t-aspect subconvexity for $\mathrm{GL}_{3} \mathrm{~L}$-functions

Jesse Jääsaari
Queen Mary University of London

March 17, 2021

The main theorem

Our goal is to sketch the proof of the following result due to Munshi ${ }^{1}$:

Theorem

Let f be a Hecke-Maass cusp form for $\mathrm{SL}_{3}(\mathbb{Z})$. Then we have

$$
L\left(\frac{1}{2}+i t, f\right) \ll_{f, \varepsilon}(1+|t|)^{3 / 4-1 / 16+\varepsilon} .
$$

Remarks:

- The convexity bound is $<_{f, \varepsilon}(1+|t|)^{3 / 4+\varepsilon}$.
- Subconvexity bound with the same exponent was known before by the work of Li in the case where f is self-dual (i.e. symmetric square lift of a GL_{2} form) using the moment method.
- The above theorem is no longer state of the art result: Aggarwal ${ }^{2}$ has shown an upper bound $<_{f, \varepsilon}(1+|t|)^{3 / 4-3 / 40+\varepsilon}$.

[^0]
Maass cusp forms for $\mathrm{SL}_{3}(\mathbb{Z})$

- $\mathbb{H} \simeq \mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}_{2}(\mathbb{R})$ so natural generalisation is $\mathbb{H}^{3} \simeq \mathrm{SL}_{3}(\mathbb{R}) / \mathrm{SO}_{3}(\mathbb{R})$.
- The group $\mathrm{SL}_{3}(\mathbb{R})$ acts on this space.

Definition

A smooth function $f: \mathbb{H}^{3} \longrightarrow \mathbb{C}$ is a Maass cusp form for the group $\mathrm{SL}_{3}(\mathbb{Z})$ if

- $f(\gamma z)=f(z)$ for all $z \in \mathbb{H}^{3}, \gamma \in \mathrm{SL}_{3}(\mathbb{Z})$.
- f is an eigenfunction of every $\mathrm{SL}_{3}(\mathbb{Z})$-invariant differential operator on \mathbb{H}^{3}.
- f satisfies certain growth/cuspidality condition.
- Hecke theory also generalises. We say that f is a Hecke-Maass cusp form if it is also an eigenfunction for the Hecke algebra.
- As in the classical situation, GL_{3} forms have Fourier expansions. The Fourier coefficients are indexed by pairs of integers and denoted by $\lambda\left(n_{1}, n_{2}\right)$.
- The L-series

$$
L(s, f)=\sum_{m=1}^{\infty} \frac{\lambda(m, 1)}{m^{s}}
$$

converges for large enough $\Re(s)$ and has the usual nice properties (analytic continuation, functional equation, etc.).

- From the functional equation and the Phragmén-Lindelöf principle one gets the convexity bound

$$
L\left(\frac{1}{2}+i t, f\right) \ll_{f, \varepsilon}(1+|t|)^{3 / 4+\varepsilon}
$$

- The Ramanujan-Petersson conjecture is not known, but it holds on average (this follows from the Rankin-Selberg theory):

$$
\sum_{m \leq x}|\lambda(m, 1)|^{2} \ll_{\varepsilon} x^{1+\varepsilon}
$$

Kloosterman's δ-method

- Partition the circle using Farey fractions

$$
\mathfrak{F}_{Q}=\left\{\frac{a}{q}: 1 \leq q \leq Q, 1 \leq a<q,(a, q)=1\right\} .
$$

- Farey fractions have several nice properties: two consecutive elements $a / q<a^{\prime} / q^{\prime}$ satisfy $a^{\prime} / q^{\prime}-a / q=1 / q q^{\prime}$ and $q+q^{\prime}>Q$. Two neighbouring mediants span an interval containing exactly one element of \mathfrak{F}_{Q}.
- This leads to Kloosterman's decomposition of the δ-symbol:

$$
\delta(n)=2 \Re \int_{0}^{1} \sum_{1 \leq q \leq Q<a \leq q+Q} \sum_{\star}^{\star} \frac{1}{a q} e\left(\frac{\bar{a} n}{q}-\frac{n x}{a q}\right) \mathrm{d} x
$$

- There are well-known drawbacks in this decomposition. For instance, the arithmetic and analytic parts are intertwined (unlike in DFI) and so it is (usually) difficult to treat the a-sum efficiently. This is not the case for us.
- The main advantage is the explicit form of the weight function $e(-n x / a q)$.

