Burgess bounds: Character Sums and Dirichlet L-functions

Marios Voskou

January 27, 2021

References

1 : Burgess, D.A. (1957), The distribution of quadratic residues and non-residues. Mathematika, 4: 106-112.

2 : Burgess, D.A. (1962), On Character Sums and Primitive Roots \dagger. Proceedings of the London Mathematical Society, s3-12: 179-192.

3 : Burgess, D.A. (1962), On Character Sums and L-Seriest. Proceedings of the London Mathematical Society, s3-12: 193-206.

4 : Burgess, D.A. (1963), On Character Sums and L-Series. II. Proceedings of the London Mathematical Society, s3-13: 524-536.

Introduction

For a fixed non-principal character $\chi \bmod q$ we define:

$$
S_{H}(N):=\sum_{n=N+1}^{n=N+H} \chi(n),
$$

where N and H positive integers.

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where $s=\sigma+$ it will be a fixed complex number with $0<\sigma<1$.
We are interested in:

- Bounds for $S_{H}(N)$ in terms of H and/or q.
- Using them to derive (sub-convexity) bounds for the L-series $|L(s, \chi)|$ with respect to q (via partial summation).

From Characters Sums to L-series

- By partial summation:

$$
L(s, \chi)=\sum(S(n))\left(1 / n^{s}-1 /(n+1)^{s}\right) \ll \sum|S(n)| n^{-1-\sigma}
$$

where $S(n)=S_{n}(0)$.

- Character bounds available:
- In n, the trivial bound:

$$
|S(n)| \leq n
$$

- In q, Pólya-Vinogradov:

$$
S(n) \ll q^{1 / 2} \log q
$$

- Using those optimally:

$$
L(s, \chi) \ll \sum|S(n)| n^{-1-\sigma} \ll\left(q^{1 / 2} \log q\right)^{1-\sigma}
$$

From Characters Sums to L-series

- Note:
- n-bound is better for small n 's.
- q-bound is better for large n's.
- Potential for better results using mixed bounds for middle-sized n's.
- In that end, we write:

$$
\begin{aligned}
L(s, \chi) & \ll \sum|S(n)| n^{-1-\sigma} \\
& =\sum_{n \leq N}+\sum_{N<n<M}+\sum_{n \geq M}
\end{aligned}
$$

- First term is bounded trivially by $N^{1-\sigma}$. Last term is, using Pólya-Vinogradov, $O\left(M^{-\sigma} q^{1 / 2} \log q\right)$.

Goals: Chatacter Sums

We will follow the work of Burgess on such mixed bounds. In particular, for $q=p$ prime:

Theorem 1 (Burgess, 1962)

For N, H, r positive integers:

$$
\left|S_{H}(N)\right| \ll H^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p
$$

with the implied constant being absolute.
This can be generalized to:

Theorem 2 (Burgess, 1962)

For N, H, r positive integers (r fixed), and given that q is cube-free or $r=2$:

$$
\left|S_{H}(N)\right| \ll H^{1-1 / r} q^{(r+1) / 4 r^{2}+\epsilon}
$$

with the implied constant depending on r (and ϵ).

Goals: L-series

Taking $r=2$ and applying partial summation in the sense discussed above:

Theorem 3 (Burgess, 1962)

Let $s=\sigma+$ it be a fixes complex number with $0<\sigma<1$. Then, for any fixed $\epsilon>0$:

$$
|L(s, \chi)| \ll \begin{cases}q^{\frac{4-5 \sigma+\epsilon}{8}} & 0<\sigma \leq \frac{1}{2} \\ q^{\frac{3-3 \sigma+\epsilon}{8}} & \frac{1}{2} \leq \sigma<1\end{cases}
$$

In particular, for $\sigma=\frac{1}{2}$:

$$
\left|L\left(\frac{1}{2}+i t, \chi\right)\right| \ll q^{\frac{3}{16}+\epsilon}
$$

Sketch of Proof

- Idea:

- Relate $S_{H}(N)$ to a sum of shorter sums $S_{h}(x)$, then use Holder Inequality to get a sum of the form

$$
\sum_{x}\left|S_{h}(x)\right|^{2 r}
$$

over a controlled number of x 's.

