A mean-value theorem for Dirichlet polynomials via the amplification method

Dimitrios Lekkas
Department of Mathematics University College London

February 8, 2021

Table of Contents

(1) Dirichlet Polynomials
(2) Previous talks and today's talk
(3) Mean-value theorems for Dirichlet polynomials
(4) Sketch of the proof

Table of Contents

(1) Dirichlet Polynomials
(2) Previous talks and today's talk
(3) Mean-value theorems for Dirichlet polynomials

4 Sketch of the proof

Definitions for Dirichlet polynomials

Let λ_{n} be a sequence of complex numbers and χ a character modulo q, then we define a Dirichlet polynomial as the sum:

$$
D(s, \lambda, \chi)=\sum_{1 \leq n \leq N} \lambda_{n} \chi(n) n^{-s}
$$

We say that λ_{n} is a Dirichlet convolution of two sequences a_{n} and b_{n} and write $\lambda=\alpha \star \beta$ if $D(s, \lambda, \chi)=D(s, \alpha, \chi) D(s, \beta, \chi)$.
Let us also denote

$$
\|\lambda\|=\sum_{\substack{n \leq N \\(n, q)=1}}\left|\lambda_{n}\right|^{2}
$$

Table of Contents

(1) Dirichlet Polynomials
(2) Previous talks and today's talk

(3) Mean-value theorems for Dirichlet polynomials

4 Sketch of the proof

Seen in previous talks

So far we saw:

- Bounds on Exponential sums $S_{f}(n)=\sum_{n} e(f(n))$ via Weyl differencing
- Bounds on Character sums $S_{H}(\chi)=\sum_{x=N+1}^{N+H} \chi(x)$ due to Burgess Today we'll talk about averages of Dirichlet polynomials $D(s, \lambda, \chi)$, following the paper "A Mean-Value Theorem for Character Sums" by J. Friedlander and H . Iwaniec.

Table of Contents

(1) Dirichlet Polynomials

(2) Previous talks and today's talk
(3) Mean-value theorems for Dirichlet polynomials

4 Sketch of the proof

The Mean-Value Theorem for Dirichlet polynomials

The classical mean value theorem for Dirichlet polynomials asserts:

Theorem

$$
S(\lambda):=\frac{1}{\phi(q)} \sum_{\chi(q)}\left|\sum_{n \leq N} \lambda_{n} \chi(n)\right|^{2}=\left(1+O\left(q^{-1} N\right)\right)\|\lambda\|
$$

This result is best possible when $N<q$. Suppose now that $N>q$ and consider convolutions $\lambda=\alpha \star \beta \star \gamma$, with $N=K L M$ and $\alpha=\left(\alpha_{k}\right)_{k \leq K}, \beta=\left(\beta_{l}\right)_{I \leq L}$ and $\gamma=\left(\gamma_{m}\right)_{m \leq M}$, with α_{k}, β_{l} arbitrary and $\gamma_{m}=1$. Let

$$
S^{*}(\lambda):=\frac{1}{\phi(q)} \sum_{\substack{\chi(q) \\ \chi \neq \chi_{0}}}\left|\sum_{n \leq N} \lambda_{n} \chi(n)\right|^{2}
$$

Then Friedlander and Iwaniec proved:

Theorem 1 (Friedlander,Iwaniec)

$$
S^{*}(\lambda) \ll\|\alpha\|\|\beta\|\|\gamma\|\left(1+q^{-3 / 4}(K+L)^{1 / 4}(K L)^{5 / 4}+q^{-1}(K L)^{7 / 4}\right) q^{\epsilon}
$$

Remarks:

- By using the Mean-Value theorem above and restricting $M \ll q^{1 / 2}$, the term $q^{-1}(K L)^{7 / 4}$ can be dropped.
- From the Polya-Vinogradov Theorem, we have:

$$
\sum_{m \leq M} \chi(m) \ll q^{1 / 2} \log q
$$

so that

$$
\sum_{m \leq M} \chi(m) \ll M^{1-\delta}
$$

for $M>q^{1 / 2+\epsilon}$ and some $\delta=\delta(\epsilon)>0$, and

$$
L(s, \chi) \ll q^{1 / 4} \log q
$$

for $\Re s \geq \frac{1}{2}$,

- while Burgess managed to obtain

$$
\sum_{m \leq M} \chi(m) \ll M^{1-\delta}
$$

for $M>q^{1 / 4+\epsilon}$ and improved Dirichlet series bound, showing

$$
L(s, \chi) \ll q^{3 / 16+\epsilon} .
$$

Theorem 1 yields the following corollaries:

Corollary 1

Let χ be a non-principal character $\bmod p$. For $M>p^{5 / 11+\epsilon}$ we have

$$
\sum_{m \leq M} \chi(m) \ll M^{1-\delta}
$$

where δ and the implied constant may depend on ϵ.