Reduction to weighted sum of Fourier coefficients

- Standard approximate functional equation argument shows that

$$
L\left(\frac{1}{2}+i t, f\right) \ll_{\varepsilon} t^{\varepsilon} \sup _{N \leq t^{3 / 2+\varepsilon}} \frac{|S(N)|}{N^{1 / 2}}+O\left(t^{-2021}\right)
$$

where

$$
S(N)=\sum_{n=1}^{\infty} \lambda(1, n) n^{-i t} V\left(\frac{n}{N}\right)
$$

for some smooth weight function V supported in [1, 2] and satisfying $V^{(j)}(x) \ll_{j} 1$.

- We will concentrate on the most difficult case $N \asymp t^{3 / 2}$.
- Denote

$$
\delta(n)=\left\{\begin{array}{ll}
1 & \text { if } n=0 \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad \delta(|n|<X)= \begin{cases}1 & \text { if }|n|<X \\
0 & \text { otherwise }\end{cases}\right.
$$

Conductor lowering mechanism

- The idea is to write $S(N)$ as a double sum

$$
S(N)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \lambda(1, n) m^{-i t} V\left(\frac{n}{N}\right) U\left(\frac{m}{N}\right) \delta(n-m)
$$

where U is a smooth weight function having similar properties as V, and decompose the δ-symbol by using Kloosterman's version of circle method.

- This itself is not very effective in Munshi's treatment and so we need a conductor lowering mechanism.
- Kloosterman's δ-method picks the event $n=0$ from the interval $[-N, N]$ by using $\asymp Q^{2}$ harmonics. As we have seen in previous talks, in practice we essentially need the number of oscillations to match the size of the equation, so in our case $Q^{2} \asymp N$.
- Conductor lowering trick introduces more oscillations and hence reduces the size of the conductor.
- The idea is to add an extra factor $\delta(|n-m|<N / K)$ (which is redundant when $m=n$), for some parameter $t^{\varepsilon} \ll K \ll t$, to the double sum.
- One has

$$
\delta(|n-m|<N / K)=\frac{1}{K} \int_{\mathbb{R}}\left(\frac{n}{m}\right)^{i v} W\left(\frac{v}{K}\right) \mathrm{d} v+O\left(t^{-2021}\right)
$$

for $m, n \asymp N$ (here W is a smooth bump function).

- This follows from integration by parts.
- With this extra term the number of frequencies to detect $n=m$ in Kloosterman's δ-method is $\asymp Q^{2} K$ so the optimal choice is $Q^{2} \asymp N / K$, hence Q is smaller than initially.
- This is the most crucial "trick" in Munshi's paper.
- Nowadays it is understood that conductor lowering is actually built in Kloosterman's δ-method (cf. Aggarwal's paper).
- So write

$$
\begin{aligned}
S(N) & =\sum_{n=1}^{\infty} \lambda(1, n) n^{-i t} V\left(\frac{n}{N}\right) \\
& =\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \lambda(1, n) m^{-i t} V\left(\frac{n}{N}\right) U\left(\frac{m}{N}\right) \delta(n-m) \delta(|n-m|<N / K) \\
& =S^{+}(N)+S^{-}(N)
\end{aligned}
$$

where

$$
\begin{aligned}
S^{ \pm}(N) & =\frac{1}{K} \int_{0}^{1} \int_{\mathbb{R}} W\left(\frac{v}{K}\right) \sum_{1 \leq q \leq Q<a \leq q+Q} \sum_{m=1}^{\star} \frac{1}{a q} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \lambda(1, n) n^{i v} m^{-i(t+v)} \\
& e\left(\pm \frac{(n-m) \bar{a}}{q} \mp \frac{(n-m) x}{a q}\right) V\left(\frac{n}{N}\right) U\left(\frac{m}{N}\right) \mathrm{d} v \mathrm{~d} x .
\end{aligned}
$$