- How: $\{N+1, \cdots, N+H\}$ contains copys of $\{1, \cdots, h\}$ (as APs)
- Motivation:
- For small h, can think of $\left|S_{h}(x)\right|^{2 r}$, after expansion, as a sum of terms of the form $\chi(f(n))$, where f runs overs a family of polynomials that reduce fully over \mathbb{Z}.
- For such polynomials, sums $\sum_{n=1}^{p} \chi(f(n))$ can be bounded naturally using work of H.Hasse and A.Weil on L-functions belonging to algebraic function fields.

$\sum \chi(f):$ Goal

- The first step will be to establish the necessary bounds for

$$
\sum_{n=1}^{q} \chi(f(n))
$$

- We will start with the case $q=p$ prime.

Lemma 1.1

Let $d=\operatorname{ord}(\chi)$.
Take $f(n)=\left(n-a_{1}\right)^{r_{1}} \cdots\left(n-a_{t}\right)^{r_{t}}$, where all the a_{i} 's are distinct $\bmod p$, $0<r_{i}<d$, and degf $=\nu d$ where ν is an integer.
We will show that:

$$
\left|\sum_{n=1}^{p} \chi(f(n))\right| \leq(t-2) p^{1 / 2}+1
$$

$\sum \chi(f)$

Proof (of Lemma 1.1)

- Let $K=\mathbb{F}_{p}(x)$ be the field of rational functions on \mathbb{F}_{p}.
- Recall:
- Divisors of K : formal products of places/"prime divisors".
- All places of K are induced from $v_{q(x)}$ (for q irreducible) and v_{∞}.
- To an element g of K, we attach the divisor

$$
(g)^{\prime}=\prod_{\mathfrak{p} \text { prime }} \mathfrak{p}^{v_{\mathfrak{p}}(g) \quad(\bmod d)}
$$

- For divisors \mathfrak{a} of K,define:

$$
\chi(\mathfrak{a}):= \begin{cases}\chi\left(N_{\mathfrak{a}}(f)\right) & \mathfrak{a} \text { "coprime" to }(f)^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

where $N_{\mathfrak{a}}(-)$ is the norm in the residue-class ring modulo \mathfrak{a}.

- The corresponding L-function is:

$$
L(s, \chi)=\sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{R(\mathfrak{a})^{s}}=\prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{R(\mathfrak{p})^{s}}\right)^{-1}
$$

, where \mathfrak{a} runs overs all the divisors of K and \mathfrak{p} runs overs the prime divisors only. Here $R(\mathfrak{a})$ is the size of the corresponding residue-class ring.

- Let σ be the coefficient of p^{-s} in $L(s, \chi)$, so that

$$
\sigma=\sum_{\mathfrak{p}}^{\prime} \chi(\mathfrak{p})
$$

where \sum^{\prime} indicates summation over prime divisors of degree 1 in K (as those give a residue-class ring isomorphic to \mathbb{F}_{p})

$\sum \chi(f):$ H. Hasse

- In our case, degree 1 prime divisors \mathfrak{p} (except \mathfrak{p}_{∞}) correspond to polynomials $x-n$ where $n \in \mathbb{F}_{p}$.
- In particular,

$$
\chi(\mathfrak{p})=\chi\left(N_{\mathfrak{p}}(f)\right)=\chi(f(n))
$$

- So:

$$
\left|\sum_{n=1}^{p} \chi(f(n))\right|=\left|\sum_{\mathfrak{p} \neq \mathfrak{p}_{\infty}}^{\prime} \chi(\mathfrak{p})\right| \leq 1+|\sigma|
$$

