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The main theorem

Our goal is to sketch the proof of the following result due to Munshil:

Theorem
Let f be a Hecke-Maass cusp form for SL3(Z). Then we have

1
L (5 + it, f> <<f7€ (1 + |t|)3/4—1/16+€'

Remarks:

e The convexity bound is <¢ . (1 + |t|)3/4+=.

e Subconvexity bound with the same exponent was known before by the
work of Li in the case where f is self-dual (i.e. symmetric square lift of a
GL; form) using the moment method.

e The above theorem is no longer state of the art result: Aggarwal® has
shown an upper bound < (1 + |t[)3/4—3/40+=,

1JAMS, 2015
2Int. J. Number Theory, 2021
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Maass cusp forms for SL3(Z)

e H ~ SL,(R)/SO,(R) so natural generalisation is H3 ~ SL3(R)/SO3(R).
e The group SL3(R) acts on this space.
Definition
A smooth function f : H> — C is a Maass cusp form for the group
SL3(Z) if

o f(yz) = f(z) for all z € H3, v € SL3(Z).

e f is an eigenfunction of every SL3(Z)-invariant differential operator
on H3.

o f satisfies certain growth/cuspidality condition.

e Hecke theory also generalises. We say that f is a Hecke-Maass cusp
form if it is also an eigenfunction for the Hecke algebra.

e As in the classical situation, GL3 forms have Fourier expansions. The
Fourier coefficients are indexed by pairs of integers and denoted by
)\(nl, n2).
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e The L-series

[e.e]

A(m, 1)
s, =D ==
m=1
converges for large enough R(s) and has the usual nice properties (analytic
continuation, functional equation, etc.).
e From the functional equation and the Phragmén-Lindelof principle one

gets the convexity bound
1
L (2 +it, f) e (14 [t])3¥/4=.

e The Ramanujan-Petersson conjecture is not known, but it holds on
average (this follows from the Rankin-Selberg theory):

D> A(m )P < XM

m<x
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Kloosterman's §-method
e Partition the circle using Farey fractions

SQ:{:;1§q§Q,1§a<q,(a,q)=1}-

e Farey fractions have several nice properties: two consecutive elements
a/q < d/q satisfy a/q' —a/g=1/qq' and ¢+ ¢ > Q. Two
neighbouring mediants span an interval containing exactly one element of

Sq-

e This leads to Kloosterman's decomposition of the §-symbol:

_29%/ Sy e(_;’:>dx.

1<q<Q<a<q+Q

e There are well-known drawbacks in this decomposition. For instance, the
arithmetic and analytic parts are intertwined (unlike in DFI) and so it is
(usually) difficult to treat the a—sum efficiently. This is not the case for us.
e The main advantage is the explicit form of the weight function

e(—nx/aq).
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Reduction to weighted sum of Fourier coefficients
e Standard approximate functional equation argument shows that

1. IS(N)] 2021
L{=z+it,f) <. t° su + O (t )
(2 ) N§t3?2+€ N1/2 ( )

where

S(N) = iA(Ln)n*ffv (ﬂ)

n=1 N

for some smooth weight function V supported in [1,2] and satisfying
vU(x) «; 1.

e We will concentrate on the most difficult case N = t3/2.

e Denote

0 otherwise

0 otherwise

1 ifn=0 1 if |n] < X
6(n):{ " and 5(|n|<X):{ # |nf <
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Conductor lowering mechanism

e The idea is to write S(NV) as a double sum

S(N) = i i AL, mym~tV (%) U (%) 5(n— m),

n=1 m=1

where U is a smooth weight function having similar properties as V, and
decompose the §-symbol by using Kloosterman's version of circle method.
e This itself is not very effective in Munshi’s treatment and so we need a
conductor lowering mechanism.

e Kloosterman's §-method picks the event n = 0 from the interval

[N, N] by using < @2 harmonics. As we have seen in previous talks, in
practice we essentially need the number of oscillations to match the size of
the equation, so in our case Q%2 =< N.

e Conductor lowering trick introduces more oscillations and hence reduces
the size of the conductor.
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e The idea is to add an extra factor §(|n— m| < N/K) (which is redundant
when m = n), for some parameter t°* < K < t, to the double sum.
e One has

1 ny\wv %
5(1n— m| < N/K) = K/R (2)"w () av+o (2
for m,n < N (here W is a smooth bump function).
e This follows from integration by parts.
e With this extra term the number of frequencies to detect n = m in
Kloosterman's d-method is < @?K so the optimal choice is Q% < N/K,
hence Q is smaller than initially.
e This is the most crucial "trick” in Munshi’'s paper.
e Nowadays it is understood that conductor lowering is actually built in
Kloosterman's d-method (cf. Aggarwal’s paper).
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e So write

= i)\(l, n)n_itV (%)
=Y S AV (2 U (DY b0~ m)an — ml < N/K)

n=1 m=1

=SH(N)+ S~ (N),

where

1
1 1 & & P
—K//RW(; Sy ;ZZ (1, n)n* m—i(E)
0

1<q<QR<a<qg+Q
(n—m)a _ (n— m)x n m
e <i P A <N) U <N> dv dx.

e The treatment of ST(N) and S™(N) is completely analogous.
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e For convenience, set

:/W(x)e(—rx)xs_1 dx.
0

e For m-sum apply Poisson summation formula; conductor of the sum is
= gt and length is N so essentially

—I v mx m
Z""’ (t+)e< aq>U<N>
s NIi(EFY) Z ut (I\I(ma—x)’ 1—i(t+ v)) .

|m|<qt/N aq
m=a(q)

e For n-sum apply GL3 Voronoi summation formula; conductor of the sum
is < q3K3 and length is N so essentially

