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Introduction

For a fixed non-principal character χ mod q we define:

SH(N) :=
n=N+H∑
n=N+1

χ(n),

where N and H positive integers.

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

where s = σ + it will be a fixed complex number with 0 < σ < 1.

We are interested in:

Bounds for SH(N) in terms of H and/or q.

Using them to derive (sub-convexity) bounds for the L-series |L(s, χ)|
with respect to q (via partial summation).
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From Characters Sums to L-series

By partial summation:

L(s, χ) =
∑

(S(n))(1/ns − 1/(n + 1)s)�
∑
|S(n)|n−1−σ

where S(n) = Sn(0).

Character bounds available:

In n, the trivial bound:
|S(n)| ≤ n

In q, Pólya-Vinogradov:
S(n)� q1/2 log q

Using those optimally:

L(s, χ)�
∑
|S(n)|n−1−σ � (q1/2 log q)1−σ
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From Characters Sums to L-series

Note:

n-bound is better for small n’s.
q-bound is better for large n’s.

Potential for better results using mixed bounds for middle-sized n’s.

In that end, we write:

L(s, χ) �
∑
|S(n)|n−1−σ

=
∑
n≤N

+
∑

N<n<M

+
∑
n≥M

First term is bounded trivially by N1−σ. Last term is, using
Pólya-Vinogradov, O(M−σq1/2 log q).
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Goals: Chatacter Sums

We will follow the work of Burgess on such mixed bounds.
In particular, for q = p prime:

Theorem 1 (Burgess, 1962)

For N,H, r positive integers:

|SH(N)| � H1−1/rp(r+1)/4r2
log p

with the implied constant being absolute.

This can be generalized to:

Theorem 2 (Burgess, 1962)

For N,H, r positive integers (r fixed), and given that q is cube-free or
r = 2:

|SH(N)| � H1−1/rq(r+1)/4r2+ε

with the implied constant depending on r (and ε).
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Goals: L-series

Taking r = 2 and applying partial summation in the sense discussed above:

Theorem 3 (Burgess, 1962)

Let s = σ + it be a fixes complex number with 0 < σ < 1. Then, for any
fixed ε > 0:

|L(s, χ)| �

{
q

4−5σ+ε
8 0 < σ ≤ 1

2

q
3−3σ+ε

8
1
2 ≤ σ < 1

In particular, for σ = 1
2 : ∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣� q
3

16
+ε
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Sketch of Proof

Idea:

Relate SH(N) to a sum of shorter sums Sh(x), then use Holder Inequality to
get a sum of the form ∑

x

|Sh(x)|2r

over a controlled number of x ’s.

How: {N + 1, · · · ,N + H} contains copys of {1, · · · , h} (as APs)

Motivation:

For small h, can think of |Sh(x)|2r , after expansion, as a sum of terms of the
form χ(f (n)), where f runs overs a family of polynomials that reduce fully
over Z.

For such polynomials, sums
∑p

n=1 χ(f (n)) can be bounded naturally using
work of H.Hasse and A.Weil on L-functions belonging to algebraic function
fields.
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∑
χ(f ): Goal

The first step will be to establish the necessary bounds for

q∑
n=1

χ(f (n))

.

We will start with the case q = p prime.

Lemma 1.1

Let d = ord(χ).
Take f (n) = (n − a1)r1 · · · (n − at)

rt , where all the ai ’s are distinct mod p,
0 < ri < d , and degf = νd where ν is an integer.
We will show that: ∣∣∣∣∣

p∑
n=1

χ(f (n))

∣∣∣∣∣ ≤ (t − 2)p1/2 + 1
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∑
χ(f )

Proof (of Lemma 1.1)

Let K = Fp(x) be the field of rational functions on Fp.

Recall:
Divisors of K : formal products of places/”prime divisors”.
All places of K are induced from vq(x) (for q irreducible) and v∞.

To an element g of K , we attach the divisor

(g)′ =
∏

p prime

pvp(g) (mod d)

For divisors a of K ,define:

χ(a) :=

{
χ (Na (f )) a ”coprime” to (f )′

0 otherwise

where Na(−) is the norm in the residue-class ring modulo a.
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∑
χ(f )

The corresponding L-function is:

L(s, χ) =
∑
a

χ(a)

R(a)s
=
∏
p

(
1− χ(p)

R(p)s

)−1

, where a runs overs all the divisors of K and p runs overs the prime
divisors only. Here R(a) is the size of the corresponding residue-class
ring.