- Hasse (1935): $p^{(t-2) s} L(s, \chi)$ is a polynomial of degree $t-2$ in terms of p^{s}.
- Hence: if w_{1}, \ldots, w_{t-2} its roots we get

$$
\sigma=-\sum_{i=1}^{t-2} w_{i}
$$

$\sum \chi(f):$ A. Weil

- Let $Z=K(y)$ the algebraic extension of K defined by $y^{d}=f(x)$.
- $L(s, \chi)$ divides the zeta function $\zeta_{Z}(s)$.
- Weil (1945): RH for $\zeta_{Z}(s)$.
- Therefore: $\left|w_{i}\right|=p^{1 / 2}$ for every i.
- Hence:

$$
\left|\sum_{n=1}^{p} \chi(f(n))\right| \leq 1+|\sigma|=1+\left|\sum_{i=1}^{t-2} w_{i}\right| \leq 1+(t-2) p^{1 / 2}
$$

$\sum \chi(f): q$ composite

We will now derive the following generalization:

Lemma 1.2

Assume that either q is cube-free or $r=2$. Assume further that χ is a proper character modulo q.
Let

$$
f(n)=\left(n-a_{1}\right) \cdots\left(n-a_{r}\right)\left(n-a_{r+1}\right)^{\phi(q)-1} \cdots\left(n-a_{2 r}\right)^{\phi(q)-1}
$$

, where $r \geq 2$ and at least $r+1$ out of the a_{i} 's are distinct. Let

$$
A_{i}:=\prod_{j \neq i}\left(a_{i}-a_{j}\right)
$$

For some non-trivial A_{i},

$$
\left|\sum_{n=1}^{q} \chi(f(n))\right| \leq(4 r)^{\omega(q)}\left(q, A_{i}\right) q^{1 / 2}
$$

$\sum \chi(f): q$ composite

Set-up of Proof:

- Write

$$
\sigma(m):=\sum_{n=1}^{m} \chi(f(n))
$$

- $\sigma(m)$ multiplicative, so for $\sigma(q)$ enough to consider $\sigma\left(p^{a}\right)$ for p^{a} dividing q.
(Note: this is where $(4 r)^{\omega(q)}$ comes from)

$\sum \chi(f): q$ composite

(Sketch of) Proof of Lemma 1.2

- Work with $\sigma\left(p^{a}\right)$ where $p^{a} \mid q$.
- Main idea: reduce modulo $p^{\gamma}\left(\gamma=\left\lfloor\frac{1}{2} a\right\rfloor\right)$ and group the equivalent terms.
- Noting that

$$
f(x)=f\left(x_{0}+p^{\gamma} y\right) \equiv f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) p^{\gamma} y+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(p^{\gamma} y\right)^{2}\left(\bmod p^{a}\right)
$$

we can reduce each group of terms to a sum of the form

$$
\sum_{n} e\left(\frac{A n+B n^{2}}{p}\right)= \begin{cases}p^{\frac{1}{2}} & \text { if } p \nmid B \\ 0 & \text { if } p \mid B, p \nmid A \\ p & \text { if } p|B, p| A\end{cases}
$$

- Cases determined by whether some prime powers divide certain polynomials.
- Bound number of occurrences of each case (this is where we use our assumptions for q).
- Combine. Done.
- From now on: assume $q=p$ prime.
- General case essentially the same from this point on.
- In the way discussed we can get:

Lemma 2

For any positive integers r and h,

$$
\sum_{n=1}^{p}\left|S_{h}(n)\right|^{2 r}<(4 r)^{r+1} p h^{r}+2 r p^{\frac{1}{2}} h^{2 r}
$$

Proof of Lemma 2

- We have:

$$
\begin{aligned}
& \sum_{n=1}^{p}\left|S_{h}(n)\right|^{2 r} \\
= & \sum_{n=1}^{p} \sum_{m_{1}, . ., m_{2 r}=1}^{h} \chi\left(\left(n+m_{1}\right) \cdots\left(n+m_{r}\right)\right) \bar{\chi}\left(\left(n+m_{r+1}\right) \cdots\left(n+m_{2 r}\right)\right) \\
= & \sum_{m_{1}, . ., m_{2 r}=1}^{h} \sum_{n=1}^{p} \chi\left(\left(n+m_{1}\right) \cdots\left(n+m_{r}\right)\left(n+m_{r+1}\right)^{p-2} \cdots\left(n+m_{2 r}\right)^{p-2}\right)
\end{aligned}
$$

- Reduce modulo p and exponents modulo d (ignoring for now the effect of term where the polynomial vanishes).
- Most of the polynomials are now in the form discussed, except for perfect d powers (recall $d=\operatorname{ord}(\chi))$.