Jesse Jaasaari (Queen Mary University of Lor| t-aspect subconvexity for GL3 L-functions March 17, 2021 10/19



pocare(F)e(5) v ()

Ty A(n, 1) S(m, n; q)
s N3 > Wz qif2

n<qg3K3/N

K .
N —iT 1 N 1
. / <’;3> o (—2 + i7> vl (ac);’ 5 i(r — v)) - smooth fndr,
K

where v(—1/2 + i) is a ration of [-factors.

e So in total (after executing the a-sum) S(N) e~ N3/27t Z Z
g=Q mkqt/N

3 )‘,(7’1’;21).5(5’:;’3’/7;‘7 / /1U ( —x) 1—I(t+Kv)>
0

In|<q3K3/N

K —iT
N 1 Nx 1
/ (23) ~ (_2 + ,-T> vi <a: 5 iT+ 1Kv> -smooth fndr dxdv.
—K
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e In the last display (and in what follows) a denotes the unique inverse of

m modulo g in the interval |Q, g + Q].
e We are now lead to analyse various integral transforms.
e By the stationary phase method (here the explicit form of the weight

function is useful) we have

ut (I\I(ma_x),l—i(t—l—Kv)>

aq
_ (t+Kv)Y2aq [ N(ma— x) it+kv) <mooth fn
7 N(x — ma) aq(t + Kv)

and

aq 2

= (— e T a— . th fn.
(Nx) <aq(Kv —7) smoeeth

e The v-integral can now be evaluated by a stationary phase analysis; it is
essentially

Vi (NX, 1 iIT+ iKv>
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1 (_(t+7)q>3/2i(t+7)

tt 7-)1/2K N smooth fn

involves the x-integral

e We have now shown that

S(N)

K
< N3N n1/2 Z > m;zq /gq,mT —iTdr,
—-K

n<KQ3K3/N g=Q |m|kqt/N

where g(g, m, 7) is essentially

1 (t+7—)q 3/2—i(t+7') N —iT 1 )
(t £ 112K (— N ) 7 ¥ —§+IT - smooth fn.

e Estimating trivially at this point gives
S(N) <« K3/2¢1/2Q3/2 < N3/4K3/4¢1/2 = 13/8K3/4 50 actually K is
hurting us here.
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e The next step involves an application of Cauchy-Schwarz to get rid of
the Fourier coefficients (by using that the Ramanujan-Petersson conjecture
holds on average), but this process also squares the amount we need to
save.

e At this point we roughly have

3503\ 1/2
32 (@K
st < w2 (2

1/2
K 2\ 1/

> e = 20D [ mnn

nxK3Q3/N g=<Q |m|kqt/N

e The idea is to open the absolute square, move the n-sum inside and
execute it by using the Poisson summation formula.
e So the sum to consider is

1 T — nN
2 ,ﬂwn—mﬂmh":qﬂS(mzn:%)H<,<3Qs>
n=K3Q3/N

for some compactly supported smooth weight function H.
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e Note that length of the sum is K3Q3/N =< N'/2K3/2 (as Q < (N/K)'/?)
and the conductor is @?K =< N. So the dual length will be < N¥/2/K3/2,
e Here we are getting help from the parameter K as it makes the dual sum
shorter.

e By Poisson summation formula the n-sum is

Citr—r 1/2 3/2
1 <N1/2K3/2> (n=m2) Y e (”’V AST— Tg)> .
q1q2 e NY/2 /K32 q192

e Thus we are reduced to bounding

2. 2. 2. 2. ) ldan

G1=Q |m|<qt/N @2<Q |mp|<qt/N ng N/2 /K3/2

where

e~ 3 stmsia)sm 5 axde (Lo )
B(q192)

qi1q2
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1 (N - NY/2K3/2)=i(n=m2)
/ / (_ + ’Tl> v <_2 =+ ’7—2) a 317—1q§/n

e o [ ANY2K32
(g1, my, 11)1(q2, ma, 72)H' (, —i(11 — 1) | dmidm
aqiqz
with
| B 1 (t+T) 3/2—i(t+7‘) y (t+T)q
(,m,7) = (t +7)12K  Nm  Nm

1
T (t+71)x

/ v (K T s ) dx.

0
e We have € < q192(q1, g2, n). Furthermore, if n =0 then € = 0 unless
g1 = @2 in which case € < q%(ql, my — my). All this is elementary.
e Standard stationary phase analysis shows that

1 N1/2t€ N1/4ts

K3/2¢ (|n|N1/2K3/2)1/2 < t|n[1/2K9/4

Jesse Jaasaari (Queen Mary University of Lor| t-aspect subconvexity for GL3 L-functions March 17, 2021 16 /19

R <L,




when n # 0 and
tE
R<<5 E

when n = 0.
e Explicit calculation shows that the total n = 0-contribution to S(N) is

<<€ Kl/2N1/2t1/2+€ — K1/2t5/4+€
which is satisfactory if K < t1/2.
e Similarly, the total n # 0-contribution to S(N) is
N3/4t1/2+€ t13/8+5

<e K1/2 -oK12

which is satisfactory if K > t1/4.
e The optimal choice K < N4 =< ¢3/8 |eads to

S(N) <. t1/2+5N5/8 < t3/2_1/16+€,

giving the claimed result.
e For smaller N optimisation is little different.
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Aggarwal’s improvement

e Aggarwal uses the same method as Munshi, but is able to bypass the

conductor lowering trick by treating the x-integral more efficiently.

e This simplifies many of the arguments and leads to a better exponent.
e The pointisthat, asa =< Q, ¢ < Q, Q = (N/K)l/z, the x-integral in

Kloosterman's §-method works as a conductor lowering device:

[ (=) 0 [ (O x50 mi < w0
0 0

when m,n < N.
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The End
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