Let σ be the coefficient of p−s in L(s, χ), so that

σ =
′∑
p

χ(p)

where
∑′ indicates summation over prime divisors of degree 1 in K

(as those give a residue-class ring isomorphic to Fp)
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∑
χ(f ): H. Hasse

In our case, degree 1 prime divisors p (except p∞) correspond to
polynomials x − n where n ∈ Fp.

In particular,
χ(p) = χ (Np(f )) = χ(f (n))

So: ∣∣∣∣∣
p∑

n=1

χ(f (n))

∣∣∣∣∣ =

∣∣∣∣∣∣
′∑

p6=p∞

χ(p)

∣∣∣∣∣∣ ≤ 1 + |σ|

Hasse (1935): p(t−2)sL(s, χ) is a polynomial of degree t − 2 in
terms of ps .

Hence: if w1, ...,wt−2 its roots we get

σ = −
t−2∑
i=1

wi
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∑
χ(f ): A. Weil

Let Z = K (y) the algebraic extension of K defined by yd = f (x).

L(s, χ) divides the zeta function ζZ (s).

Weil (1945): RH for ζZ (s).

Therefore: |wi | = p1/2 for every i .

Hence:∣∣∣∣∣
p∑

n=1

χ(f (n))

∣∣∣∣∣ ≤ 1 + |σ| = 1 +

∣∣∣∣∣
t−2∑
i=1

wi

∣∣∣∣∣ ≤ 1 + (t − 2)p1/2
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∑
χ(f ): q composite

We will now derive the following generalization:

Lemma 1.2
Assume that either q is cube-free or r = 2. Assume further that χ is a proper
character modulo q.
Let

f (n) = (n − a1) · · · (n − ar )(n − ar+1)φ(q)−1 · · · (n − a2r )
φ(q)−1

, where r ≥ 2 and at least r + 1 out of the ai ’s are distinct. Let

Ai :=
∏
j 6=i

(ai − aj)

For some non-trivial Ai ,∣∣∣∣∣
q∑

n=1

χ(f (n))

∣∣∣∣∣ ≤ (4r)ω(q)(q,Ai )q
1/2
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∑
χ(f ): q composite

Set-up of Proof:

Write

σ(m) :=
m∑

n=1

χ(f (n))

σ(m) multiplicative, so for σ(q) enough to consider σ(pa) for pa

dividing q.

(Note: this is where (4r)ω(q) comes from)
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∑
χ(f ): q composite

(Sketch of) Proof of Lemma 1.2

Work with σ(pa) where pa|q.

Main idea: reduce modulo pγ (γ = b 1
2
ac) and group the equivalent terms.

Noting that

f (x) = f (x0 + pγy) ≡ f (x0) + f ′(x0)pγy +
f ′′(x0)

2!
(pγy)2 (mod pa),

we can reduce each group of terms to a sum of the form

∑
n

e

(
An + Bn2

p

)
=

 p
1
2 if p - B

0 if p|B, p - A
p if p|B, p|A

Cases determined by whether some prime powers divide certain polynomials.

Bound number of occurrences of each case (this is where we use our assumptions
for q).

Combine. Done.
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∑
χ(f )

From now on: assume q = p prime.

General case essentially the same from this point on.

In the way discussed we can get:

Lemma 2

For any positive integers r and h,

p∑
n=1

|Sh(n)|2r < (4r)r+1phr + 2rp
1
2 h2r
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Proof of Lemma 2

We have:

p∑
n=1

|Sh(n)|2r

=

p∑
n=1

h∑
m1,..,m2r=1

χ ((n + m1) · · · (n + mr )) χ̄ ((n + mr+1) · · · (n + m2r ))

=
h∑

m1,..,m2r=1

p∑
n=1

χ
(
(n + m1) · · · (n + mr )(n + mr+1)p−2 · · · (n + m2r )

p−2
)

Reduce modulo p and exponents modulo d (ignoring for now the
effect of term where the polynomial vanishes).