Proof of Lemma 2 (cont.)

- Fortunately: at most $(4 r)^{r+1} h^{r}$ such exceptions.
- They give total contribution of $p(4 r)^{r+1} h^{r}$.
- For a polynomial that indeed satisfies our conditions, and having t distinct roots after the reduction, its sum contributes at most

$$
2 r-t+(t-2) p^{1 / 2}+1 \leq 2 r p^{1 / 2}
$$

(where $2 r-t$ is there to correct the terms lost in the reduction).

- The number of such polynomials can be bounded trivially by $h^{2 r}$.
- This gives a total contribution of at most $2 r p^{\frac{1}{2}} h^{2 r}$
- The result follows by combining the two contributions.

Applying Holder's Inequality

- For a set $A \in\{1,2, \cdots, p\}$, we have:

$$
\sum_{n=1}^{p}\left|S_{h}(n)\right|^{2 r} \geq \sum_{n \in A}\left|S_{h}(n)\right|^{2 r} \geq\left(\sum_{n \in A}\left|S_{h}(n)\right|\right)^{2 r}\left(\sum_{n \in A} 1\right)^{1-2 r}
$$

- Note: Second factor larger for smaller \#A .
(so full A not necessarily optimal)
- Our goal for now on: Relate $S_{H}(N)$ to a sum

$$
\sum_{n \in A}\left|S_{h}(n)\right|
$$

in an efficient way.

Heuristics

- Want to say:

$$
\begin{aligned}
S_{H}(N) & \approx \frac{1}{h} \sum_{m=1}^{H} S_{h}\left(\frac{N+m}{d}\right) \quad\binom{\text { identifying copies of }[1 . . h]}{\text { in }\{N+1, \ldots, N+H\} \text { as } A P s .} \\
& \ll \frac{1}{H} \sum_{d=1}^{H / h} \sum_{m=1}^{h}\left|S_{h}\left(\frac{N+m}{d}\right)\right| \\
& \ll \frac{1}{H}\left(\frac{H^{2}}{h}\right)^{1-\frac{1}{2 r}}\left((4 r)^{r+1} p h^{r}+2 r p^{\frac{1}{2}} h^{2 r}\right)^{1 / 2 r} \\
& \ll H^{1-1 / r} p^{(r+1) / 4 r^{2}} \quad\left(\text { taking } h \approx p^{1 / 2 r}\right)
\end{aligned}
$$

- Note: here $\# A \approx \frac{H^{2}}{h}$
- Unfortunately: errors cost too much.
- We'll try to make this more efficient.

Introducing Intervals

- First Step from above:

$$
S_{H}(N) \approx \frac{1}{h} \sum_{m=1}^{H} S_{h}\left(\frac{N+m}{d}\right)
$$

Idea:

- Associate $S_{H}(N)$ to sums over disjoint intervals.
(appearing as affine transformations of APs in $\{N+1, \cdots, N+H\}$).
- Apply First Step of the heuristic argument in each interval (for $d=1$).
- Choose the intervals so that we have control over the errors.
- Take A to be the union of the intervals (disjointedness guarantees that this makes sense).

