CONTAINMENT OF CERTAIN BRUHAT INTERVALS MODULO A MAXIMAL PARABOLIC SUBGROUP IN TYPE A

MATTHEW TOWERS

Let $W \cong S_{n}$ be the Weyl group of type A with generating set $\left\{s_{1}, \ldots, s_{n-1}\right\}$ where $s_{i}=(i, i+1)$, acting on the left on the set $\{1,2, \ldots, n\}$. Permutations in W will be written in "complete form", that is we write

$$
x=x_{1} x_{2} \cdots x_{n}
$$

(or sometimes $x_{1}, x_{2}, \ldots, x_{n}$) where $x_{i}=x(i)$. Let $W_{I} \cong S_{k} \times S_{n-k}$ be the maximal parabolic subgroup generated by all s_{i} with $i \neq k$; both k and hence W_{I} are fixed throughout. Each coset $x W_{I}$ contains a unique element \bar{x} of minimal length with respect to these generators: \bar{x} has the form $x_{1} x_{2} \cdots x_{n}$ where the sequences $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $\left(x_{k+1}, x_{k+2}, \ldots, x_{n}\right)$ are both increasing.

The object of this note is to prove the following result:
Theorem 1. Let $x, q, w, y \in W$ be such that $q \leqslant \bar{x}$ and $y \leqslant \bar{w}$. Then

$$
\begin{equation*}
[q, \bar{x}] W_{I} \subseteq[y, \bar{w}] W_{I} \tag{1}
\end{equation*}
$$

if and only if there exists $z \in W_{I}$ such that $\bar{x} z \leqslant \bar{w}$ and $q z \geqslant y$.
Here \leqslant denotes the Bruhat order, $[a, b]$ is the Bruhat interval $\{c \in W: a \leqslant c \leqslant b\}$ and $[a, b] W_{I}$ means $\left\{c W_{I}: c \in[a, b]\right\}$.

1. Definitions and lemmas

Before we begin on the proof we need a few definitions and lemmas on type A Bruhat order.
If (a_{1}, a_{2}, \ldots) is some sequence of distinct natural numbers we write $\left(a_{1}, a_{2}, \ldots\right)$ for the unique rearrangement of this sequence whose terms are increasing. On the set \mathbb{N}^{r} we will use the product order \leqslant^{\prime} defined by $\left(a_{1}, a_{2}, \ldots\right) \leqslant^{\prime}\left(b_{1}, b_{2}, \ldots\right)$ if and only if $a_{i} \leqslant b_{i}$ for all i. We say $\left(a_{1}, a_{2}, \ldots\right) \sim$-dominates $\left(b_{1}, b_{2}, \ldots\right)$ if $\left(a_{1}, a_{2}, \ldots\right) \geqslant^{\prime}\left(b_{1}, b_{2}, \ldots\right)$.
Lemma 2. Let $w, y \in W$. For any $1 \leqslant m \leqslant n$ the following are equivalent:

- $w \geqslant y$ in the Bruhat order.
- $\left(w_{1}, \ldots, w_{r}\right) \geqslant^{\prime}\left(\widetilde{y_{1}, \ldots, y_{r}}\right)$ for all $r \leqslant m$ and $\left(w_{r}, \ldots, w_{n}\right) \leqslant{ }^{\prime}\left(y_{r}, \ldots, y_{n}\right)$ for all $r>m$.