Corollary 2

With χ as above, we have

$$
L(s, \chi) \ll p^{5 / 11+\epsilon} \text { for } \Re s \geq \frac{1}{2}
$$

with an implied constant depending on ϵ and s.

These results give better bounds than the Polya-Vinogradov Theorem. Both Theorem 1 and the Corollaries can be quantitatively sharpened using advanced tools, such as bounds on Kloosterman sums.
The authors focused on proving the above in the special case that:

- q is prime
- $\gamma(m)=f(m)$, where f is a smooth real function on $\left(\frac{1}{2} M, M\right)$
- $f^{(j)} \ll M^{-j}, j=0,1,2, \ldots$

Table of Contents

(1) Dirichlet Polynomials

(2) Previous talks and today's talk
(3) Mean-value theorems for Dirichlet polynomials

4 Sketch of the proof

Sketch of the proof

We can assume that $K, L, M<q$, otherwise use the Mean-Value Theorem. Let

$$
S^{\prime}=\frac{1}{q-1}\left|\sum_{k \leq K} \alpha_{k}\right|^{2}\left|\sum_{I \leq L} \beta_{l}\right|^{2}\left|\sum_{m \leq M} f(m)\right|^{2}
$$

be the sum that gives the contributions from the principal character. Then by opening the squares we have

$$
S=S^{*}+S^{\prime}=\sum_{k_{1} 1_{1} m_{1} \equiv k_{2} l_{2} m_{2}(q)} \cdots \alpha_{k_{1}} \bar{\alpha}_{k_{2}} \beta_{l_{1}} \overline{\beta_{2}} f\left(m_{1}\right) f\left(m_{2}\right) .
$$

Now split S as

$$
S=\sum_{|r|<R} S_{r}
$$

where S_{r} is the sum including terms corresponding to $k_{1} l_{1} m_{1}-k_{2} l_{2} m_{2}=q r$ and $R=K L M q^{-1}$.
For $r=0$ we have the trivial estimate

$$
S_{0} \ll\|\alpha\|\|\beta\|\| \| \gamma q^{\epsilon}
$$

For $r \neq 0$, set $\delta=\left(k_{1} /_{1}, k_{2} l_{2}\right), n_{1}=k_{1} l_{1} \delta^{-1}, n_{2}=k_{2} l_{2} \delta^{-1}$ and $s=r \delta^{-1}$. Hence, $\left(n_{1}, n_{2}\right)=1$ and $n_{1} m_{1}-n_{2} m_{2}=q s$. Equivalently,

$$
m_{1} \equiv q s \bar{n}_{1} \quad \bmod n_{2}
$$

Given δ, n_{1}, n_{2}, s sum over m_{1} and apply Poisson's summation formula to get

$$
\sum_{m_{1}, m_{2}} f\left(m_{1}\right) f\left(m_{2}\right)=\sum_{m_{1} \equiv q s \bar{n}_{1}\left(n_{2}\right)} f(m) f\left(\frac{m n_{1}-q s}{n_{2}}\right)
$$

$$
=\frac{1}{n_{1} n_{2}} \sum_{h} e\left(-h q s \frac{\bar{n}_{1}}{n_{2}}\right) \int f\left(\frac{x}{n_{1}}\right) f\left(\frac{x-q s}{n_{2}}\right) e\left(\frac{h x}{n_{1} n_{2}}\right) d x
$$

For $h=0$ we have the main contribution:

$$
T_{s}=\frac{1}{n_{1} n_{2}} \int f\left(\frac{x}{n_{1}}\right) f\left(\frac{x-q s}{n_{2}}\right) d x
$$

After summing T_{s} over $s \neq 0$ we get

$$
\begin{align*}
\sum_{s \neq 0} T_{s} & =\frac{1}{n_{1} n_{2}} \int f\left(\frac{x}{n_{1}}\right) \sum_{s \neq 0} f\left(\frac{x-q s}{n_{2}}\right) d x \\
& =\frac{1}{n_{1} n_{2}} \int f\left(\frac{x}{n_{1}}\right)\left(\int f\left(\frac{x-q s}{n_{2}}\right)+O(1)\right) d x \tag{1}\\
= & \frac{1}{q}\left(\int f(x) d x\right)^{2}+O\left(\frac{M}{n_{2}}\right)
\end{align*}
$$

By symmetry the error term can be shown to be $O\left(\frac{M}{n_{1}}\right)$, hence at the end we can have $O\left(\frac{M}{n_{1}+n_{2}}\right)$.

