n) = X +O(X exp(−C ′

√
log X )),

which is the original formulation of the prime number theorem. The passage from Corollary
8.11 to (8.7) is an exercise in classical analysis; all of the number-theoretic ideas are already
contained in the former. We leave the derivation of (8.7) to the exercise sheets.



CHAPTER 9

The theorem of Hadamard and de la Vallée-Poussin

As we saw, the zeros of ξ0(s) are all situated in the critical strip

{s ∈C : Re(s) ∈ [0,1]}.

This follows from the fact that ζ(s) does not vanish for Re(s) > 1, the fact that Γ(s) does not
vanish on C, and the functional equation for ξ(s). In this chapter, we will improve this zone
of non-vanishing and show that ξ0 does not vanish for s slightly inside the critical strip.

Theorem 9.1. There exists a constant c > 0 such that

Z (ξ0) ⊂ {s ∈C : Re(s) É 1− c

log(2+| Im(s)|) }.

Thus ζ(s) does not vanish for

(9.1) Re(s) > 1− c

log(2+| Im(s)|) .

1. Warm-up: Qualitative zero free region

In the previous chapter we showed that Theorem 9.1 of Hadamard and de la Vallée-Poussin
in its quantitative form above implies the quantitative form of the proof of the prime number
theorem 8.11, and in exercises you saw that it even implies (8.7). In fact, we even have that
the “qualitative” zero-free region

ζ(β+ iγ) = 0 ⇒ 1−β> 0

implies the “qualitative” prime number theorem in the form∑
nÉX

Λ(n) = X +o(X ),

by the same proof as before.
As a warm-up to the quantitative zero-free region of Theorem 9.1 in the next section, we

first prove the qualitative version in this section.

Theorem 9.2 (Qualitative zero-free region). For all t ∈R we have that ζ(1+ i t ) 6= 0.

Proof. First, recall that ζ has a simple pole at s = 1, which implies that the negative of

the logarithmic derivative − ζ′
ζ has a simple pole at s = 1 of residue 1. For σ> 1 we have

(9.2)
∑

nÊ1

Λ(n)

nσ
=−ζ

′

ζ
(σ) = 1

σ−1
+O(1)

which tends to infinity as σ→ 1+.
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The function ζ is holomorphic. For t 6= 0, suppose ζ had a zero at s = 1+ i t . Let ` Ê 0

denote its order of vanishing. Then − ζ′
ζ has a simple pole of residue −`. Thus for σ > 1 we

have

(9.3)
∑

nÊ1
n−i t Λ(n)

nσ
=−ζ

′

ζ
(σ+ i t ) = −`

σ−1
+Ot (1) ÉCt

for some positive function Ct of t , since −`/(σ−1) É 0. Note that |n−i t | = 1 and Λ(n) Ê 0, so
that we also have ∣∣∣∣ ∑

nÊ1
n−i t Λ(n)

nσ

∣∣∣∣É 1

σ−1
+O(1)

by (9.2). This implies that |`| É 1, i.e. that ` ∈ {0,1}.
Suppose that `= 1. Then

(9.4)
∑

nÊ1
n−i t Λ(n)

nσ
= −1

σ−1
+Ot (1).

Informally, combining (9.2) and (9.4) we find that if n is such that Λ(n) 6= 0 then n−i t ≈−1,
so that we would have n−2i t ≈ 1, and so (9.2) suggests∑

nÊ1
n−2i t Λ(n)

nσ
= 1

σ−1
+O(1).

But then also we have by (9.3)

(9.5)
∑

nÊ1
n−2i t Λ(n)

nσ
ÉCt ,

some positive constant depending on t . This is a contradiction.
How do we make this argument precise? By the continuity of z 7→ z2 at z = −1 we have

that for all ε> 0 there exists δ> 0 such that Re(n−i t )+1 É δ implies that 1−Re(n−2i t ) É ε. Then

(9.6)
∑

nÊ1
1−Re(n−2i t )>ε

Λ(n)

nσ
É ∑

nÊ1
Re(n−i t )+1>δ

Λ(n)

nσ
É ∑

nÊ1

Re(n−i t )+1

δ

Λ(n)

nσ
=Ot (

1

δ
),

where the last equality follows from (9.2) and (9.4) since

1

σ−1
+ −1

σ−1
= 0.