Making Sense of the Heuristics

Consider an interval $I=\left\{n_{1}+1, \cdots, n_{2}\right\}$. (some integers n_{1}, n_{2}) We apply heuristic argument on the interval, for $d=1$:

- Define

$$
\phi_{i}(m):=\sum_{y=1}^{m} \chi\left(n_{i}+y\right), \quad i=1,2
$$

- We have that, for any given positive integer m,

$$
\sum_{n \in I} \chi(n)=\sum_{n \in I} \chi(n+m)+\phi_{1}(m)-\phi_{2}(m)
$$

- For any given positive integer h :

$$
\sum_{n \in I} \chi(n)=\frac{1}{h} \sum_{m=1}^{h} \sum_{n \in I} \chi(n)
$$

Making Sense of the Heuristics

- Consider a set \mathcal{I} of disjoint intervals.
- Let $A^{\prime}=\cup \mathcal{I}$.
- Combine last slide's results:

$$
\begin{aligned}
h \times \sum_{l \in \mathcal{I}^{\prime}}\left|\sum_{n \in I} \chi(n)\right| & =\sum_{\mathcal{I}^{\prime}}\left|\sum_{m=1}^{h} \sum_{n \in I} \chi(n)\right| \\
& \leq \sum_{n \in A^{\prime}}\left|S_{h}(n)\right|+\sum_{i=1,2} \sum_{\mathcal{I}^{\prime}}\left|\sum_{m=1}^{h} \phi_{i}(m)\right|
\end{aligned}
$$

Making Sense of the Heuristics

$$
h \times \sum_{l \in \mathcal{I}^{\prime}}\left|\sum_{n \in I} \chi(n)\right| \leq \sum_{n \in A^{\prime}}\left|S_{h}(n)\right|+\sum_{i=1,2} \sum_{\mathcal{I}^{\prime}}\left|\sum_{m=1}^{h} \phi_{i}(m)\right|
$$

- First term: " main term" - denote S_{0}.
- Other two: "error terms" - denote $S_{1,2}$.

Error Control

Suppose that S_{0} is not the largest out of the three.
We can show the following:

Lemma 3

Suppose that no element of \mathcal{I} has less than h elements.
Suppose further that

$$
\max \left\{S_{1}, S_{2}\right\} \geq 2 e h \times \# \mathcal{I}
$$

Then: For some M of the form $M=h_{0} \times \# \mathcal{I} \leq h \times \# \mathcal{I}$ there exist a set $A^{\prime \prime}$ of M distinct integers for which:

$$
\sum_{n \in A^{\prime \prime}}\left|S_{h}(n)\right|=\sum_{n \in A^{\prime \prime}}\left|\sum_{m=1}^{h} \chi(n+m)\right| \geq \frac{h_{0}}{e h \log _{2}(h)} \times \max \left\{S_{1}, S_{2}\right\}
$$

APs as Affine Transformations of Intervals

- Left to Do: Find appropriate family of intervals \mathcal{I}.
- Write $\eta:=\left|S_{H}(N)\right|$.
- Can assume that $\eta>1$ and $0 \leq N<N+H<p$ (otherwise trivial).
- Intervals in range as affine transformations:

We can see that for any positive integer $w<p$,

$$
\eta=\left|\sum_{n=N+1}^{N+H} \chi(n)\right| \leq \sum_{t=0}^{w-1 \mid} \sum_{\substack{n=N+1 \\ n \equiv-t p(\bmod w)}}^{N+H} \chi(n) \mid
$$

APs as Affine Transformations of Intervals

- Write $I(w, t):=\left\{z \in \mathbb{Z} \left\lvert\, \frac{N+1+t p}{w} \leq z \leq \frac{N+H+t p}{w}\right.\right\}$,
- Note that for $n=-t p+w z$ we have
$\chi(n)=\chi(-t p+w z)=\chi(w) \chi(z)$
- Rewrite above as:

$$
\eta \leq \sum_{t=0}^{w-1}\left|\sum_{z \in I(w, t)} \chi(z)\right|
$$

- We can then take average for various w, and have a sum over various intervals $I(w, t)$.

