
CONTAINMENT OF CERTAIN BRUHAT INTERVALS MODULO A MAXIMAL

PARABOLIC SUBGROUP IN TYPE A

MATTHEW TOWERS

Let W ∼= Sn be the Weyl group of type A with generating set {s1, . . . , sn−1} where si = (i, i+ 1), acting
on the left on the set {1, 2, . . . , n}. Permutations in W will be written in “complete form”, that is we write

x = x1x2 · · ·xn

(or sometimes x1, x2, . . . , xn) where xi = x(i). Let WI
∼= Sk × Sn−k be the maximal parabolic subgroup

generated by all si with i ̸= k; both k and hence WI are fixed throughout. Each coset xWI contains a
unique element x̄ of minimal length with respect to these generators: x̄ has the form x1x2 · · ·xn where the
sequences (x1, x2, . . . , xk) and (xk+1, xk+2, . . . , xn) are both increasing.

The object of this note is to prove the following result:

Theorem 1. Let x, q, w, y ∈ W be such that q ⩽ x̄ and y ⩽ w̄. Then

(1) [q, x̄]WI ⊆ [y, w̄]WI

if and only if there exists z ∈ WI such that x̄z ⩽ w̄ and qz ⩾ y.

Here ⩽ denotes the Bruhat order, [a, b] is the Bruhat interval {c ∈ W : a ⩽ c ⩽ b} and [a, b]WI means
{cWI : c ∈ [a, b]}.

1. Definitions and lemmas

Before we begin on the proof we need a few definitions and lemmas on type A Bruhat order.

If (a1, a2, . . .) is some sequence of distinct natural numbers we write ˜(a1, a2, . . .) for the unique rearrange-
ment of this sequence whose terms are increasing. On the set Nr we will use the product order ⩽′ defined
by (a1, a2, . . .) ⩽′ (b1, b2, . . .) if and only if ai ⩽ bi for all i. We say (a1, a2, . . .) ∼-dominates (b1, b2, . . .) if

˜(a1, a2, . . .) ⩾′ ˜(b1, b2, . . .).

Lemma 2. Let w, y ∈ W . For any 1 ⩽ m ⩽ n the following are equivalent:

• w ⩾ y in the Bruhat order.

• ˜(w1, . . . , wr) ⩾′ ˜(y1, . . . , yr) for all r ⩽ m and ˜(wr, . . . , wn) ⩽′ ˜(yr, . . . , yn) for all r > m.

For m = n this says w ⩾ y if and only if ˜(w1, . . . , wr) ⩾′ ˜(y1, . . . , yr) for all r.

Lemma 3. Let q ⩽ x̄. Then qi ⩽ x̄i for all i ⩽ k and qi ⩾ x̄i for all i > k.

Proof. For i ⩽ k we have ˜(q1, . . . , qi) ⩽′ (x1, . . . , xi) and the first part follows immediately. For the second,
use Lemma 2 with m = k and a similar argument. □

Lemma 4. Suppose a1, . . . , am ∼-dominates b1, . . . , bm and a ⩾ b. Then a1, . . . , am, a ∼-dominates b1, . . . , bm, b.

Proof. Let ˜(a1, . . . , am) = A1, . . . , Am and ˜(b1, . . . , bm) = B1, . . . , Bm, so that Ai ⩾ Bi for all i. Let
Ar ⩽ a < Ar+1 and Bs ⩽ b < Bs+1. We want to compare the sequences A1, . . . , Ar, a, Ar+1, . . . , Am and
B1, . . . , Bs, b, Bs+1, . . . , Bm. Suppose first that s ⩾ r:

· · · ⩽ Ar ⩽ a ⩽ Ar+1 ⩽ · · · ⩽ As−1 ⩽ As ⩽ As+1 ⩽ · · ·
· · · ⩽ Br ⩽ Br+1 ⩽ Br+2 ⩽ · · · ⩽ Bs ⩽ b ⩽ Bs+1 ⩽ · · ·
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Each thing in the bottom row is ⩽ the thing directly above it. This is clear up to Br and after Bs+1. In
between, Br+1 ⩽ b ⩽ a, Br+2 ⩽ b ⩽ a ⩽ Ar+1, and so on up to Bs ⩽ b ⩽ a ⩽ As−1 and b ⩽ a ⩽ As.