This then implies that∑
nÊ1

(
1−Re(n−2i t )

)Λ(n)

nσ
= ∑

nÊ1
1−Re(n−2i t )>ε

(· · · )+ ∑
nÊ1

1−Re(n−2i t )Éε

(· · · ) ÉCt

(
1

δ
+ ε

σ−1

)
,

where the last inequality follows from (9.2) and (9.6). (Side note: we could just as well have
written ¿t instead of É Ct here.) Then we take ε = 1

10Ct
, and σ close enough to 1 so that

σ−1 É δ
10Ct

. Then we get

2/10

σ−1
Ê∑

n

(
1−Re(n−2i t )

)Λ(n)

nσ
=∑

n

Λ(n)

nσ
−Re

(∑
n

n−2i t Λ(n)

nσ

)
Ê 1

σ−1
+Ot (1),

by (9.3). Taking σ→ 1+ gives us a contradiction. This establishes the qualitative zero-free
region, hence the qualitative prime number theorem. �
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2. Quantitative zero free region

We need to clean up the above argument and make explicit how everything depends on
t . Recall from (8.3) that

(9.7) − ζ′

ζ
(s) = 1

s −1
− ∑
ρ∈Z (ξ0)
|s−ρ|É1

1

s −ρ +O(log(2+|t |)).

Note that for |s −1| À (log(2+ |t |)−1), that is for |t | À (log(2+ |t |)−1), we can absorb the first
term 1/(s −1) into the error term.

Suppose henceforth that σ> 1. Since each ρ has real part at most 1, it follows that each
fraction 1/(s −ρ) has positive real part when s =σ+ i t . Thus for |t |À (log(2+|t |)−1), we have

(9.8) −Re

(
ζ′

ζ
(σ+ i t )

)
ÉCt (log(2+|t |)−1)

for some positive constant Ct > 0. Now suppose that ζ(β+ i t ) = 0. We aim to show that
1−βÀ (log(2+|t |)−1. Since ζ has a pole at s = 1, we know that it has no zeros in that region.
So we may suppose that |t |À 1. We improve on (9.3) by taking into account the contribution
from ρ =β+ i t :

(9.9)
∑
n

Re(n−i t )
Λ(n)

nσ
=−Re

(
ζ′

ζ
(σ+ i t )

)
É− 1

σ−β +O(log(2+|t |)).

As before, we use (9.2) to write this as

(9.10)
∑
n

(
1+Re(n−i t )

)Λ(n)

nσ
É 1

σ−1
− 1

σ−β +O(log(2+|t |)).

We also note by (9.2) and (9.9) applied to 2t that

(9.11)
∑
n

(
1−Re(n−2i t )

)Λ(n)

nσ
Ê 1

σ−1
+O(log(2+|t |)).

Now we aim to implement more quantitatively the idea that n−i t ≈−1 implies n−2i t ≈ 1.
Let us write n−i t = e iθ so that Re(n−i t )+1 = cos(θ)+1 and 1−Re(n−2i t ) = 1− cos(2θ). These
quantities are related by the formula cos(2θ) = 2cos2(θ)−1, from which we deduce that

1−cos(2θ) = 2(1−cos2(θ)) = 2(1−cos(θ))(1+cos(θ)) É 4(1+cos(θ)),

or

(9.12) 1−Re(n−2i t ) É 4(1+Re(n−i t )).

Insert this into (9.10) and (9.11) to get

(9.13)
1

σ−1
É 4

(
1

σ−1
− 1

σ−β
)
+O(log(2+|t |)),

which can be re-arranged as

(9.14)
4

σ−β − 3

σ−1
ÉC (log(2+|t |)),

for some positive constant C > 0. We choose σ so that σ−1 = (1−β)/ε for some small enough
ε > 0. Note that if β is close enough to 1, then σ < 10. Then σ−β = (1+1/ε)(1−β), so that
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(9.14) reads
1

1−β
(

4

1+1/ε
−3ε

)
ÉC (log(2+|t |)).