For $m=n$ this says $w \geqslant y$ if and only if $\left.\left(w_{1}, \ldots, w_{r}\right) \geqslant \geqslant_{\left(y_{1}, \ldots, y_{r}\right.}\right)$ for all r.
Lemma 3. Let $q \leqslant \bar{x}$. Then $q_{i} \leqslant \bar{x}_{i}$ for all $i \leqslant k$ and $q_{i} \geqslant \bar{x}_{i}$ for all $i>k$.
Proof. For $i \leqslant k$ we have $\left(q_{1}, \ldots, q_{i}\right) \leqslant\left(x_{1}, \ldots, x_{i}\right)$ and the first part follows immediately. For the second, use Lemma 2 with $m=k$ and a similar argument.
Lemma 4. Suppose $a_{1}, \ldots, a_{m} \sim$-dominates b_{1}, \ldots, b_{m} and $a \geqslant b$. Then $a_{1}, \ldots, a_{m}, a \sim$-dominates b_{1}, \ldots, b_{m}, b.
Proof. Let $\left(a_{1}, \ldots, a_{m}\right)=A_{1}, \ldots, A_{m}$ and $\left(b_{1}, \ldots, b_{m}\right)=B_{1}, \ldots, B_{m}$, so that $A_{i} \geqslant B_{i}$ for all i. Let $A_{r} \leqslant a<A_{r+1}$ and $B_{s} \leqslant b<B_{s+1}$. We want to compare the sequences $A_{1}, \ldots, A_{r}, a, A_{r+1}, \ldots, A_{m}$ and $B_{1}, \ldots, B_{s}, b, B_{s+1}, \ldots, B_{m}$. Suppose first that $s \geqslant r$:

$$
\begin{aligned}
& \cdots \leqslant A_{r} \leqslant a \leqslant A_{r+1} \leqslant \cdots \leqslant A_{s-1} \leqslant A_{s} \leqslant A_{s+1} \leqslant \cdots \\
& \cdots \leqslant B_{r} \leqslant B_{r+1} \leqslant B_{r+2} \leqslant \cdots \leqslant B_{s} \leqslant b \leqslant B_{s+1} \leqslant \cdots
\end{aligned}
$$

Each thing in the bottom row is \leqslant the thing directly above it. This is clear up to B_{r} and after B_{s+1}. In between, $B_{r+1} \leqslant b \leqslant a, B_{r+2} \leqslant b \leqslant a \leqslant A_{r+1}$, and so on up to $B_{s} \leqslant b \leqslant a \leqslant A_{s-1}$ and $b \leqslant a \leqslant A_{s}$.

Now suppose $s \leqslant r$

$$
\begin{aligned}
& \cdots \leqslant A_{s} \leqslant A_{s+1} \leqslant A_{s+2} \leqslant \cdots \leqslant A_{r} \leqslant A_{s+1} \leqslant \cdots \leqslant A_{r+1} \leqslant \cdots \\
& \cdots \leqslant B_{s} \leqslant b \leqslant B_{r-1} \leqslant B_{r+1} \leqslant B_{r+1} \leqslant
\end{aligned}
$$

Again we only need worry about the places between s and r. There, $b \leqslant B_{s+1} \leqslant A_{s+1}, B_{s+1} \leqslant A_{s+1} \leqslant A_{s+2}$ and so on up to $B_{r} \leqslant A_{r} \leqslant a$.

An induction using the above Lemma shows that if $a_{i} \geqslant b_{i}$ for all $1 \leqslant i \leqslant m$ then for each $1 \leqslant i \leqslant m$, the sequence $a_{1}, \ldots, a_{i} \sim$-dominates b_{1}, \ldots, b_{i}.

Corollary 5. Suppose $u, v \in W$ and there exists $1 \leqslant m \leqslant n$ such that $u_{i} \leqslant v_{i}$ for all $1 \leqslant i \leqslant m$ and $u_{i} \geqslant v_{i}$ for all $i>m$ Then $u \leqslant v$.

The following is taken from Fulton's Young Tableaux where it is Lemma 10.11 on p.174.
Lemma 6. Let $u<v$ be permutations, let j be minimal such that $u_{j} \neq v_{j}$ (so $u_{j}<v_{j}$) and let m be minimal such that $m>j$ and $v_{j}>v_{m} \geqslant u_{j}$. Then $u \leqslant v(j, m)<v$.

Here (j, m) is a transposition. Note that the complete form of $v(j, m)$ looks the same as that of v, except that the entries in positions j and m are swapped.