- The treatment of $S^{+}(N)$ and $S^{-}(N)$ is completely analogous.
- For convenience, set

$$
W^{\dagger}(r, s)=\int_{0}^{\infty} W(x) e(-r x) x^{s-1} \mathrm{~d} x
$$

- For m-sum apply Poisson summation formula; conductor of the sum is $\asymp q t$ and length is N so essentially

$$
\begin{aligned}
& \sum_{m=1}^{\infty} m^{-i(t+v)} e\left(-\frac{m \bar{a}}{q}+\frac{m x}{a q}\right) U\left(\frac{m}{N}\right) \\
& \leftrightarrow N^{1-i(t+v)} \sum_{\substack{|m| \ll q t / N \\
m \equiv \bar{a}(q)}} U^{\dagger}\left(\frac{N(m a-x)}{a q}, 1-i(t+v)\right) .
\end{aligned}
$$

- For n-sum apply GL_{3} Voronoi summation formula; conductor of the sum is $\asymp q^{3} K^{3}$ and length is N so essentially

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda(1, n) n^{i v} e\left(\frac{n \bar{a}}{q}\right) e\left(-\frac{n x}{a q}\right) V\left(\frac{n}{N}\right) \\
& \text { ش } \rightsquigarrow N^{\frac{1}{2}+i v} \sum_{n \ll q^{3} K^{3} / N} \frac{\lambda(n, 1)}{n^{1 / 2}} \frac{S(\bar{m}, n ; q)}{q^{1 / 2}} \\
& \cdot \int_{-K}^{K}\left(\frac{n N}{q^{3}}\right)^{-i \tau} \gamma\left(-\frac{1}{2}+i \tau\right) V^{\dagger}\left(\frac{N x}{a q}, \frac{1}{2}-i(\tau-v)\right) \cdot \text { smooth } f n \mathrm{~d} \tau
\end{aligned}
$$

where $\gamma(-1 / 2+i \tau)$ is a ration of Γ-factors.

- So in total (after executing the a-sum) $S(N) \leftrightarrow \nVdash N^{3 / 2-i t} \sum_{q \asymp Q} \sum_{m \ll q t / N}$ $|n| \ll q^{3} K^{3} / N$

$$
\frac{\lambda(n, 1)}{n^{1 / 2}} \cdot \frac{S(\bar{m}, n ; q)}{a q^{3 / 2}} \int_{\mathbb{R}} W(v) \int_{0}^{1} U^{\dagger}\left(\frac{N(m a-x)}{a q}, 1-i(t+K v)\right)
$$

$$
\int_{-K}^{K}\left(\frac{n N}{q^{3}}\right)^{-i \tau} \gamma\left(-\frac{1}{2}+i \tau\right) V^{\dagger}\left(\frac{N x}{a q}, \frac{1}{2}-i \tau+i K v\right) \cdot \text { smooth } f n \mathrm{~d} \tau \mathrm{~d} x \mathrm{~d} v
$$

- In the last display (and in what follows) a denotes the unique inverse of m modulo q in the interval $] Q, q+Q]$.
- We are now lead to analyse various integral transforms.
- By the stationary phase method (here the explicit form of the weight function is useful) we have

$$
\begin{aligned}
U^{\dagger}\left(\frac{N(m a-x)}{a q}\right. & , 1-i(t+K v)) \\
& \asymp \frac{(t+K v)^{1 / 2} a q}{N(x-m a)} \cdot\left(\frac{N(m a-x)}{a q(t+K v)}\right)^{i(t+K v)} \cdot \text { smooth fn }
\end{aligned}
$$

and

$$
\begin{aligned}
V^{\dagger}\left(\frac{N x}{a q}\right. & \left., \frac{1}{2}-i \tau+i K v\right) \\
& \asymp\left(\frac{a q}{N x}\right)^{1 / 2} \cdot\left(\frac{N x}{a q(K v-\tau)}\right)^{i(\tau-K v)} \cdot \text { smooth fn. }
\end{aligned}
$$

- The v-integral can now be evaluated by a stationary phase analysis; it is essentially

$$
\frac{1}{(t+\tau)^{1 / 2} K}\left(-\frac{(t+\tau) q}{N m}\right)^{3 / 2-i(t+\tau)}
$$