Taking ε= 1/4, say, leads to the required estimate 1−βÀ (log(2+|t |))−1.

3. Zero-free region for Dirichlet L-functions

Let χ be a primitive Dirichlet character modulo q > 1, and t ∈R.

Theorem 9.3. We have that L(β+ iγ,χ) = 0 implies that 1−βÀ (log(q(2+|γ|)))−1, except
possibly when χ2 = χ0, i.e. χ is “quadratic”, in which case there is at most one simple zero
β ∈R, L(β,χ) = 0 with 1−β¿ (log(q(2+|γ|)))−1.

Proof. As before, we have∑
nÊ1

Re(n−i tχ(n))
Λ(n)

nσ
=−Re

(
L′

L
(σ+ i t ,χ)

)
É −1

σ−β +O(log(q(2+|t |))).

Setting

η=
{

1 if χ2 is trivial

0 otherwise,

we also have

(9.15)
∑

nÊ1
Re(n−2i tχ2(n))

Λ(n)

nσ
=−Re(

L′

L

(
σ+ i t ,χ2)

)É η

σ+ i t −1
+O(log(q(2+|t |))).

If χ2 is non-trivial, then η= 0, and we have that (9.15) is ¿ log(q(2+|t |)). If |t |À log(q(2+|t |))−1,
then we also have that (σ+ i t −1)−1 ¿ log(q(2+|t |)), so (9.15) is likewise ¿ log(q(2+|t |)).

So, we argue as before and it gives the required conclusion in these cases. It remains to
consider the case that χ is non-trivial, and χ2 is trivial and |t |¿ log(q(2+|t |))−1. So, suppose
we can find two zeros

β1 + i t1, and β2 + i t2 of L(s,χ)

with 1−β j , t j ¿ log(q(2+|t |))−1. Then for σ> 1, we have (Proposition 8.6)

(9.16) − ∑
nÊ1

χ2(n)
Λ(n)

nσ
É ∑

nÊ1
χ(n)

Λ(n)

nσ
=−Re

(
L′

L
(σ,χ)

)
É−Re

(
1

σ−β1 − i t1

)
−Re

(
1

σ−β2 − i t2

)
+O(log(q(2+|t |))),

by dropping negative terms, and

− ∑
nÊ1

χ2(n)
Λ(n)

nσ
=− ∑

(n,q)=1

Λ(n)

nσ
=−ζ

′

ζ
(σ)+∑

p|q
(log p)

(
1

pσ
+ 1

p2σ +·· ·
)

,

and the second of these terms is

¿ log q =O(log(q(2+|t |))).

Thus

Re

(
1

σ−β1 − i t1

)
+Re

(
1

σ−β2 − i t2

)
+O(log(q(2+|t |)))

for all 1 Éσ< 10. Now let us take σ= 1+c log(q(2+|t |))−1, with c small enough so that we get
a contradiction with

(2−β1 −β2)c−1 log(q(2+|t |)) É c−1 log(q(2+|t |))+O(log(q(2+|t |))),
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since 2−ε> 1.
Now if β+i t is a zero of L(s,χ) with 1−β, t ¿ log(q(2+|t |))−1, and if t 6= 0, then (since χ=χ),

so it β− i t . So we get two zeros in this region since L(s,χ) = L(s,χ) = L(s,χ). Contradiction.
Thus any possible zero in this region satisfies t = 0.

If a real zero β occurs with multiplicity Ê 2, then we apply previous arguments with
β1 =β2 =β. Thus any real zero with 1−β¿ 1 is simple. �





CHAPTER 10

Siegel’s Theorem

The possible simple real zeros β ∈ R with 1−β¿ (log q)−1 that could occur when χ2 =
χ0 according to Lemma 9.3 are called exceptional zeros, or sometimes Siegel zeros. The
possible primitive quadratic χ for which an exceptional zero may occur is called an exceptional
character. In this chapter, we will show that even though we cannot exclude (at present!) the
existence of exceptional zeros, we can at least show that any exceptional zero cannot be too
close to 1, quantified in terms of the conductor of χ.