Lemma 7. Let $q \leqslant \bar{x}$. Then for each $1 \leqslant r \leqslant k$ there is some permutation whose first k values are

$$
q_{1}, \ldots, q_{r}, x_{r+1}, \ldots, x_{k}
$$

in the Bruhat interval $[q, \bar{x}]$.
Remark 8. It's clear that Lemma 6 will help with the proof of this: e.g. suppose $q_{1}<\bar{x}_{1}$, so $j=1$ in the notation of Lemma 6. Look for m minimal such that $q_{1} \leqslant \bar{x}_{m}<\bar{x}_{1}$, clearly we must have $m>k$. Now after position k, \bar{x} looks like

$$
1,2,3, \ldots, \widehat{\widehat{x}_{1}}, \ldots, \widehat{\widehat{x_{2}}}, \ldots
$$

(the hat denotes an omitted term). So in fact $\bar{x}_{m}=q_{1}$, and Lemma 6 gives

$$
q \leqslant q_{1} x_{2} \cdots x_{k} \mid \cdots \leqslant \bar{x}
$$

where what appears after x_{k} looks like the sequence $1, \ldots, n$ with $\bar{x}_{1}, \ldots, \bar{x}_{k}$ removed and then \bar{x}_{1} substituted for q_{1}.
Proof. The proof is by induction on r, the base case being either vacuous (if $\bar{x}_{1}=q_{1}$) or as discussed in the above remark. We need to strengthen the inductive hypothesis slightly: it will be that there is some element v in $[q, \bar{x}]$ of the form

$$
q_{1} \cdots q_{r} \bar{x}_{r+1} \cdots \bar{x}_{k} \cdots
$$

where what appears after the k th place can be obtained by taking the sequence $1, \ldots, n$, deleting each of $\bar{x}_{1}, \ldots, \bar{x}_{k}$, then replacing some of $q_{1}, \ldots q_{r}$ with some of $\bar{x}_{1}, \ldots, \bar{x}_{r}$. Of course, some of $q_{1}, \ldots q_{r}$ may have been deleted as \bar{x}_{i} s. We do not assume q_{i} was replaced by \bar{x}_{i}.

If $\bar{x}_{r+1}=q_{r+1}$, the inductive step goes through immediately so we may as well assume $q_{r+1}<\bar{x}_{r+1}$. We apply Lemma 6 to $q<v$, its output will be between q and v so certainly in the interval $[q, \bar{x}]$. The first place in which q and v differ is $r+1$, so this is the first element of the transposition occuring in Lemma 6. To find the second we must look for the first v_{m} in the interval $\left[q_{r+1}, \bar{x}_{r+1}\right)$; clearly $m>k$.

Inductively the values of v from the k th place onwards look like

$$
1,2,3, \ldots, \widehat{\widehat{x}_{1}}, \ldots, \widehat{\widehat{x}_{2}}, \ldots
$$

with some of the q_{1}, \ldots, q_{r} that remain replaced by some of $\bar{x}_{1}, \ldots, \bar{x}_{r}$. Thus the first v_{m} in $\left[q_{r+1}, \bar{x}_{r+1}\right)$ is either q_{r+1} itself, or one of $\bar{x}_{1}, \ldots, \bar{x}_{r}$. If it was q_{r+1}, the inductive step goes through. Otherwise v_{m} is some \bar{x}_{*} in the interval $\left(q_{r+1}, \bar{x}_{r+1}\right)$. The result of applying Lemma 6 in this case is a permutation

$$
q \leqslant q_{1} \cdots q_{r} \bar{x}_{*} \bar{x}_{r+2} \cdots \bar{x}_{k} \cdots \leqslant \bar{x}
$$

where the part of the permutation after place k is in the correct inductive form: we have swapped some \bar{x}_{*} which was in the position of a q_{*} for \bar{x}_{r+1}.

Apply Lemma 6 repeatedly: each time we preserve the inductive form in places after k, each time we either put q_{r+1} in place $r+1$ or we put a strictly smaller \bar{x}_{*} there. This can't go on forever, so eventually we get a permutation with q_{r+1} in place $r+1$, completing the inductive step.

