CONTAINMENT OF CERTAIN BRUHAT INTERVALS MODULO A MAXIMAL
PARABOLIC SUBGROUP IN TYPE A

MATTHEW TOWERS

Let W 2 S,, be the Weyl group of type A with generating set {s1,...,s,_1} where s; = (i,i+ 1), acting
on the left on the set {1,2,...,n}. Permutations in W will be written in “complete form”, that is we write
r = T1Tg " "Tp

(or sometimes z1,za,...,,) where z; = x(i). Let Wi = S x S,,_x be the maximal parabolic subgroup
generated by all s; with i # k; both k£ and hence W; are fixed throughout. Each coset xW; contains a
unique element T of minimal length with respect to these generators: T has the form x5 - - - x,, where the
sequences (21,2, ..,2x) and (Tg41, Tkt2,---,Ty) are both increasing.

The object of this note is to prove the following result:

Theorem 1. Let x,q,w,y € W be such that ¢ < and y < w. Then
(1) lg, z]Wr C [y, w]Wr
if and only if there exists z € W such that Tz < w and qz > y.

Here < denotes the Bruhat order, [a,b] is the Bruhat interval {¢ € W : a < ¢ < b} and [a, b]W| means
{cW7 : ¢ € [a,b]}.

1. DEFINITIONS AND LEMMAS

Before we begin on the proof we need a few definitions and lemmas on type A Bruhat order.

If (a1, az, . ..) is some sequence of distinct natural numbers we write (a1, as,...) for the unique rearrange-
ment of this sequence whose terms are increasing. On the set N we will use the product order <’ defined
by (a1,as,...) < (b1,bs,...) if and only if a; < b; for all i. We say (a1,as,...) ~-dominates (b1, bs,...) if

(al, as, .. ) 2/ (bl, b2, .. )
Lemma 2. Let w,y € W. For any 1 < m < n the following are equivalent:

e w >y in the Bruhat order.

—_—

o (wy,...,wy) 2 (y1,...,yr) for allr <m and (Wy, ..., wy) < Yry .-+, Yn) for all v > m.

—_~—

For m = n this says w > y if and only if (wq,...,w,) =" (y1,...,y,) for all r.

=
Lemma 3. Let ¢ < Z. Then ¢; < T; for alli < k and q; > T; for all i > k.

Proof. For i < k we have (q1,...,q;) <' (z1,...,2;) and the first part follows immediately. For the second,
use Lemma 2 with m = k and a similar argument. ]

Lemma 4. Suppose ay,...,an, ~-dominatesby,... b, anda > b. Thenay,...,amn,a ~-dominates by, ..., by,,b.
Proof. Let (ai,...,am) = A1,..., A, and (b1,...,b,) = Bi,...,B,,, so that A4; > B; for all i. Let
A, <a< Ay and By < b < Bgp1. We want to compare the sequences Ay,..., A, a,Arq1,..., A, and
By,...,Bs,b,Bs41,...,By. Suppose first that s > 7r:

g A'r < a < Ar+1 < e < A —1
< Br < Br+1 < Br+2 < <
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Each thing in the bottom row is < the thing directly above it. This is clear up to B, and after Bs41. In
between, B,y1 < b<a, Brio <b<a< A 1,andsoonupto By <b<a< As;_1 and b<a< A
Now suppose s < r

< As < As+1 < As+2 < - < Ar < a < Ar+1 <
< Bs < b < Bs+1 < et < Brfl < Br < Br+1 <
Again we only need worry about the places between s and r. There, b < Bsy1 < Ast1, Bsy1 < Asyi1 < Agao

and so on up to B, < A, < a. O

An induction using the above Lemma shows that if a; > b; for all 1 < ¢ < m then for each 1 < i < m, the
sequence ai, . ..,a; ~-dominates by,...,b;.

Corollary 5. Suppose u,v € W and there exists 1 < m < n such that u; < v; for all1 <i<m and u; > v;
for all i > m Then u < v.

The following is taken from Fulton’s Young Tableaur where it is Lemma 10.11 on p.174.

Lemma 6. Let u < v be permutations, let j be minimal such that u; # v; (so u; < v;) and let m be minimal
such that m > j and v; > vy 2> u;. Then u < v(j,m) < v.