Now suppose s ⩽ r

· · · ⩽ As ⩽ As+1 ⩽ As+2 ⩽ · · · ⩽ Ar ⩽ a ⩽ Ar+1 ⩽ · · ·
· · · ⩽ Bs ⩽ b ⩽ Bs+1 ⩽ · · · ⩽ Br−1 ⩽ Br ⩽ Br+1 ⩽ · · ·

Again we only need worry about the places between s and r. There, b ⩽ Bs+1 ⩽ As+1, Bs+1 ⩽ As+1 ⩽ As+2

and so on up to Br ⩽ Ar ⩽ a. □

An induction using the above Lemma shows that if ai ⩾ bi for all 1 ⩽ i ⩽ m then for each 1 ⩽ i ⩽ m, the
sequence a1, . . . , ai ∼-dominates b1, . . . , bi.

Corollary 5. Suppose u, v ∈ W and there exists 1 ⩽ m ⩽ n such that ui ⩽ vi for all 1 ⩽ i ⩽ m and ui ⩾ vi
for all i > m Then u ⩽ v.

The following is taken from Fulton’s Young Tableaux where it is Lemma 10.11 on p.174.

Lemma 6. Let u < v be permutations, let j be minimal such that uj ̸= vj (so uj < vj) and let m be minimal
such that m > j and vj > vm ⩾ uj. Then u ⩽ v(j,m) < v.

Here (j,m) is a transposition. Note that the complete form of v(j,m) looks the same as that of v, except
that the entries in positions j and m are swapped.

Lemma 7. Let q ⩽ x̄. Then for each 1 ⩽ r ⩽ k there is some permutation whose first k values are

q1, . . . , qr, xr+1, . . . , xk

in the Bruhat interval [q, x̄].

Remark 8. It’s clear that Lemma 6 will help with the proof of this: e.g. suppose q1 < x̄1, so j = 1 in the
notation of Lemma 6. Look for m minimal such that q1 ⩽ x̄m < x̄1, clearly we must have m > k. Now after
position k, x̄ looks like

1, 2, 3, . . . , ̂̄x1, . . . , ̂̄x2, . . .

(the hat denotes an omitted term). So in fact x̄m = q1, and Lemma 6 gives

q ⩽ q1x2 · · ·xk| · · · ⩽ x̄

where what appears after xk looks like the sequence 1, . . . , n with x̄1, . . . , x̄k removed and then x̄1 substituted
for q1.

Proof. The proof is by induction on r, the base case being either vacuous (if x̄1 = q1) or as discussed in the
above remark. We need to strengthen the inductive hypothesis slightly: it will be that there is some element
v in [q, x̄] of the form

q1 · · · qrx̄r+1 · · · x̄k · · ·
where what appears after the kth place can be obtained by taking the sequence 1, . . . , n, deleting each of
x̄1, . . . , x̄k, then replacing some of q1, . . . qr with some of x̄1, . . . , x̄r. Of course, some of q1, . . . qr may have
been deleted as x̄is. We do not assume qi was replaced by x̄i.

If x̄r+1 = qr+1, the inductive step goes through immediately so we may as well assume qr+1 < x̄r+1. We
apply Lemma 6 to q < v, its output will be between q and v so certainly in the interval [q, x̄]. The first place
in which q and v differ is r+1, so this is the first element of the transposition occuring in Lemma 6. To find
the second we must look for the first vm in the interval [qr+1, x̄r+1); clearly m > k.

Inductively the values of v from the kth place onwards look like

1, 2, 3, . . . , ̂̄x1, . . . , ̂̄x2, . . .

with some of the q1, . . . , qr that remain replaced by some of x̄1, . . . , x̄r. Thus the first vm in [qr+1, x̄r+1) is
either qr+1 itself, or one of x̄1, . . . , x̄r. If it was qr+1, the inductive step goes through. Otherwise vm is some
x̄∗ in the interval (qr+1, x̄r+1). The result of applying Lemma 6 in this case is a permutation

q ⩽ q1 · · · qrx̄∗x̄r+2 · · · x̄k · · · ⩽ x̄

where the part of the permutation after place k is in the correct inductive form: we have swapped some x̄∗
which was in the position of a q∗ for x̄r+1.
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Apply Lemma 6 repeatedly: each time we preserve the inductive form in places after k, each time we
either put qr+1 in place r + 1 or we put a strictly smaller x̄∗ there. This can’t go on forever, so eventually
we get a permutation with qr+1 in place r + 1, completing the inductive step. □

2. Only if

Suppose throughout this section that q ⩽ x̄, y ⩽ w̄, and that (1) holds. Thus

(2) ∀u : q ⩽ u ⩽ x̄ =⇒ uWI ∩ [y, w̄] ̸= ∅.