Chosing the Right Intervals

- Want intervals disjoint.
- Observation:

For fixed coprime w, w^{\prime} (wlog $w>w^{\prime}$), by comparing endpoints:
If $2 H w<p$, there is at most one pair $\left(t, t^{\prime}\right)$ with $I(w, t)$ and $I\left(w^{\prime}, t^{\prime}\right)$ not disjoint.

- Under this assumption, for a fixed set W of w 's taking a set $T(w)$ for each w all values of t that do not appear in a pair, we get:

Lemma 4

Suppose $w_{1}<w<w_{2}$ for every $w \in W$.
Suppose $2 H w_{2}<p$.
Then, for every w in W, we can associate a set $T(w)$ of integers t with $0 \leq t<w$ with $\# T(w) \geq w-Q$, so that all the resulting $I(w, t)^{\prime} s$ are disjoint.

Choosing the Right Intervals

Remark

Regarding our selection above, we can also note the following:
If $N(w, t)$ is the number of (other) intervals $I\left(w^{\prime}, t^{\prime}\right)$ that intersect $I(w, t)$ then, for every $w \in W$:

$$
\sum_{t \notin T(w)} N(w, t) \leq Q
$$

- We take W to be a set of Q primes.
- Take also $w_{2}=2 w_{1}<\frac{1}{2} \mathrm{pH}^{-1}$.
- Length of $I(w, t)$ is $\frac{H}{w}$ so control over range of w means control over range of lengths.

Choosing the Right Intervals

We have:

$$
\begin{aligned}
Q \eta & \leq \sum_{w \in W} \sum_{t=0}^{w-1}\left|\sum_{z \in I(w, t)} \chi(z)\right| \\
& \leq \sum_{w \in W} \sum_{t \in T(w)}\left|\sum_{z \in I(w, t)} \chi(z)\right|+\sum_{w \in W} \sum_{t \notin T(w)}\left|\sum_{z \in I(w, t)} \chi(z)\right|
\end{aligned}
$$

We have 2 cases.

Either:

$$
\sum_{w \in W} \sum_{t \in T(w)}\left|\sum_{z \in I(w, t)} \chi(z)\right| \geq \frac{1}{2} \eta Q
$$

or:

$$
\sum_{w \in W} \sum_{t \notin T(w)}\left|\sum_{z \in I(w, t)} \chi(z)\right| \geq \frac{1}{2} \eta Q
$$

Case I: Main Term Wins

In the first case:

- Total number of $I(w, t)$'s is, by the definition of $T(w)$'s,

$$
\# \leq Q w_{2}
$$

- Therefore: for any M, there is a collection \mathcal{I} of I 's, of size M s.t:

$$
\sum_{I(w, t) \in \mathcal{I}}\left|\sum_{z \in I(w, t)} \chi(z)\right| \geq \frac{\eta Q}{2} \times \frac{M}{Q w_{2}}=\frac{\eta M}{2 w_{2}}
$$

Case II: Error Term Wins

In the second case:

$$
\sum_{w \in W} \sum_{t \notin T(w)}\left|\sum_{z \in I(w, t)} \chi(z)\right| \geq \frac{1}{2} \eta Q
$$

Recall the remark from the last lemma:
For every $w \in W$:

$$
\sum_{t \notin T(w)} N(w, t) \leq Q
$$

Using that, we can show:
There is a $\mathcal{I} \subset\{I(w, t) \mid t \notin T(w)\}$ and a constant $C \geq 1$ with

$$
\# \mathcal{I} \leq 10 Q^{2} C^{-2} \quad \text { and } \quad \sum_{I(w, t) \in \mathcal{I}}\left|\sum_{z \in I(w, t)} \chi(z)\right| \geq \frac{\frac{1}{2} \eta Q}{50 C \log Q}
$$

Conclusion

Combining our estimates, and optimizing the parameters Q, M, h, w_{1} we get the required result:

Theorem 1 (Burgess, 1962)

For N, H, r positive integers:

$$
\left|S_{H}(N)\right| \ll H^{1-1 / r} p^{(r+1) / 4 r^{2}} \log p
$$

with the implied constant being absolute.