2. Only IF

Suppose throughout this section that $q \leqslant \bar{x}, y \leqslant \bar{w}$, and that (1) holds. Thus

$$
\begin{equation*}
\forall u: q \leqslant u \leqslant \bar{x} \Longrightarrow u W_{I} \cap[y, \bar{w}] \neq \emptyset . \tag{2}
\end{equation*}
$$

Lemma 9. The ith largest element of y_{1}, \ldots, y_{k} is dominated by at least i elements of q_{1}, \ldots, q_{k}.
Proof. Applying (2) with $u=q$ we see that $q z_{1} \geqslant y$ for some $z_{1} \in W_{I}$ Thus

$$
\left(y_{1}, \ldots, y_{k}\right) \leqslant \leqslant^{\prime}\left(q_{1}, \ldots, q_{k}\right)
$$

and the result follows.
Consider the following proceedure \mathbf{P}. Initial step: choose $z(1)$ to be the minimal element of $\{1, \ldots, k\}$ such that $q_{z(1)} \geqslant y_{1}$ if such an element exists, otherwise stop. General step: suppose the proceedure has constructed $z(1), \ldots, z(m-1)$ successfully. Let $z(m)$ be the minimal element of $\{1, \ldots, l\} \backslash\{z(1), \ldots, z(m-1)\}$ such that $\left(q_{z(1)}, \ldots, q_{z(m)}\right) \geqslant^{\prime}\left(y_{1}, \ldots, y_{m}\right)$ if such an element exists, otherwise stop.
Lemma 10. Proceedure P successfully constructs $z(1), \ldots, z(k)$.
Remark 11. Applying (2) with $u=q$ we see that $q z_{1} \geqslant y$ for some $z_{1} \in W_{I}$, thus some q_{*} is greater than or equal to y_{1} and $z(1)$ is defined. Let's look at the next step. What we need is the existence of some q_{i} with $z(1) \neq i \leqslant k$ such that $q_{i}, q_{z(1)} \sim$-dominates y_{1}, y_{2}. If there is some q_{*} other than $q_{z(1)}$ that is $\geqslant y_{2}$, this will do by Lemma 4. If not, y_{2} must be $\leqslant q_{z(1)}$ and is the largest of all y_{1}, \ldots, y_{k} by Lemma 9. Furthermore y_{1} is at most the second largest, so it is dominated by a q_{*} other than $z(1)$, and this q_{*} together with $q_{z(1)}$ \sim-dominate y_{1}, y_{2} by Lemma 3.

Proof. As in the remark above, $z(1)$ is defined. Suppose that

- $z(1)$ is miminal such that $q_{z(1)} \geqslant y_{1}$
- $z(2)$ is minimal such that $\left(q_{z(1), q_{z(2)}}\right) \geqslant \widetilde{\left(y_{1}, y_{2}\right)}$
- ...
- $z(r)$ is mimimal such that $\left(q_{z(1)}, \ldots, q_{z(r)}\right) \geqslant\left(y_{1}, \ldots, y_{r}\right)$
and $r<k$. We must show that the set of $q_{*} \in\left\{q_{1}, \ldots, q_{k}\right\} \backslash\left\{q_{z(1)}, \ldots, q_{z(r)}\right\}$ such that $q_{z(1)}, \ldots, q_{z(r)}, q_{*}$ \sim-dominates y_{1}, \ldots, y_{r+1} is non-empty.

As before, if there is any element of $\left\{q_{1}, \ldots, q_{k}\right\} \backslash\left\{q_{z(1)}, \ldots, q_{z(k)}\right\}$ dominating y_{r+1} we are done. So we assume this fails, and therefore by Lemma $9 y_{r+1}$ is the r th largest (or larger) element of the set y_{1}, \ldots, y_{k}. This mean that one of y_{1}, \ldots, y_{r} is only the $(r+1)$ st largest (or smaller) of the set y_{1}, \ldots, y_{k}, so is dominated by a q_{*} which is not any of the $q_{z(i)} \mathrm{s}$. Take y_{i} to be the largest element of y_{1}, \ldots, y_{k} such that there exists $q_{M} \notin\left\{q_{z(1)}, \ldots, q_{z(r)}\right\}$ with $M \leqslant k$ and $q_{M} \geqslant y_{i}$. We have $y_{i}<y_{r+1}$, otherwise $y_{r+1}<y_{i}<q_{M}$ contradicting our assumption.