Most of the polynomials are now in the form discussed, except for
perfect d powers (recall d = ord(χ)).
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Proof of Lemma 2 (cont.)

Fortunately: at most (4r)r+1hr such exceptions.

They give total contribution of p(4r)r+1hr .

For a polynomial that indeed satisfies our conditions, and having t
distinct roots after the reduction, its sum contributes at most

2r − t + (t − 2)p1/2 + 1 ≤ 2rp1/2

(where 2r − t is there to correct the terms lost in the reduction).

The number of such polynomials can be bounded trivially by h2r .

This gives a total contribution of at most 2rp
1
2 h2r

The result follows by combining the two contributions.
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Applying Holder’s Inequality

For a set A ∈ {1, 2, · · · , p} , we have:

p∑
n=1

|Sh(n)|2r ≥
∑
n∈A
|Sh(n)|2r ≥

(∑
n∈A
|Sh(n)|

)2r (∑
n∈A

1

)1−2r

Note: Second factor larger for smaller #A .
(so full A not necessarily optimal)

Our goal for now on: Relate SH(N) to a sum∑
n∈A
|Sh(n)|

in an efficient way.
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Heuristics

Want to say:

SH(N) ≈ 1

h

H∑
m=1

Sh

(
N + m

d

) (
identifying copies of [1..h]

in {N + 1, ...,N + H} as APs.

)

� 1

H

H/h∑
d=1

h∑
m=1

∣∣∣∣Sh (N + m

d

)∣∣∣∣
� 1

H

(
H2

h

)1− 1
2r (

(4r)r+1phr + 2rp
1
2 h2r

)1/2r

� H1−1/rp(r+1)/4r2
(taking h ≈ p1/2r )

Note: here #A ≈ H2

h

Unfortunately: errors cost too much.

We’ll try to make this more efficient.
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Introducing Intervals

First Step from above:

SH(N) ≈ 1

h

H∑
m=1

Sh

(
N + m

d

)
Idea:

Associate SH(N) to sums over disjoint intervals.

(appearing as affine transformations of APs in {N + 1, · · · ,N + H} ).

Apply First Step of the heuristic argument in each interval (for
d = 1).

Choose the intervals so that we have control over the errors.

Take A to be the union of the intervals
(disjointedness guarantees that this makes sense).
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Making Sense of the Heuristics

Consider an interval I = {n1 + 1, · · · , n2}. (some integers n1,n2)
We apply heuristic argument on the interval, for d = 1:

Define

φi (m) :=
m∑

y=1

χ(ni + y), i = 1, 2

We have that, for any given positive integer m,∑
n∈I

χ(n) =
∑
n∈I

χ(n + m) + φ1(m)− φ2(m)

For any given positive integer h:

∑
n∈I

χ(n) =
1

h

h∑
m=1

∑
n∈I

χ(n)
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Making Sense of the Heuristics

Consider a set I of disjoint intervals.

Let A′ = ∪ I .

Combine last slide’s results:

h ×
∑
I∈I′

∣∣∣∣∣∑
n∈I

χ(n)

∣∣∣∣∣ =
∑
I′

∣∣∣∣∣
h∑

m=1

∑
n∈I

χ(n)

∣∣∣∣∣
≤

∑
n∈A′
|Sh(n)|+

∑
i=1,2

∑
I′

∣∣∣∣∣
h∑

m=1

φi (m)

∣∣∣∣∣
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Making Sense of the Heuristics

h ×
∑
I∈I′

∣∣∣∣∣∑
n∈I

χ(n)

∣∣∣∣∣ ≤∑
n∈A′
|Sh(n)|+

∑
i=1,2

∑
I′

∣∣∣∣∣
h∑

m=1

φi (m)

∣∣∣∣∣
First term: ”main term” - denote S0.

