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The main theorem

Our goal is to sketch the proof of the following result due to Munshi1:

Theorem

Let f be a Hecke-Maass cusp form for SL3(Z). Then we have

L

(
1

2
+ it, f

)
�f ,ε (1 + |t|)3/4−1/16+ε.

Remarks:
• The convexity bound is �f ,ε (1 + |t|)3/4+ε.
• Subconvexity bound with the same exponent was known before by the
work of Li in the case where f is self-dual (i.e. symmetric square lift of a
GL2 form) using the moment method.
• The above theorem is no longer state of the art result: Aggarwal2 has
shown an upper bound �f ,ε (1 + |t|)3/4−3/40+ε.

1JAMS, 2015
2Int. J. Number Theory, 2021
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Maass cusp forms for SL3(Z)

• H ' SL2(R)/SO2(R) so natural generalisation is H3 ' SL3(R)/SO3(R).
• The group SL3(R) acts on this space.

Definition

A smooth function f : H3 −→ C is a Maass cusp form for the group
SL3(Z) if

f (γz) = f (z) for all z ∈ H3, γ ∈ SL3(Z).

f is an eigenfunction of every SL3(Z)-invariant differential operator
on H3.

f satisfies certain growth/cuspidality condition.

• Hecke theory also generalises. We say that f is a Hecke-Maass cusp
form if it is also an eigenfunction for the Hecke algebra.
• As in the classical situation, GL3 forms have Fourier expansions. The
Fourier coefficients are indexed by pairs of integers and denoted by
λ(n1, n2).
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• The L-series

L(s, f ) =
∞∑

m=1

λ(m, 1)

ms

converges for large enough <(s) and has the usual nice properties (analytic
continuation, functional equation, etc.).
• From the functional equation and the Phragmén-Lindelöf principle one
gets the convexity bound

L

(
1

2
+ it, f

)
�f ,ε (1 + |t|)3/4+ε.

• The Ramanujan-Petersson conjecture is not known, but it holds on
average (this follows from the Rankin-Selberg theory):∑

m≤x
|λ(m, 1)|2 �ε x

1+ε.
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Kloosterman’s δ-method
• Partition the circle using Farey fractions

FQ =

{
a

q
: 1 ≤ q ≤ Q, 1 ≤ a < q, (a, q) = 1

}
.

• Farey fractions have several nice properties: two consecutive elements
a/q < a′/q′ satisfy a′/q′ − a/q = 1/qq′ and q + q′ > Q. Two
neighbouring mediants span an interval containing exactly one element of
FQ .
• This leads to Kloosterman’s decomposition of the δ-symbol:

δ(n) = 2<
1∫

0

∑∑?

1≤q≤Q<a≤q+Q

1

aq
e

(
an

q
− nx

aq

)
dx .

• There are well-known drawbacks in this decomposition. For instance, the
arithmetic and analytic parts are intertwined (unlike in DFI) and so it is
(usually) difficult to treat the a−sum efficiently. This is not the case for us.
• The main advantage is the explicit form of the weight function
e(−nx/aq).
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Reduction to weighted sum of Fourier coefficients
• Standard approximate functional equation argument shows that

L

(
1

2
+ it, f

)
�ε t

ε sup
N≤t3/2+ε

|S(N)|
N1/2

+ O
(
t−2021

)
,

where

S(N) =
∞∑
n=1

λ(1, n)n−itV
( n

N

)
for some smooth weight function V supported in [1, 2] and satisfying
V (j)(x)�j 1.
• We will concentrate on the most difficult case N � t3/2.
• Denote

δ(n) =

{
1 if n = 0

0 otherwise
and δ(|n| < X ) =

{
1 if |n| < X

0 otherwise
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Conductor lowering mechanism

• The idea is to write S(N) as a double sum

S(N) =
∞∑
n=1

∞∑
m=1

λ(1, n)m−itV
( n

N

)
U
(m
N

)
δ(n −m),

where U is a smooth weight function having similar properties as V , and
decompose the δ-symbol by using Kloosterman’s version of circle method.
• This itself is not very effective in Munshi’s treatment and so we need a
conductor lowering mechanism.
• Kloosterman’s δ-method picks the event n = 0 from the interval
[−N,N] by using � Q2 harmonics. As we have seen in previous talks, in
practice we essentially need the number of oscillations to match the size of
the equation, so in our case Q2 � N.
• Conductor lowering trick introduces more oscillations and hence reduces
the size of the conductor.
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• The idea is to add an extra factor δ(|n−m| < N/K ) (which is redundant
when m = n), for some parameter tε � K � t, to the double sum.
• One has