In a sense that will be made more precise later, if L(s,χ) admits a zero β which is very
close to 1, then L(1,χ) must be small. So we first embark on showing lower bounds for L(1,χ)
in terms of the conductor of χ.

Let χ be primitive quadratic modulo q > 1. Recall from Theorem 4.13 that we showed
that L(1,χ) 6= 0 for any primitive χ. Dirichlet’s theorem could be considered a “qualitative”
theorem, and we now make that theorem quantitative, following the same basic ideas of proof.
The reader is encouraged to compare the proof of the following proposition to the proof of
Theorem 4.13.

Proposition 10.1. For χ primitive quadratic modulo q > 1 we have L(1,χ) À q−1/2.

Remark 10.2. The constant implicit in the À notation above could be given a specific
numerical value, if we were sufficiently motivated to do so. Such an implicit constant is called
“effective”. This will be in contrast to the constant appearing in Siegel’s theorem, later.

Proof. Let r ∈A be defined by r = 1∗χ. That is,

r : n 7→ ∑
d |n

χ(d).

I claim that r (n) Ê 0 for all n, and r (n) Ê 1 when n is a perfect square. Indeed: The function
r is multiplicative (see Proposition 2.17), so we have

r (n) = ∏
p|n

r (pvp (n)),

and
r (pvp (n)) = 1+χ(p)+χ(p)2 +·· ·+χ(p)vp (n),

since χ is completely multiplicative. There are only 3 possibilities for χ(p), since χ is quadratic,
we have χ(p) ∈ {−1,0,1} (see subsubsection 1.1.2, and the definition of a Dirichlet character).
We have that r (pvp (n)) Ê 0 since

• If χ(p) = 1, then r (pvp (n)) Ê vp (n)+1 Ê 1.
• If χ(p) = 0, then r (pvp (n)) = 1.
• If χ(p) =−1, then

r (pvp (n)) =
{

0 if vp (n) is odd

1 if vp (n) is even.
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And observe also that if vp (n) is even for all p | n (i.e. n is a perfect square), then r (pvp (n)) Ê 1
for all p | n, so r (n) Ê 1 for all perfect squares. So we have proved the claim.

Now let us consider the sum ∑
nÊ1

r (n)e−n/x .

This is to be thought of as a smooth sum of r (n) of length x, i.e. it behaves like
∑

nÉx r (n),
but with the harmonic analytic difficulties inherent in the sharp cut-off at x suppressed. We
can lower bound this sum by the claim that we have just proven. We have

(10.1)
∑

nÊ1
r (n)e−n/x Ê ∑

mÊ1
r (m2)e−(m/x1/2)2 Ê ∑

mÊ1
e−(m/x1/2)2 À x1/2,

by the monotone comparison theorem (Thm. 2.2) in the last step.
On the other hand, we can also evaluate this sum using the theory of Mellin transforms

that we have developed. Recall that the Mellin transform of e−y is by definition Γ(s), so that
by the Mellin inversion theorem we have∑

nÊ1
r (n)e−n/x = 1

2πi

∫
(2)

( ∞∑
n=1

r (n)

ns

)
Γ(s)xs d s.

But since the abscissa of convergence σr É 1 (by Thm. 3.4), we have
∞∑

n=1

r (n)

ns = ζ(s)L(s,χ)

when Re(s) = 2. For T > 1, let CT be the contour defined by: 2−i∞ to 2−i T , 2−i T to −1/2−i T ,
−1/2− i T to −1/2+ i T , −1/2+ i T to 2+ i T , and 2+ i T to 2+ i∞. Then by the residue theorem
and the unique meromorphic continuation of ζ(s)L(s,χ) we have∑

nÊ1
r (n)e−n/x = xL(1,χ)+ζ(0)L(0,χ)+ 1

2πi

∫
CT

ζ(s)L(s,χ)Γ(s)xs d s.