Lemma 9. The ith largest element of y1, . . . , yk is dominated by at least i elements of q1, . . . , qk.

Proof. Applying (2) with u = q we see that qz1 ⩾ y for some z1 ∈ WI Thus

˜(y1, . . . , yk) ⩽
′ ˜(q1, . . . , qk)

and the result follows. □

Consider the following proceedure P. Initial step: choose z(1) to be the minimal element of {1, . . . , k}
such that qz(1) ⩾ y1 if such an element exists, otherwise stop. General step: suppose the proceedure has
constructed z(1), . . . , z(m−1) successfully. Let z(m) be the minimal element of {1, . . . , l}\{z(1), . . . , z(m−1)}
such that ˜(qz(1), . . . , qz(m)) ⩾′ ˜(y1, . . . , ym) if such an element exists, otherwise stop.

Lemma 10. Proceedure P successfully constructs z(1), . . . , z(k).

Remark 11. Applying (2) with u = q we see that qz1 ⩾ y for some z1 ∈ WI , thus some q∗ is greater than
or equal to y1 and z(1) is defined. Let’s look at the next step. What we need is the existence of some qi with
z(1) ̸= i ⩽ k such that qi, qz(1) ∼-dominates y1, y2. If there is some q∗ other than qz(1) that is ⩾ y2, this
will do by Lemma 4. If not, y2 must be ⩽ qz(1) and is the largest of all y1, . . . , yk by Lemma 9. Furthermore
y1 is at most the second largest, so it is dominated by a q∗ other than z(1), and this q∗ together with qz(1)
∼-dominate y1, y2 by Lemma 3.

Proof. As in the remark above, z(1) is defined. Suppose that

• z(1) is miminal such that qz(1) ⩾ y1

• z(2) is minimal such that ˜(qz(1), qz(2)) ⩾ ˜(y1, y2)
• . . .

• z(r) is mimimal such that ˜(qz(1), . . . , qz(r)) ⩾ ˜(y1, . . . , yr)

and r < k. We must show that the set of q∗ ∈ {q1, . . . , qk} \ {qz(1), . . . , qz(r)} such that qz(1), . . . , qz(r), q∗
∼-dominates y1, . . . , yr+1 is non-empty.

As before, if there is any element of {q1, . . . , qk} \ {qz(1), . . . , qz(k)} dominating yr+1 we are done. So we
assume this fails, and therefore by Lemma 9 yr+1 is the rth largest (or larger) element of the set y1, . . . , yk.
This mean that one of y1, . . . , yr is only the (r+1)st largest (or smaller) of the set y1, . . . , yk, so is dominated
by a q∗ which is not any of the qz(i)s. Take yi to be the largest element of y1, . . . , yk such that there exists
qM /∈ {qz(1), . . . , qz(r)} withM ⩽ k and qM ⩾ yi. We have yi < yr+1, otherwise yr+1 < yi < qM contradicting
our assumption.

Let ˜(y1, . . . , yr) = Y1, . . . , Yr and ˜(qz(1), . . . , qz(r)) = Q1, . . . Qr. Suppose Yl−1 < yr+1 < Yl. We have the
following diagram of inequalities:

Q1 < · · · < Ql−1 < Ql < · · · < Qr

⩽ ⩽ ⩽ ⩽

Y1 < · · · < Yl−1 < yr+1 < Yl < · · · < Yr

yi appears somewhere amongst Y1, . . . , Yl−1. Now yr+1 is at most the (r− l+2)th largest of y1, . . . , yk so it
is dominated by at least (r− l+2) of q1, . . . , qk, all of which by assumption are Q∗s. It follows yr+1 ⩽ Ql−1.