- We have now shown that
$S(N)$

$$
\ll N^{3 / 2} \sum_{n \ll Q^{3} K^{3} / N} \frac{\lambda(n, 1)}{n^{1 / 2}} \sum_{q \asymp Q|m| \ll q t / N} \sum_{a q^{3 / 2}} \frac{S(\bar{m}, n ; q)}{-K} g(q, m, \tau) n^{-i \tau} \mathrm{~d} \tau,
$$

where $g(q, m, \tau)$ is essentially

$$
\frac{1}{(t+\tau)^{1 / 2} K}\left(-\frac{(t+\tau) q}{N m}\right)^{3 / 2-i(t+\tau)}\left(\frac{N}{q^{3}}\right)^{-i \tau} \gamma\left(-\frac{1}{2}+i \tau\right) \cdot \text { smooth fn. }
$$

- Estimating trivially at this point gives $S(N) \ll K^{3 / 2} t^{1 / 2} Q^{3 / 2} \asymp N^{3 / 4} K^{3 / 4} t^{1 / 2} \asymp t^{13 / 8} K^{3 / 4}$ so actually K is hurting us here.
- The next step involves an application of Cauchy-Schwarz to get rid of the Fourier coefficients (by using that the Ramanujan-Petersson conjecture holds on average), but this process also squares the amount we need to save.
- At this point we roughly have

$$
S(N) \ll N^{3 / 2}\left(\frac{Q^{3} K^{3}}{N}\right)^{1 / 2}
$$

$$
\left(\sum_{n \asymp K^{3} Q^{3} / N} \frac{1}{n}\left|\sum_{q \asymp Q} \sum_{|m| \ll q t / N} \frac{S(\bar{m}, n ; q)}{a q^{3 / 2}} \int_{-K}^{K} g(q, m, \tau) n^{-i \tau} \mathrm{~d} \tau\right|^{2}\right)^{1 / 2}
$$

- The idea is to open the absolute square, move the n-sum inside and execute it by using the Poisson summation formula.
- So the sum to consider is

$$
\sum_{n \asymp K^{3} Q^{3} / N} \frac{1}{n^{1+i\left(\tau_{1}-\tau_{2}\right)}} S\left(\overline{m_{1}}, n ; q_{1}\right) S\left(\overline{m_{2}}, n ; q_{2}\right) H\left(\frac{n N}{K^{3} Q^{3}}\right)
$$

for some compactly supported smooth weight function H.

- Note that length of the sum is $K^{3} Q^{3} / N \asymp N^{1 / 2} K^{3 / 2}\left(\right.$ as $\left.Q \asymp(N / K)^{1 / 2}\right)$ and the conductor is $Q^{2} K \asymp N$. So the dual length will be $\ll N^{1 / 2} / K^{3 / 2}$.
- Here we are getting help from the parameter K as it makes the dual sum shorter.
- By Poisson summation formula the n-sum is

$$
\frac{1}{q_{1} q_{2}}\left(N^{1 / 2} K^{3 / 2}\right)^{-i\left(\tau_{1}-\tau_{2}\right)} \sum_{n \ll N^{1 / 2} / K^{3 / 2}} \mathfrak{C} \cdot H^{\dagger}\left(\frac{n N^{1 / 2} K^{3 / 2}}{q_{1} q_{2}},-i\left(\tau_{1}-\tau_{2}\right)\right)
$$

- Thus we are reduced to bounding

$$
\sum_{q_{1} \asymp Q} \sum_{\left|m_{1}\right| \ll q t / N} \sum_{q_{2} \asymp Q} \sum_{\left|m_{2}\right| \ll q t / N} \sum_{n \ll N^{1 / 2} / K^{3 / 2}}|\mathfrak{C}| \cdot|\mathfrak{K}|
$$

where

$$
\mathfrak{C}=\sum_{\beta\left(q_{1} q_{2}\right)} S\left(\overline{m_{1}}, \beta ; q_{1}\right) S\left(\overline{m_{2}}, \beta ; q_{2}\right) e\left(\frac{\beta n}{q_{1} q_{2}}\right)
$$