I claim that the horizontal integrals

± 1

2πi

∫ 2±i T

−1/2±i T
ζ(s)L(s,χ)Γ(s)xs d s

tend rapidly to 0 as T →∞. Indeed, we have from exercise 2 of sheet 8 “Stirling’s approxima-
tion”, which says that

|Γ(σ+ i t )| ∼p
2π|t |σ−1/2 exp(−π

2
|t |),

as |t | → ∞. We also have by exercise 4 from sheet 6 and the functional equation that for
σ ∈ [−1/2,2] and |t | Ê 1 we have

ζ(σ+ i t ) ¿|t |,
and

(10.2) L(σ+ i t ,χ) ¿ q |t |.
By the triangle inequality, and these estimates, the claim is proven.

Now letting T →∞ we find that∑
nÊ1

r (n)e−n/x = xL(1,χ)+ζ(0)L(0,χ)+ 1

2πi

∫
(−1/2)

ζ(s)L(s,χ)Γ(s)xs d s.

By (10.2) and the fact that |xs | = x−1/2 for Re(s) =−1/2, we have that∑
nÊ1

r (n)e−n/x = xL(1,χ)+ζ(0)L(0,χ)+O(qx−1/2).
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One can compute that ζ(0) = −1/2 by the functional equation, and also L(0,χ) Ê 0 by the
functional equation, so ∑

nÊ1
r (n)e−n/x É xL(1,χ)+O(qx−1/2).

Then, finally, putting in (10.1), we find

x1/2 ¿ xL(1,χ)+O(qx−1/2).

This equation holds for all x > 1, so we may choose x as we please. Taking x =C q, with C > 0
sufficiently large in terms of the other implicit constants, we derive a contradiction unless
L(1,χ) À q−1/2, as was to be shown. �

Theorem 10.3 (Siegel’s theorem). For every ε> 0 there exists C (ε) > 0 such that

L(1,χ) Ê C (ε)

qε

for all χ primitive quadratic Dirichlet characters modulo q > 1.

Unfortunately, we do not know how to give a numerical value for C (ε) for any value of
ε < 1/2. Such a constant is called ineffective. They are the bane of our existence, and a
major flaw in this theorem. Nonetheless, the (ineffective) bound on exceptional zeros given
by Siegel’s theorem is nearly as good as the zero free region given by Lemma 9.3.

Proof. Consider r2 ∈A defined by r2 = 1∗χ1 ∗χ2 ∗χ1χ2, where χ1,χ2 are primitive qua-
dratic Dirichlet characters modulo q1 and q2, respectively. Let

f (s) = L(s,r2) = ζ(s)L(s,χ1)L(s,χ2)L(s,χ1χ2).

It was shown in exercise 3 of sheet 6 that r2(n) Ê 0 for all n Ê 1. Note also that r2 is multi-
plicative, so r2(1) = 1.

The heart of the proof of Siegel’s theorem is the following Lemma.

Lemma 10.4. For every ε> 0 there exists χ1 modulo q1 and 1−ε<β< 1 such that f (β) É 0
for all χ2 modulo q2.

Proof. • Suppose there are no zeros in [1− ε,1) for any quadratic χ. Then we
choose any χ1 modulo q1 and β satisfying 1−ε<β< 1, and we have L(β,χ1), L(β,χ2),
L(β,χ1χ2) are all positive, while ζ(β) < 0, hence f (β) < 0.

• Suppose there exists a χ modulo q with a real zero in [1−ε,1). Then we choose χ1 =χ
modulo q1 = q and 1−ε<β< 1 to be this real zero. Then f (β) = 0 regardless of what
χ2 is, since L(β,χ1) = 0.

�

Given then lemma, the rest of the proof of Siegel’s theorem follows the same lines as the
proof of Proposition 10.1.