δ(|n −m| < N/K ) =
1

K

∫
R

( n

m

)iv
W
( v

K

)
dv + O

(
t−2021

)
for m, n � N (here W is a smooth bump function).
• This follows from integration by parts.
• With this extra term the number of frequencies to detect n = m in
Kloosterman’s δ-method is � Q2K so the optimal choice is Q2 � N/K ,
hence Q is smaller than initially.
• This is the most crucial ”trick” in Munshi’s paper.
• Nowadays it is understood that conductor lowering is actually built in
Kloosterman’s δ-method (cf. Aggarwal’s paper).
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• So write

S(N) =
∞∑
n=1

λ(1, n)n−itV
( n

N

)
=
∞∑
n=1

∞∑
m=1

λ(1, n)m−itV
( n

N

)
U
(m
N

)
δ(n −m)δ(|n −m| < N/K )

= S+(N) + S−(N),

where

S±(N) =
1

K

1∫
0

∫
R
W
( v

K

) ∑∑?

1≤q≤Q<a≤q+Q

1

aq

∞∑
m=1

∞∑
n=1

λ(1, n)nivm−i(t+v)

e

(
±(n −m)a

q
∓ (n −m)x

aq

)
V
( n

N

)
U
(m
N

)
dv dx .

• The treatment of S+(N) and S−(N) is completely analogous.
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• For convenience, set

W †(r , s) =

∞∫
0

W (x)e(−rx)x s−1 dx .

• For m-sum apply Poisson summation formula; conductor of the sum is
� qt and length is N so essentially

∞∑
m=1

m−i(t+v)e

(
−ma

q
+

mx

aq

)
U
(m
N

)
! N1−i(t+v)

∑
|m|�qt/N
m≡a (q)

U†
(
N(ma− x)

aq
, 1− i(t + v)

)
.

• For n-sum apply GL3 Voronoi summation formula; conductor of the sum
is � q3K 3 and length is N so essentially
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∞∑
n=1

λ(1, n)nive

(
na

q

)
e

(
−nx

aq

)
V
( n

N

)
! N

1
2
+iv

∑
n�q3K3/N

λ(n, 1)

n1/2
S(m, n; q)

q1/2

·
K∫
−K

(
nN

q3

)−iτ
γ

(
−1

2
+ iτ

)
V †
(
Nx

aq
,

1

2
− i(τ − v)

)
· smooth fn dτ,

where γ(−1/2 + iτ) is a ration of Γ-factors.

• So in total (after executing the a-sum) S(N) ! N3/2−it
∑
q�Q

∑
m�qt/N∑

|n|�q3K3/N

λ(n, 1)

n1/2
· S(m, n; q)

aq3/2

∫
R
W (v)

1∫
0

U†
(
N(ma− x)

aq
, 1− i(t + Kv)

)
∫ K

−K

(
nN

q3

)−iτ
γ

(
−1

2
+ iτ

)
V †
(
Nx

aq
,

1

2
− iτ + iKv

)
· smooth fn dτ dx dv .
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• In the last display (and in what follows) a denotes the unique inverse of
m modulo q in the interval ]Q, q + Q].
• We are now lead to analyse various integral transforms.
• By the stationary phase method (here the explicit form of the weight
function is useful) we have

U†
(
N(ma− x)

aq
, 1− i(t + Kv)

)
� (t + Kv)1/2aq

N(x −ma)
·
(
N(ma− x)

aq(t + Kv)

)i(t+Kv)

· smooth fn

and

V †
(
Nx

aq
,

1

2
− iτ + iKv

)
�
( aq
Nx

)1/2
·
(

Nx

aq(Kv − τ)

)i(τ−Kv)
· smooth fn.

• The v -integral can now be evaluated by a stationary phase analysis; it is
essentially
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1

(t + τ)1/2K

(
−(t + τ)q

Nm

)3/2−i(t+τ)
smooth fn︸ ︷︷ ︸

involves the x-integral

• We have now shown that

S(N)

� N3/2
∑

n�Q3K3/N

λ(n, 1)

n1/2

∑
q�Q

∑
|m|�qt/N

S(m, n; q)

aq3/2

K∫
−K

g(q,m, τ)n−iτdτ,

where g(q,m, τ) is essentially

1

(t + τ)1/2K

(
−(t + τ)q

Nm

)3/2−i(t+τ)(N

q3

)−iτ
γ

(
−1

2
+ iτ

)
· smooth fn.