Other two: ”error terms”- denote S1,2.
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Error Control

Suppose that S0 is not the largest out of the three.
We can show the following:

Lemma 3

Suppose that no element of I has less than h elements.
Suppose further that

max {S1,S2} ≥ 2eh ×#I

Then: For some M of the form M = h0 ×#I ≤ h ×#I there exist a set
A′′ of M distinct integers for which:

∑
n∈A′′

|Sh(n)| =
∑
n∈A′′

∣∣∣∣∣
h∑

m=1

χ(n + m)

∣∣∣∣∣ ≥ h0

ehlog2(h)
×max {S1,S2}
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APs as Affine Transformations of Intervals

Left to Do: Find appropriate family of intervals I.

Write η := |SH(N)|.
Can assume that η > 1 and 0 ≤ N < N + H < p (otherwise trivial).

Intervals in range as affine transformations:

We can see that for any positive integer w < p,

η =

∣∣∣∣∣
N+H∑

n=N+1

χ(n)

∣∣∣∣∣ ≤
w−1∑
t=0

∣∣∣∣∣∣∣∣
N+H∑

n = N + 1
n ≡ −tp ( mod w)

χ(n)

∣∣∣∣∣∣∣∣
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APs as Affine Transformations of Intervals

Write I (w , t) :=
{
z ∈ Z | N+1+tp

w ≤ z ≤ N+H+tp
w

}
,

Note that for n = −tp + wz we have
χ(n) = χ(−tp + wz) = χ(w)χ(z)

Rewrite above as:

η ≤
w−1∑
t=0

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣
We can then take average for various w , and have a sum over various
intervals I (w , t).
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Chosing the Right Intervals

Want intervals disjoint.

Observation:
For fixed coprime w ,w ′ (wlog w > w ′), by comparing endpoints:

If 2Hw < p, there is at most one pair (t, t ′) with I (w , t) and I (w ′, t ′) not
disjoint.

Under this assumption, for a fixed set W of w ’s taking a set T (w) for
each w all values of t that do not appear in a pair, we get:

Lemma 4

Suppose w1 < w < w2 for every w ∈W .

Suppose 2Hw2 < p.

Then, for every w in W , we can associate a set T (w) of integers t with
0 ≤ t < w with #T (w) ≥ w − Q, so that all the resulting I (w , t)′s are
disjoint.
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Choosing the Right Intervals

Remark

Regarding our selection above, we can also note the following:
If N(w , t) is the number of (other) intervals I (w ′, t ′) that intersect I (w , t)
then, for every w ∈W : ∑

t /∈T (w)

N(w , t) ≤ Q

We take W to be a set of Q primes.

Take also w2 = 2w1 <
1
2pH

−1.

Length of I (w , t) is H
w so control over range of w means control over

range of lengths.
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Choosing the Right Intervals

We have:

Qη ≤
∑
w∈W

w−1∑
t=0

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣
≤

∑
w∈W

∑
t∈T (w)

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣+
∑
w∈W

∑
t /∈T (w)

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣
We have 2 cases.
Either: ∑

w∈W

∑
t∈T (w)

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣ ≥ 1

2
ηQ

or: ∑
w∈W

∑
t /∈T (w)

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣ ≥ 1

2
ηQ
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Case I: Main Term Wins

In the first case:

Total number of I (w , t)’s is, by the definition of T (w)’s,

# ≤ Qw2

Therefore: for any M, there is a collection I of I ’s, of size M s.t:

∑
I (w ,t)∈I

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣ ≥ ηQ

2
× M

Qw2
=
ηM

2w2
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Case II: Error Term Wins

In the second case:

∑
w∈W

∑
t /∈T (w)

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣ ≥ 1

2
ηQ,

Recall the remark from the last lemma:

For every w ∈W : ∑
t /∈T (w)

N(w , t) ≤ Q

Using that, we can show:

There is a I ⊂ {I (w , t) | t /∈ T (w)} and a constant C ≥ 1 with

#I ≤ 10Q2C−2 and
∑

I (w ,t)∈I

∣∣∣∣∣∣
∑

z∈I (w ,t)

χ(z)

∣∣∣∣∣∣ ≥
1
2ηQ

50C logQ
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Conclusion

Combining our estimates, and optimizing the parameters Q,M, h,w1 we
get the required result:

Theorem 1 (Burgess, 1962)

For N,H, r positive integers:

|SH(N)| � H1−1/rp(r+1)/4r2
log p

with the implied constant being absolute.
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