Here (j,m) is a transposition. Note that the complete form of v(j, m) looks the same as that of v, except
that the entries in positions j and m are swapped.

Lemma 7. Let g < T. Then for each 1 < r < k there is some permutation whose first k values are

q1y- -5 Qry Trgly- .- Tk

in the Bruhat interval [q, Z].

Remark 8. [It’s clear that Lemma 6 will help with the proof of this: e.g. suppose q1 < T1, so j = 1 in the
notation of Lemma 6. Look for m minimal such that ¢y < T, < Z1, clearly we must have m > k. Now after
position k, T looks like

1,2,3, ... B0, T2y
(the hat denotes an omitted term). So in fact T,, = q1, and Lemma 6 gives

q< x| <
where what appears after xy looks like the sequence 1,...,n with T1,..., T removed and then T, substituted
for q1.

Proof. The proof is by induction on r, the base case being either vacuous (if Z; = ¢1) or as discussed in the
above remark. We need to strengthen the inductive hypothesis slightly: it will be that there is some element
v in [g, Z] of the form

qlqrj-r+l:fk
where what appears after the kth place can be obtained by taking the sequence 1,...,n, deleting each of
Z1,...,Tk, then replacing some of ¢1,...q, with some of z;,...,Z,. Of course, some of ¢, ...q, may have
been deleted as z;s. We do not assume ¢; was replaced by z;.

If 41 = ¢r+1, the inductive step goes through immediately so we may as well assume ¢,4+1 < Z,41. We
apply Lemma 6 to g < v, its output will be between ¢ and v so certainly in the interval [¢, Z]. The first place
in which ¢ and v differ is 7 + 1, so this is the first element of the transposition occuring in Lemma 6. To find
the second we must look for the first v, in the interval [¢,41, Z,+1); clearly m > k.

Inductively the values of v from the kth place onwards look like

1,2,3,.. ., %1, T2, .
with some of the ¢, ..., ¢ that remain replaced by some of Z1,...,Z,. Thus the first v,, in [¢r4+1,Tr+1) is
either g,41 itself, or one of Z1,...,Z,. If it was ¢,+1, the inductive step goes through. Otherwise v,, is some

Z, in the interval (g,41,Z,11). The result of applying Lemma 6 in this case is a permutation
S Q- GrTslrg2- T ST

where the part of the permutation after place k is in the correct inductive form: we have swapped some Z,
which was in the position of a g, for Z, ;.



Apply Lemma 6 repeatedly: each time we preserve the inductive form in places after k, each time we
either put ¢,41 in place r + 1 or we put a strictly smaller Z, there. This can’t go on forever, so eventually
we get a permutation with ¢,41 in place r + 1, completing the inductive step. ([l

2. ONLY IF
Suppose throughout this section that ¢ < Z,y < @, and that (1) holds. Thus
(2) Vu:q<u<z = uWrNly,w) #0.
Lemma 9. The ith largest element of y1,...,yx is dominated by at least i elements of q1,. .., qk.

Proof. Applying (2) with u = q we see that gz; > y for some z; € W; Thus

—_—~— e~

(1--ue) < (a, - ax)
and the result follows. O
Consider the following proceedure P. Initial step: choose z(1) to be the minimal element of {1,...,k}
such that q.(;) = yi if such an element exists, otherwise stop. General step: suppose the proceedure has
constructed z(1), ..., z(m—1) successfully. Let z(m) be the minimal element of {1,...,I}\{2(1),...,2z(m-1)}
such that (g.(1),---,qzm)) =’ (1, .,Ym) if such an element exists, otherwise stop.
Lemma 10. Proceedure P successfully constructs z(1),...,z(k).

Remark 11. Applying (2) with u = q we see that gz1 > y for some z; € Wi, thus some g, is greater than
or equal to y; and z(1) is defined. Let’s look at the next step. What we need is the existence of some q; with
z(1) # i < k such that q;,q.1y ~-dominates yi,ys. If there is some q. other than q.1) that is > ya, this
will do by Lemma 4. If not, yo must be < q.(1y and is the largest of all y1,...,yr by Lemma 9. Furthermore
y1 is at most the second largest, so it is dominated by a q. other than z(1), and this q. together with q. ()
~-dominate y1,ys by Lemma 3.