Let $\left(y_{1}, \ldots, y_{r}\right)=Y_{1}, \ldots, Y_{r}$ and $\left(q_{z(1)}, \ldots, q_{z(r)}\right)=Q_{1}, \ldots Q_{r}$. Suppose $Y_{l-1}<y_{r+1}<Y_{l}$. We have the following diagram of inequalities:

$$
\begin{array}{ccccccccc}
Q_{1} & < & \cdots & <Q_{l-1} & & <Q_{l} & <\cdots & < & Q_{r} \\
\mathrm{~V} / & & & \mathrm{V} / & & & & & \\
\mathrm{V} / & & \\
Y_{1} & < & < & Y_{l-1} & <y_{r+1} & < & Y_{l} & < & \cdots
\end{array} \ll Y_{r}
$$

y_{i} appears somewhere amongst Y_{1}, \ldots, Y_{l-1}. Now y_{r+1} is at most the $(r-l+2)$ th largest of y_{1}, \ldots, y_{k} so it is dominated by at least $(r-l+2)$ of q_{1}, \ldots, q_{k}, all of which by assumption are Q_{*} s. It follows $y_{r+1} \leqslant Q_{l-1}$.

Say $y_{i}=Y_{A}$, where $A \leqslant l-1$. Each of Y_{A+1}, \ldots, Y_{l-1} is only dominated by elements of q_{1}, \ldots, q_{k} that are amongst our Q_{*} by definition of y_{i}. Furthermore if $Y_{l-1} \neq y_{i}$ then it is at most the $(r-l+3)$ th largest of y_{1}, \ldots, y_{k}, so it is dominated by at least $(r-l+3)$ of q_{1}, \ldots, q_{k} all of which are Q_{*} s, so it must be $\leqslant Q_{l-2}$. The same argument shows each Y_{a} is $\leqslant Q_{a-1}$ for $A+1 \leqslant a \leqslant l-1$. So:

We have $\left(Q_{1}, \ldots, Q_{r}\right) \geqslant^{\prime}\left(Y_{1}, \ldots, Y_{A-1}, Y_{A+1}, \ldots, Y_{l-1}, y_{r+1}, Y_{l}, \ldots, Y_{r}\right)$ and $q_{M} \geqslant y_{i}$. By Lemma 4, $\left(Q_{1}, \ldots, Q_{r}, q_{M}\right)$, a rearrangement of $\left(q_{z(1)}, \ldots, q_{z(r)}, q_{M}\right), \sim$ dominates $\left(Y_{1}, \ldots, Y_{r}, y_{r+1}\right)$ which is a rearrangement of $\left(y_{1}, \ldots, y_{r+1}\right)$. This completes the proof.

Note that $\{z(1), \ldots, z(k)\}=\{1, \ldots, k\}$, so we may think of z as a permutation of $\{1, \ldots, k\}$.
Lemma 12. Let $1 \leqslant m \leqslant k$. No m-tuple from $q_{1}, \ldots, q_{z(m)-1} \sim$-dominates y_{1}, \ldots, y_{m}.
Remark 13. In the case $q_{z(r)-1}<r$, this lemma says nothing. Let's see how it works for $r=2$: suppose a pair $q_{r}<q_{s}$ from $q_{1}, \ldots, q_{z(2)-1}$ is such that $\left(q_{r}, q_{s}\right) \geqslant\left(\widetilde{\left.y_{1}, y_{2}\right)}\right.$. Neither r nor s can equal $z(1)$ otherwise we contradict the definition of $z(2)$. So we have $q_{R} \geqslant y_{1}, q_{S} \geqslant y_{2}$ for some $\{R, S\}=\{r, s\}$. We may replace q_{R} by $q_{z(1)}$ and preserve these inequalities, so by Lemma 4, $q_{z(1)}, q_{S} \sim$ dominates y_{1}, y_{2}. This contradicts the definition of $z(2)$.
Proof. Suppose some m-tuple $q_{a_{1}}, \ldots, q_{a_{m}}$ from $q_{1}, \ldots, q_{z(m)-1} \sim$-dominates y_{1}, \ldots, y_{m}. We will show that some element of this m-tuple together with $q_{z(1)}, \ldots, q_{z(m-1)}$ form another m-tuple \sim-dominating y_{1}, \ldots, y_{m}, contradicting the minimality of $z(m)$.