• Estimating trivially at this point gives
S(N)� K 3/2t1/2Q3/2 � N3/4K 3/4t1/2 � t13/8K 3/4 so actually K is
hurting us here.

Jesse Jääsaari (Queen Mary University of London)t-aspect subconvexity for GL3 L-functions March 17, 2021 13 / 19



• The next step involves an application of Cauchy-Schwarz to get rid of
the Fourier coefficients (by using that the Ramanujan-Petersson conjecture
holds on average), but this process also squares the amount we need to
save.
• At this point we roughly have

S(N)� N3/2

(
Q3K 3

N

)1/2

·

 ∑
n�K3Q3/N

1

n

∣∣∣∣∣∣
∑
q�Q

∑
|m|�qt/N

S(m, n; q)

aq3/2

K∫
−K

g(q,m, τ)n−iτ dτ

∣∣∣∣∣∣
2


1/2

.

• The idea is to open the absolute square, move the n-sum inside and
execute it by using the Poisson summation formula.
• So the sum to consider is∑

n�K3Q3/N

1

n1+i(τ1−τ2)
S(m1, n; q1)S(m2, n; q2)H

(
nN

K 3Q3

)
for some compactly supported smooth weight function H.
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• Note that length of the sum is K 3Q3/N � N1/2K 3/2 (as Q � (N/K )1/2)
and the conductor is Q2K � N. So the dual length will be � N1/2/K 3/2.
• Here we are getting help from the parameter K as it makes the dual sum
shorter.
• By Poisson summation formula the n-sum is

1

q1q2

(
N1/2K 3/2

)−i(τ1−τ2) ∑
n�N1/2/K3/2

C · H†
(
nN1/2K 3/2

q1q2
,−i(τ1 − τ2)

)
.

• Thus we are reduced to bounding∑
q1�Q

∑
|m1|�qt/N

∑
q2�Q

∑
|m2|�qt/N

∑
n�N1/2/K3/2

|C| · |K| ,

where

C =
∑

β (q1q2)

S(m1, β; q1)S(m2, β; q2)e

(
βn

q1q2

)
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and

K =

∫
R

∫
R
γ

(
−1

2
+ iτ1

)
γ

(
−1

2
+ iτ2

)
(N · N1/2K 3/2)−i(τ1−τ2)

q−3iτ11 q3iτ22

· I (q1,m1, τ1)I (q2,m2, τ2)H†

(
nN1/2K 3/2

q1q2
,−i(τ1 − τ2)

)
dτ1dτ2

with

I (q,m, τ) =
1

(t + τ)1/2K

(
−(t + τ)

Nm

)3/2−i(t+τ)
V

(
−(t + τ)q

Nm

)
1∫

0

V

(
τ

K
− (t + τ)x

kma

)
dx .

• We have C� q1q2(q1, q2, n). Furthermore, if n = 0 then C = 0 unless
q1 = q2 in which case C� q21(q1,m1 −m2). All this is elementary.
• Standard stationary phase analysis shows that

K�ε
1

K 3/2t
· N1/2tε

(|n|N1/2K 3/2)1/2
� N1/4tε

t|n|1/2K 9/4
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when n 6= 0 and

K�ε
tε

Kt

when n = 0.
• Explicit calculation shows that the total n = 0-contribution to S(N) is

�ε K
1/2N1/2t1/2+ε � K 1/2t5/4+ε,

which is satisfactory if K � t1/2.
• Similarly, the total n 6= 0-contribution to S(N) is

�ε
N3/4t1/2+ε

K 1/2
� t13/8+ε

K 1/2
,

which is satisfactory if K � t1/4.
• The optimal choice K � N1/4 � t3/8 leads to

S(N)�ε t
1/2+εN5/8 � t3/2−1/16+ε,

giving the claimed result.
• For smaller N optimisation is little different.
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Aggarwal’s improvement

• Aggarwal uses the same method as Munshi, but is able to bypass the
conductor lowering trick by treating the x-integral more efficiently.
• This simplifies many of the arguments and leads to a better exponent.
• The point is that, as a � Q, q ≤ Q, Q = (N/K )1/2, the x-integral in
Kloosterman’s δ-method works as a conductor lowering device:

1∫
0

e

(
(n −m)x

aq

)
dx ≈

1∫
0

e

(
(n −m)x

Q2

)
dx ≈ δ (|n −m| < N/K )

when m, n � N.
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The End
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