Proof. As in the remark above, z(1) is defined. Suppose that

2(1) is miminal such that g,y > y1

—_—

2(2) is minimal such that (g.(1),qz(2)) = (y1,%2)

e z(r) is mimimal such that (g.(1),...,qz(r)) = (Y1, -+, Yr)
and r < k. We must show that the set of ¢. € {q1,...,qr} \ {qz(1),- -+ @)} such that q.(1y,..., ¢ (), ¢
~-dominates y1,...,Yyr+1 is non-empty.

As before, if there is any element of {q1,...,q} \ {¢:(1),- .-, ¢-(x)} dominating g, we are done. So we
assume this fails, and therefore by Lemma 9 y,.11 is the rth largest (or larger) element of the set y1, ..., yk.
This mean that one of y1, ..., y, is only the (r+ 1)st largest (or smaller) of the set y1,. .., yx, so is dominated
by a g, which is not any of the g.(;s. Take y; to be the largest element of yi, ...,y such that there exists
am € {21y, - -+ Qo) } With M < k and qas > y;. We have y; < y,41, otherwise y,41 < y; < qur contradicting
our assumption.

Let (y1,...,y,) = Y1,..., Y, and (q.(1), -+, @2(r)) = Q1 ... Qr. Suppose Y;_1 < yr11 < Y;. We have the
following diagram of inequalities:

Q@ < - < Qi < Q< o < Qr
V/ v/ v/ V/
i < - < Y < gy < Y < -0 <Y
y; appears somewhere amongst Y7,...,Y;_1. Now y,41 is at most the (r —I+2)th largest of y1, ..., yx so it

is dominated by at least (r — 1+ 2) of ¢y, ..., qx, all of which by assumption are Q.s. It follows y,+1 < Q1.
Say y; = Y4, where A <1 — 1. Each of Ya;1,...,Y;_1 is only dominated by elements of ¢y, ..., qx that
are amongst our @), by definition of y;. Furthermore if Y;_1 # y; then it is at most the (r — [ + 3)th largest
of y1,..., Yk, so it is dominated by at least (r —1+3) of 1, ..., g all of which are Q.s, so it must be < Q;_o.
The same argument shows each Y, is < Qqu—1 for A+1<a <<l —1. So:
3



< Qa1 am Qa < -+ < Q2 < Q1 < @ < -+ < Q

V/ V/ v/ V/ v/ v/ V/

< Ypq4 < Yi < YA+1 < e < Y < Yrt1 < Y, < -0 < Y,
We have (Q1,...,Qr) =2 (Y1,...,Ya1,Ya41,..,Yi1,Yr41,Ys,-..,Y:) and gy > y;. By Lemma 4,
(Q1,...,Qr,qn), a rearrangement of (g.(1),...,qx(r),qnm), ~-dominates (Y1,...,Y,,y,11) which is a re-
arrangement of (y1,...,%r+1). This completes the proof. (|

Note that {z(1),...,z(k)} = {1,...,k}, so we may think of z as a permutation of {1,...,k}.
Lemma 12. Let 1 <m < k. No m-tuple from qu,...,q.(m)—1 ~-dominates yi,...,Ym-

Remark 13. In the case q.( -1 <, this lemma says nothing. Let’s see how it works for r = 2: suppose a

pair qr < qs from qu, ..., qz2)—1 is such that (qr,qs) =’ (y1,y2). Neither r nor s can equal z(1) otherwise we
contradict the definition of z(2). So we have qr = y1,qs = y2 for some {R,S} = {r,s}. We may replace qr
by q.1y and preserve these inequalities, so by Lemma 4, q.(1y,qs ~-dominates y1,y2. This contradicts the
definition of z(2).

Proof. Suppose some m-tuple qq,, - - -, qq,, from qi,...,q.(m)—1 ~-dominates y1,...,yn. We will show that
some element of this m-tuple together with ¢, (1), ..., ¢z(m—1) form another m-tuple ~-dominating y1, ..., ym,
contradicting the minimality of z(m).