Write $\left(y_{1}, \widetilde{, \ldots, y_{m-1}}\right)=Y_{1}, \ldots, Y_{m-1},\left(q_{z(1)}, \widetilde{\ldots, q_{z(m-1)}}\right)=Q_{1}, \ldots, Q_{m-1}$. Since $\left(\widetilde{y_{1}, \ldots, y_{m}}\right) \geqslant \geqslant^{\prime}\left(q_{a_{1}}, \ldots, q_{a_{m}}\right)$ there are $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=\left\{a_{1}, \ldots, a_{m}\right\}$ such that

$$
\begin{array}{ccc}
Q_{1} \geqslant & Y_{1} & \leqslant q_{\alpha_{1}} \\
Q_{2} \geqslant & Y_{2} & \leqslant q_{\alpha_{2}} \\
\vdots & \vdots & \vdots \\
Q_{m-1} \geqslant & Y_{m-1} & \leqslant q_{\alpha_{m-1}} \\
& y_{m} & \leqslant q_{\alpha_{m}}
\end{array}
$$

If $q_{\alpha_{m}} \notin\left\{Q_{1}, \ldots, Q_{m-1}\right\}=\left\{q_{z(1)}, \ldots, q_{z(m-1)}\right\}$ then we have $\alpha_{m}<z(m)$ and $q_{z(1)}, \ldots, q_{z(m-1)}, q_{\alpha_{m}}$ \sim-dominates y_{1}, \ldots, y_{m}, a contradiction to minimality of $z(m)$. So we may assume $q_{\alpha_{m}}=Q_{M_{0}}$ some $1 \leqslant M_{0} \leqslant m-1$.

Suppose $q_{\alpha_{m}}=Q_{M_{0}}, q_{\alpha_{M_{0}}}=Q_{M_{1}}, \ldots, q_{\alpha_{M_{X}}}=Q_{M_{X+1}}$, but $q_{\alpha_{M_{X+1}}} \notin\left\{Q_{1}, \ldots, Q_{m-1}\right\}$.
First, I claim that the M_{0}, \ldots, M_{X+1} are pairwise distinct. Suppose this holds for M_{0}, \ldots, M_{L} but $M_{L+1}=M_{R}$ where $R \leqslant L$. Then $q_{\alpha_{M_{L}}}=Q_{M_{L+1}}=Q_{M_{R}}=q_{\alpha_{M_{R-1}}}$ (or $q_{\alpha_{m}}$ if $R=0$). But the q_{*} are pairwise distinct, so $M_{R-1}=M_{L}$ contradicting pairwise distinctness of M_{0}, \ldots, M_{L}.

We now have:

- $y_{m} \leqslant Q_{M_{0}}$
- $Y_{i} \leqslant Q_{i}$ if i is not one of the M_{*}
- $Y_{M_{i}} \leqslant q_{\alpha_{M_{i}}}=Q_{M_{i+1}}$ if $i \leqslant X$
- $Y_{M_{X+1}} \leqslant q_{\alpha_{M_{X+1}}} \notin\left\{Q_{1}, \ldots, Q_{m-1}\right\}$

It follows from Lemma 4 that $Y_{1}, \ldots, Y_{m-1}, y_{m}$ is \sim-dominated by $Q_{1}, \ldots, Q_{m-1}, q_{\alpha_{M_{X+1}}}$, hence by $q_{z(1)}, \ldots, q_{z(m-1)}, q_{\alpha_{M_{X+1}}}$. This contradicts the definition of $z(m)$.
Lemma 14. For each $1 \leqslant r \leqslant k$ we have $\bar{x}_{z(r)} \leqslant \bar{w}_{r}$.
Proof. Lemma 7 combined with 2 show that there is some $u \in W$ whose first k values are

$$
q_{1} \cdots q_{z(r)-1} \bar{x}_{z(r)} \cdots \bar{x}_{k}
$$

with the property that there exists $v \in u W_{I}$ such that $y \leqslant v \leqslant \bar{w}$. In particular,

$$
\left(\widetilde{y_{1}, \ldots, y_{r}}\right) \leqslant^{\prime}\left(\widetilde{v_{1}, \ldots, v_{r}}\right) \leqslant^{\prime}\left(\bar{w}_{1}, \ldots, \bar{w}_{r}\right) .
$$

Not all of $\left(v_{1}, \ldots, v_{r}\right)$ can come from $q_{1}, \ldots, q_{z(r)-1}$ by Lemma 12 . Thus one of $\bar{x}_{z(r)}, \ldots, \bar{x}_{k}$ appears amongst v_{1}, \ldots, v_{r}. In particular, the smallest such \bar{x}_{*} namely $\bar{x}_{z(r)}$ is $\leqslant \bar{w}_{r}$.