and

$$
\begin{aligned}
& \mathfrak{K}=\int_{\mathbb{R}} \int_{\mathbb{R}} \gamma\left(-\frac{1}{2}+i \tau_{1}\right) \overline{\gamma\left(-\frac{1}{2}+i \tau_{2}\right)} \frac{\left(N \cdot N^{1 / 2} K^{3 / 2}\right)^{-i\left(\tau_{1}-\tau_{2}\right)}}{q_{1}^{-3 i \tau_{1}} q_{2}^{3 i \tau_{2}}} \\
& \cdot I\left(q_{1}, m_{1}, \tau_{1}\right) \overline{I\left(q_{2}, m_{2}, \tau_{2}\right)} H^{\dagger}\left(\frac{n N^{1 / 2} K^{3 / 2}}{q_{1} q_{2}},-i\left(\tau_{1}-\tau_{2}\right)\right) \mathrm{d} \tau_{1} \mathrm{~d} \tau_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
I(q, m, \tau)= & \frac{1}{(t+\tau)^{1 / 2} K}\left(-\frac{(t+\tau)}{N m}\right)^{3 / 2-i(t+\tau)} V\left(-\frac{(t+\tau) q}{N m}\right) \\
& \int_{0}^{1} V\left(\frac{\tau}{K}-\frac{(t+\tau) x}{k m a}\right) \mathrm{d} x .
\end{aligned}
$$

- We have $\mathfrak{C} \ll q_{1} q_{2}\left(q_{1}, q_{2}, n\right)$. Furthermore, if $n=0$ then $\mathfrak{C}=0$ unless $q_{1}=q_{2}$ in which case $\mathfrak{C} \ll q_{1}^{2}\left(q_{1}, m_{1}-m_{2}\right)$. All this is elementary.
- Standard stationary phase analysis shows that

$$
\mathfrak{K} \ll \varepsilon \frac{1}{K^{3 / 2} t} \cdot \frac{N^{1 / 2} t^{\varepsilon}}{\left(|n| N^{1 / 2} K^{3 / 2}\right)^{1 / 2}} \ll \frac{N^{1 / 4} t^{\varepsilon}}{t|n|^{1 / 2} K^{9 / 4}}
$$

when $n \neq 0$ and

$$
\mathfrak{K} \ll \varepsilon \frac{t^{\varepsilon}}{K t}
$$

when $n=0$.

- Explicit calculation shows that the total $n=0$-contribution to $S(N)$ is

$$
\ll \varepsilon K^{1 / 2} N^{1 / 2} t^{1 / 2+\varepsilon} \asymp K^{1 / 2} t^{5 / 4+\varepsilon}
$$

which is satisfactory if $K \ll t^{1 / 2}$.

- Similarly, the total $n \neq 0$-contribution to $S(N)$ is

$$
<_{\varepsilon} \frac{N^{3 / 4} t^{1 / 2+\varepsilon}}{K^{1 / 2}} \asymp \frac{t^{13 / 8+\varepsilon}}{K^{1 / 2}}
$$

which is satisfactory if $K \gg t^{1 / 4}$.

- The optimal choice $K \asymp N^{1 / 4} \asymp t^{3 / 8}$ leads to

$$
S(N) \lll \varepsilon t^{1 / 2+\varepsilon} N^{5 / 8} \ll t^{3 / 2-1 / 16+\varepsilon}
$$

giving the claimed result.

- For smaller N optimisation is little different.

Aggarwal's improvement

- Aggarwal uses the same method as Munshi, but is able to bypass the conductor lowering trick by treating the x-integral more efficiently.
- This simplifies many of the arguments and leads to a better exponent.
- The point is that, as $a \asymp Q, q \leq Q, Q=(N / K)^{1 / 2}$, the x-integral in Kloosterman's δ-method works as a conductor lowering device:

$$
\int_{0}^{1} e\left(\frac{(n-m) x}{a q}\right) \mathrm{d} x \approx \int_{0}^{1} e\left(\frac{(n-m) x}{Q^{2}}\right) \mathrm{d} x \approx \delta(|n-m|<N / K)
$$

when $m, n \asymp N$.

The End

[^0]: ${ }^{1}$ JAMS, 2015
 ${ }^{2}$ Int. J. Number Theory, 2021