—_~—

Write (y1’ ce 7ym—1) = Y17 s 7Ym—17 (QZ(I)a .. 'aqz(m—l)) = Qla .. '7Q7n—1~ Since (y17' . '7y77l) 2/ (qa17' .. 7qam)
there are {a,...,am} = {a1,...,am} such that

Ql 2 Yl < qo,
Q2 2 1/'2 < Qag

mel > mel < QQm,l

Ym < Ga,
If da, ¢ {Qla BRRE) mel} = {QZ(l)a BRRE) qz(m—l)} then we have a,, < Z(m) and qz(1)s -1 4z(m—1) 9o,
~-dominates ¥i,...,Ym, & contradiction to minimality of z(m). So we may assume ¢,, = Qn; some

1 < MO < m — 1.

Suppose qa,,, = QMo: Garsy = Qnys-- - Gany, = @Mxcirs DUt Gapey, E{Q1,-- -, Qm-1}

First, I claim that the My,..., Mx; are pairwise distinct. Suppose this holds for My,..., M but
M1 = Mg where R < L. Then qa,,, = Qum,y, = QMp = day, , (0F ga,, if R =0). But the g, are
pairwise distinct, so Mr_1 = M}, contradicting pairwise distinctness of My, ..., My.

We now have:

o ym < Qg

e Y; < Q; if i is not one of the M,

® Y, < day, = QMi+1 ifi<X

L4 YMerl < QOcMXJrl ¢ {Qla sy Qm—l}

It follows from Lemma 4 that Yi,...,Y;_1,¥ym is ~-dominated by @Q,.. .,Qm,l,anXH, hence by
Qz(1)> -+ - Qe(m—1)> danry - This contradicts the definition of z(m). O

Lemma 14. For each 1 <r < k we have Ty(ry < Wy
Proof. Lemma 7 combined with 2 show that there is some u € W whose first k values are

q1- - qQz(r)—1Tz(r) " Tk

with the property that there exists v € uW; such that y < v < w. In particular,

Wi,sye) < vy ) < (@1, D).
Not all of (v1,...,v,) can come from qi, ..., q.(y—1 by Lemma 12. Thus one of Z_,), ..., Tx appears amongst
v1,..., V. In particular, the smallest such T, namely 7., is < w,. O
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—_~— —_~—

Corollary 15. For each 1 < r < k we have (y1,...,yr) < (gz(1),...,qz(r)) and (Tz(1),...,Z2(r)) <
(w1, ..., W)

Proof. The statement about y.s and gz(x)s is true by construction of z. The statement about Zz(x)s and
w,s follows by Lemma 14 and an induction using Lemma 4. O

Similar arguments for the positions k£ + 1,...,n will produce z(k + 1),...,z(n) such that for all £k +1 <

r < n we have (yp,...,yn) =’ (q2(r),...,qz(n)) and (T2(r),...,ZT2(n)) =" (Wy,...,wy,). This completes the
construction of the z required for our theorem by Lemma 2.

3. Ir

Suppose ¢ < T,y < w and that there exists z € W such that zz < w and y < gz. We will give a proof
that [q, Z]W; C [y, @]W which works for any parabolic subgroup (not just maximal ones) and in any Coxeter
group.

We can get a reduced expression for Tz by concatenating reduced expressions for Z and z. Since ¢ < Z this
is a reduced expression for Zz that contains a possibly non-reduced expression for ¢z, which can be refined
to a reduced expression by omitting some terms. Thus gz < Zz.

Let ¢ < 7 < Z, we need to show rW; N[y, w]W; # 0 and it is enough to show rW;N|[gz, Zz]W; # () because
y < gz < Tz < w. This we do by induction on the length of 2z, and the base case when z = e is immediate.

Now let z = zps where s is a simple reflection in W and I(z) = l(29) + 1. By induction there is some
2" € Wt such that gz < 2’ < Tzp. We seek an element of 7Wy N [gz08, T208].

Case 1 gzys < qzp. Then
qz08 < qzo < 12 < Tzp < Tzps.
Case 2.i qzgs > qzp,72's > rz’. Then
qzos < 12's < Tzps.
Case 2.ii qzgs > qzg,72's <rz’. Then rz’ > r2's,r2’ > qz9 < qz¢s, so by a lemma from Bjorner and Brenti,
qzos < rz’. Thus
qzos <17 < Tzo < T2
This completes the proof.