Corollary 15. For each $1 \leqslant r \leqslant k$ we have $\left(y_{1}, \ldots, y_{r}\right) \leqslant(q z(1) \ldots, q z(r))$ and $(\bar{x} z(1), \ldots, \bar{x} z(r)) \leqslant^{\prime}$ $\left(\bar{w}_{1}, \ldots, \bar{w}_{r}\right)$.

Proof. The statement about $y_{*} \mathrm{~s}$ and $q z(*) \mathrm{s}$ is true by construction of z. The statement about $\bar{x} z(*) \mathrm{s}$ and \bar{w}_{*} s follows by Lemma 14 and an induction using Lemma 4.

Similar arguments for the positions $k+1, \ldots, n$ will produce $z(k+1), \ldots, z(n)$ such that for all $k+1 \leqslant$ $r \leqslant n$ we have $\left(y_{r}, \ldots, y_{n}\right) \geqslant^{\prime}(q z(r), \ldots, q z(n))$ and $(\bar{x} z(r), \ldots, \bar{x} z(n)) \geqslant^{\prime}\left(\bar{w}_{r}, \ldots, \bar{w}_{n}\right)$. This completes the construction of the z required for our theorem by Lemma 2 .

3. IF

Suppose $q \leqslant \bar{x}, y \leqslant \bar{w}$ and that there exists $z \in W_{I}$ such that $\bar{x} z \leqslant \bar{w}$ and $y \leqslant q z$. We will give a proof that $[q, \bar{x}] W_{I} \subseteq[y, \bar{w}] W_{I}$ which works for any parabolic subgroup (not just maximal ones) and in any Coxeter group.

We can get a reduced expression for $\bar{x} z$ by concatenating reduced expressions for \bar{x} and z. Since $q \leqslant \bar{x}$ this is a reduced expression for $\bar{x} z$ that contains a possibly non-reduced expression for $q z$, which can be refined to a reduced expression by omitting some terms. Thus $q z \leqslant \bar{x} z$.

Let $q \leqslant r \leqslant \bar{x}$, we need to show $r W_{I} \cap[y, \bar{w}] W_{I} \neq \emptyset$ and it is enough to show $r W_{I} \cap[q z, \bar{x} z] W_{I} \neq \emptyset$ because $y \leqslant q z \leqslant \bar{x} z \leqslant \bar{w}$. This we do by induction on the length of z, and the base case when $z=e$ is immediate.

Now let $z=z_{0} s$ where s is a simple reflection in W_{I} and $l(z)=l\left(z_{0}\right)+1$. By induction there is some $z^{\prime} \in W_{I}$ such that $q z_{0} \leqslant r z^{\prime} \leqslant \bar{x} z_{0}$. We seek an element of $r W_{I} \cap\left[q z_{0} s, \bar{x} z_{0} s\right]$.
Case $1 q z_{0} s<q z_{0}$. Then

$$
q z_{0} s<q z_{0} \leqslant r z^{\prime} \leqslant \bar{x} z_{0}<\bar{x} z_{0} s
$$

Case 2.i $q z_{0} s>q z_{0}, r z^{\prime} s>r z^{\prime}$. Then

$$
q z_{0} s \leqslant r z^{\prime} s \leqslant \bar{x} z_{0} s
$$

Case 2.ii $q z_{0} s>q z_{0}, r z^{\prime} s<r z^{\prime}$. Then $r z^{\prime}>r z^{\prime} s, r z^{\prime} \geqslant q z_{0}<q z_{0} s$, so by a lemma from Björner and Brenti, $q z_{0} s \leqslant r z^{\prime}$. Thus

$$
q z_{0} s \leqslant r z^{\prime} \leqslant \bar{x} z_{0} \leqslant \bar{x} z_{0} s
$$

This completes the proof.