Let

λ= ress=1 f (s) = L(1,χ1)L(1,χ2)L(1,χ1χ2),

and χ1, q1 and β be as produced by Lemma 10.4. Suppose x Ê 1. By taking the first term of
the series, and by Mellin inversion

1

e
É ∑

nÊ1

r2(n)

nβ
e−n/x = 1

2πi

∫
(2)

f (s +β)Γ(s)xs d s.
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Using the same estimates for ζ,L, and Γ as in the proof of Proposition 10.1, we may shift the
contour to the left so that we find by the residue theorem

(10.3) e−1 Éλx1−βΓ(1−β)+ f (β)+ 1

2πi

∫
(−β)

f (s +β)Γ(s)xs d s.

By exercise 4 of sheet 6, and the functional equation for Dirichlet L-functions, we have for χ
a primitive character modulo q that

L(i t ,χ) ¿ ((2+|t |)q)1/2+ε,

and similarly for ζ, so that we find

f (i t ) ¿ (2+|t |)2+ε(q1q2)1+ε.

We use this to bound the integral on the Re(s) = −β line appearing in (10.3). Using the
Laurent series expansion for Γ(s) near s =−1, and Stirling’s approximation (exercise 2 sheet
8), we find

e−1 Éλx1−βΓ(1−β)+ f (β)+Oε

(
(q1q2)1+εx−β

1−β

)
.

By Lemma 10.4, we have that f (β) É 0, independently of χ2. So we have

e−1 Éλx1−βΓ(1−β)+Oε

(
(q1q2)1+εx−β

1−β

)
.

We have that 1−β is close to 0, where Γ(s) has a pole, so Γ(1−β) = O( 1
1−β ). Meanwhile, by

Proposition 10.1 we have λÀ (q1q2)−1+ε, so that we have

(10.4) 1 ¿λ
x1−β

1−β for any (q1q2)2+ε¿ x.

We have also that

L(1,χ) ¿ log q,

by choosing s = 1 and X = q in (4.12), and estimating the left hand side trivially (by the
Monotone comparison theorem 2.5, e.g.). Thus

(10.5) λ¿ L(1,χ2)(log q1)(log q1q2).

Putting (10.5) together with (10.4) and choosing x = (q1q2)2+ε, we find that

L(1,χ2) À 1

(log q1)(log q1q2)
(q1q2)−(2+ε)(1−β)(1−β).

We only care about the q2 dependence here, however. That is to say, there is some function
C (q1,β) of q1 and β so that

L(1,χ2) ÊC (q1,β)q−(2+ε)(1−β)
2 (log q2)−1

for all q2 > 1. But in the beginning of the proof, we chose q1 and β in terms of ε> 0 only. So
in fact this quantity C (q1,β) only depends on ε> 0. So, we have

L(1,χ2) ÊC (ε)q−(2+ε)(1−β)
2 (log q2)−1.

Finally, we have that

(2+ε)(1−β) < 3ε,
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and note that log q2 É ε−1qε2 for all ε> 0, so that we have shown

L(1,χ2) Ê εC (ε)

q4ε
2

,

which finishes the proof of Siegel’s theorem. �

Finally, we relate Siegel’s theorem back to exceptional zeros.

Corollary 10.5. For any ε> 0 there exists c(ε) > 0 such that, if χ is a primitive quadratic
character modulo q > 1, then L(s,χ) 6= 0 for all

s > 1− c(ε)q−ε.

Proof. Recall from exercise 4 of sheet 6 that

L′(σ,χ) ¿ (log q)2,

for

(10.6) 1− (log q)−1 ¿σÉ 1.

By Lemma 9.3, any zero of L(s,χ) for q large enough will lie in the interval (10.6), so that we
have

L(1,χ) = L(1,χ)−L(β,χ) ¿ (log q)2(1−β) ¿ (log q)2c(ε)q−ε,

by assumption. This contradicts Siegel’s Theorem 10.3, if we replace ε by 1
2ε and take q

sufficiently large. �

It must be emphasized that the implicit constants in Siegel’s theorem and its corollary are
ineffective. To give them a numerical value, we would either have to guarantee that there are
no exceptional zeros (which we do not know how to do), or to produce the numerical values
for the exceptional zeros (which presumably do not exist).