We conclude that the contribution to the sum S from these terms is

$$
\begin{align*}
& \frac{1}{q} \sum_{\substack{k_{1}, l_{1} \\
k_{2}, l_{2}}} \alpha_{k_{1}} \bar{\alpha}_{k_{2}} \beta_{l_{1}} \bar{\beta}_{l_{2}}\left(\int f(x) d x\right)^{2}+O\left(M \sum_{\substack{k_{1}, l_{1} \\
k_{2}, l_{2}}} \frac{\left|\alpha_{k_{1}} \alpha_{k_{2}} \beta_{l_{1}} \beta_{l_{2}}\right|\left(k_{1} l_{1}, k_{2} l_{2}\right)}{k_{1} l_{1}+k_{2} l_{2}}\right) \\
& =\frac{1}{q} \sum_{\substack{k_{1}, l_{1} \\
k_{2}, l_{2}}} \alpha_{k_{1}} \bar{\alpha}_{k_{2}} \beta_{l_{1}} \bar{\beta}_{l_{2}}\left(\sum_{m} f(m)+O(1)\right)^{2}+O\left(M\|\alpha\| \beta \| q^{\epsilon}\right) \\
& =S^{\prime}+O\left(\|\alpha\|\|\beta\|\|\gamma\|\left(K L q^{-1}+q^{\epsilon}\right)\right)
\end{align*}
$$

Thus the terms with $h=0$ cancel the main term S^{\prime} apart from admissible error terms.

For the terms $h \neq 0$, we truncate and integrate by parts j times:

$$
\begin{align*}
\int f\left(\frac{x}{n_{1}}\right) f\left(\frac{x-q s}{n_{2}}\right) e\left(\frac{h x}{n_{1} n_{2}}\right) d x & \ll\left(\frac{n_{1} n_{2}}{h}\right)^{j} \int\left|\frac{d^{j}(f f)}{d x^{j}}\right| d x \\
& \ll\left(\frac{n_{1} n_{2}}{h}\right)^{j}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)^{j} M^{-j} M \tag{3}\\
& \ll\left(\frac{n_{1}+n_{2}}{h M}\right)^{j} M \ll\left(\frac{K L}{\delta h M}\right)^{j} M
\end{align*}
$$

by Leibniz' Rule and the bounds on $f^{(j)}$. Hence, if $|h|>H \doteq\left(\frac{K L}{M \delta}\right) q^{\epsilon}$ then the integral is $\ll(\delta h q)^{-2}$ and these terms contribute a negligible amount to S.

The remaining terms satisfy $O<|h|<H$ and contribute to S the sum $V=\sum_{0<\delta<R} V_{\delta}$, where

$$
\begin{align*}
V_{\delta} & =\sum_{\substack{O<|h|<H \\
0<s<\frac{R}{\delta}}} \sum_{\left.k_{1} l_{1}, k_{2} l_{2}\right)=\delta} \alpha_{k_{1}} \bar{\alpha}_{k_{2}} \beta_{l_{1}} \bar{\beta}_{l_{2}} e\left(-h q s \frac{\overline{k_{1}} \bar{I}_{1} / \bar{\delta}}{k_{2} l_{2} / \delta}\right) \\
& \times \int f\left(\frac{x \delta}{k_{1} l_{1}}\right) f\left(\frac{x \delta-q \delta s}{k_{2} l_{2}}\right) e\left(\frac{h x \delta^{2}}{k_{1} l_{1} k_{2} l_{2}}\right) \frac{\delta^{2}}{k_{1} l_{1} k_{2} l_{2}} d x . \tag{4}
\end{align*}
$$

By using the properties of f one can use

$$
\int|\hat{f}(y)| d y \ll \int_{-\infty}^{\infty} \min \left(M, \frac{1}{y^{2} M}\right) d y \ll 1
$$

and Cauchy-Schwarz to show
$V_{\delta} \ll \frac{\delta_{\tau}(\delta) M}{K L}\left(\frac{R H}{\delta}\right)^{1 / 2}\|\alpha\|\|\beta\|\left(\frac{K L}{\delta^{3}} R H K(K L+R H K)\left(K L+L^{2}\right)\right)^{1 / 4} q^{\epsilon}$.

Substituting for R and H and summing over δ we get

$$
V \ll\|\alpha\|\|\beta\|\|\gamma\|(K L)^{5 / 4} q^{-1+\epsilon}\left(q+K^{2} L\right)^{1 / 4}(K+L)^{1 / 4} .
$$

By the symmetry of the problem one can replace $K^{2} L$ by $\min \left(K^{2} L, K L^{2}\right)$ and this is bounded by $\frac{(K L)^{2}}{K+L}$. This gives Theorem 1.

Proof of Corollary 1

To prove Corollary 1 take $q=p$ and $\alpha_{k}=\bar{\chi}(k), \beta_{I}=\bar{\chi}(I)(k \leq K, I \leq L)$. The contribution of $\chi \bmod p$ to S^{*} is bounded below by

$$
\frac{(K L)^{2}}{p}\left|\sum_{m \leq M} \chi(m)\right|^{2}
$$

The contribution to S^{*} form each other non-principal character $\psi \bmod p$ is greater than or equal to 0 .
By choosing $K=L=p^{3 / 11}$ and using Theorem 1 , we have

$$
\left|\sum_{m \leq M} \chi(m)\right| \ll M^{1 / 2} p^{5 / 22+\epsilon}
$$