For reference, if the generalized Riemann hypothesis holds for L(s,χ), then we know that
L(1,χ) À (loglog q)−1. If we assume that exceptional zeros do not exists, i.e. that Lemma 9.3
holds with no exceptions, then we can conclude that L(1,χ) À (log q)−3, we know that L(1,χ) À
q−ε, but the implicit constant is ineffective (Siegel’s theorem), and that L(1,χ) À q−1/2 with
an effective constant (Proposition 10.1). In the 1980s, a major advance was made by Gross
and Zagier, in which they were able to improve this to

L(1,χ) À q−1/2 log q
∏
p|q
p 6=q

(1− 2
p

p

p +1
),

using deep results from the theory of modular forms and elliptic curves (with an effective
constant). There is obviously a huge gap between what is true and what we can actually
prove.





CHAPTER 11

The Prime Number Theorem in Arithmetic Progressions

We apply all of the preceding results of the course to obtain approximations to

ψ(X ; q, a) = ∑
n≡a (mod q)

Λ(n) f (n/X ),

for f ∈C ∞
c (R>0). The version of this with the condition n É X instead of the smooth weight

f (n/X ) follows from the same machinery as exercises 1 and 2 of sheet 12. By the orthogonality
relations (4.11), we have if (a, q) = 1, and q > 1

(11.1) ψ(X ; q, a) = 1

ϕ(q)

∑
χ (mod q)

χ(a)ψ(X ,χ),

where

(11.2) ψ(X ,χ) = ∑
nÊ1

Λ(n)χ(n) f (n/X ).

The contribution of the trivial character provides the main term. We have

(11.3) ψ(X ,χ0) = ∑
nÊ1

(n,q)=1

Λ(n) f (n/X ) = ∑
nÊ1

Λ(n) f (n/X )− ∑
nÊ1

(n,q)>1

Λ(n) f (n/X )

= ∑
nÊ1

Λ(n) f (n/X )+O f ((log X )(log q)).

By the prime number theorem (Corollary 8.11), we have∑
nÊ1

Λ(n) f (
n

X
) = X

∫
R

f (x)d x +O f

(
X exp(−C

√
log X )

)
,

so that

(11.4) ψ(X ; q, a) = X

ϕ(q)

∫
R

f (x)d x + 1

ϕ(q)

∑
χ 6=χ0

χ(a)ψ(X ,χ)

+O f

(
1

ϕ(q)

(
X exp(−C

√
log X )+ (log X )(log q)

))
.

So to prove the prime number theorem in arithmetic progressions, it suffices to give a
bound for each of the the ψ(X ,χ), χ 6=χ0.

Proposition 11.1. Suppose that q ¿ exp( 1
2

√
log X ).

If χ 6=χ0 is not an exceptional character, then there exists a constant c > 0 so that we have

ψ(X ,χ) ¿ f X exp(−c
√

log X ),

uniformly in χ.

81
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If χ 6=χ0 is an exceptional character with unique real execptional zero β, then there exists
a constant c > 0 so that we have

ψ(X ,χ) =− f̃ (β)X β+O f (X exp(−c
√

log X )),

uniformly in χ.

Proof. As in the proof of the (smooth) prime number theorem (Corollary 8.11), we
choose X sufficiently large so that f (nX ) = 0 for all n Ê 1. Then under this assumption by the
explicit formula Theorem 8.9, we have for χ 6=χ0 that

(11.5) ψ(X ,χ) = 1

2πi

∫
(1/2)

(
L′∞(s,χ)

L∞(s,χ)
+ L′∞(1− s,χ)

L∞(1− s,χ)

)
f̃ (s)X s d s − ∑

L(ρ,χ)=0
Re(ρ)∈[0,1]

f̃ (ρ)X ρ .

The first term here is O f (X 1/2), since |X s | = X 1/2 for Re(s) = 1/2.
Let us adopt the convention that a sum with a prime

∑′
ρ

over the critical zeros ρ of an

L-function means that we exclude any possible exceptional zero. For these sums of non-
exceptional zeros, we have by Lemma 9.3 that∑′

L(ρ,χ)=0
Re(ρ)∈[0,1]

f̃ (ρ)X ρ É X
∑′

L(ρ,χ)=0
Re(ρ)∈[0,1]

| f̃ (ρ)|exp(− c log X

log(q(2+|γ|))
),

where we have written (as usual) ρ =β+ iγ.
As in the proof of the prime number theorem (Corollary 8.11), we split the sum over ρ at

log(q(2+|γ|)) =√
log X . For the smaller ρ we have∑′

L(ρ,χ)=0

log(q(2+|γ|))É
p

log X

| f̃ (ρ)|exp(− c log X

log(q(2+|γ|))
) É ∑′

L(ρ,χ)=0

log(q(2+|γ|))É
p

log X

| f̃ (ρ)|exp(−c
√

log X )

É exp(−c
√

log X )
∑′

L(ρ,χ)=0
| f̃ (ρ)|¿ exp(−c

√
log X ),

by the zero counting Theorem 7.5.
For the larger ρ, since | f̃ (β+ iγ)|¿ (1+|γ|)−2, we have∑′

L(ρ,χ)=0

log(q(2+|γ|))>
p

log X

| f̃ (ρ)|exp(− c log X

log(q(2+|γ|))
) ¿ ∑′

L(ρ,χ)=0

log(q(2+|γ|))>
p

log X

| f̃ (β+ iγ)|

¿ ∑′
L(ρ,χ)=0

log(q(2+|γ|))>
p

log X

q1/2 exp(−1
2

√
log X )

(1+|γ|)3/2
¿ exp(−1

4

√
log X ),

by the zero counting Theorem 7.5 and since q1/2 ¿ exp( 1
4

√
log X ). Putting these estimates

together, and noting that X 1/2 is much smaller than X exp(−c
√

log X ) for large X , we conclude
the proof of the proposition. �

It follows from (11.4) and Proposition 11.1 that if there are no exceptional characters
modulo q, then

(11.6) ψ(X ; q, a) = X

ϕ(q)

∫
R

f (x)d x +O f (X exp(−c
√

log X )),
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for some effective constant c > 0, assuming q ¿ exp( 1
4

√
log X ). In fact, if this bound on q

does not hold, then (11.6) holds anyway by applying trivial bounds to (11.4), so the only
assumptions on q are q > 1, (a, q) = 1, x Ê 2, and that there are no exceptional characters
modulo q.

If there is an exceptional character χ modulo q, with exceptional zero β, then we have by
the same reasoning that for all (a, q) = 1 that

(11.7) ψ(X ; q, a) = X

ϕ(q)

∫
R

f (x)d x − 1

ϕ(q)

∑
χ exceptional

χ(a) f̃ (β)X β+O f (X exp(−c
√

log X )).

All of the implicit constants in (11.6) and (11.7) are effective.

Theorem 11.2 (PNT in AP, or the Siegel-Walfisz theorem). Let c > 0 be the (effective)
constant appearing in (11.6) and (11.7). Then for all A Ê 0, q ¿ (log X )A, (a, q) = 1 and X Ê 2
we have

ψ(X ; q, a) = X

ϕ(q)

∫
R

f (x)d x +O f ,A(X exp(−c
√

log X )).

The implicit constant (which depends on A) is ineffective.

Remark 11.3. The ineffectiveness of the implicit constant comes from Siegel’s theorem
10.3 and derives from the fact that we cannot rule out the existence of exceptional characters.
Indeed, note that the constants in (11.6) and (11.7) are effective.

Proof. By Corollary 10.5 we have for any exceptional zero that

xβ = x exp(−(1−β) log x) É x exp(−C (ε)q−ε log x).

Since q ¿ (log x)A, we have

xβ É x exp(−C (ε)(log x)1−Aε).

Let ε= 1/(3A), say. Then

xβ¿A x exp(−c
√

log x),

where c is the constant appearing in (11.7). Thus the contribution from exceptional zeros to
(11.7) is subsumed into the error term. Putting together (11.6) and (11.7), we establish the
theorem. �
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