Say yi = YA, where A ⩽ l − 1. Each of YA+1, . . . , Yl−1 is only dominated by elements of q1, . . . , qk that
are amongst our Q∗ by definition of yi. Furthermore if Yl−1 ̸= yi then it is at most the (r − l + 3)th largest
of y1, . . . , yk, so it is dominated by at least (r− l+3) of q1, . . . , qk all of which are Q∗s, so it must be ⩽ Ql−2.
The same argument shows each Ya is ⩽ Qa−1 for A+ 1 ⩽ a ⩽ l − 1. So:
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· · · < QA−1 qM QA < · · · < Ql−2 < Ql−1 < Ql < · · · < Qr

⩽ ⩽ ⩽ ⩽ ⩽ ⩽ ⩽

· · · < YA−1 < yi < YA+1 < · · · < Yl−1 < yr+1 < Yl < · · · < Yr

We have (Q1, . . . , Qr) ⩾′ (Y1, . . . , YA−1, YA+1, . . . , Yl−1, yr+1, Yl, . . . , Yr) and qM ⩾ yi. By Lemma 4,
(Q1, . . . , Qr, qM ), a rearrangement of (qz(1), . . . , qz(r), qM ), ∼-dominates (Y1, . . . , Yr, yr+1) which is a re-
arrangement of (y1, . . . , yr+1). This completes the proof. □

Note that {z(1), . . . , z(k)} = {1, . . . , k}, so we may think of z as a permutation of {1, . . . , k}.

Lemma 12. Let 1 ⩽ m ⩽ k. No m-tuple from q1, . . . , qz(m)−1 ∼-dominates y1, . . . , ym.

Remark 13. In the case qz(r)−1 < r, this lemma says nothing. Let’s see how it works for r = 2: suppose a

pair qr < qs from q1, . . . , qz(2)−1 is such that (qr, qs) ⩾′ ˜(y1, y2). Neither r nor s can equal z(1) otherwise we
contradict the definition of z(2). So we have qR ⩾ y1, qS ⩾ y2 for some {R,S} = {r, s}. We may replace qR
by qz(1) and preserve these inequalities, so by Lemma 4, qz(1), qS ∼-dominates y1, y2. This contradicts the
definition of z(2).

Proof. Suppose some m-tuple qa1 , . . . , qam from q1, . . . , qz(m)−1 ∼-dominates y1, . . . , ym. We will show that
some element of this m-tuple together with qz(1), . . . , qz(m−1) form another m-tuple ∼-dominating y1, . . . , ym,
contradicting the minimality of z(m).

Write ˜(y1, . . . , ym−1) = Y1, . . . , Ym−1, ˜(qz(1), . . . , qz(m−1)) = Q1, . . . , Qm−1. Since ˜(y1, . . . , ym) ⩾′ ˜(qa1
, . . . , qam

)
there are {α1, . . . , αm} = {a1, . . . , am} such that

Q1 ⩾ Y1 ⩽ qα1

Q2 ⩾ Y2 ⩽ qα2

...
...

...
Qm−1 ⩾ Ym−1 ⩽ qαm−1

ym ⩽ qαm

If qαm
/∈ {Q1, . . . , Qm−1} = {qz(1), . . . , qz(m−1)} then we have αm < z(m) and qz(1), . . . , qz(m−1), qαm

∼-dominates y1, . . . , ym, a contradiction to minimality of z(m). So we may assume qαm = QM0 some
1 ⩽ M0 ⩽ m− 1.

Suppose qαm
= QM0

, qαM0
= QM1

, . . . , qαMX
= QMX+1

, but qαMX+1
/∈ {Q1, . . . , Qm−1}.

First, I claim that the M0, . . . ,MX+1 are pairwise distinct. Suppose this holds for M0, . . . ,ML but
ML+1 = MR where R ⩽ L. Then qαML

= QML+1
= QMR

= qαMR−1
(or qαm if R = 0). But the q∗ are

pairwise distinct, so MR−1 = ML contradicting pairwise distinctness of M0, . . . ,ML.
We now have:

• ym ⩽ QM0

• Yi ⩽ Qi if i is not one of the M∗
• YMi

⩽ qαMi
= QMi+1

if i ⩽ X

• YMX+1
⩽ qαMX+1

/∈ {Q1, . . . , Qm−1}
It follows from Lemma 4 that Y1, . . . , Ym−1, ym is ∼-dominated by Q1, . . . , Qm−1, qαMX+1

, hence by

qz(1), . . . , qz(m−1), qαMX+1
. This contradicts the definition of z(m). □

Lemma 14. For each 1 ⩽ r ⩽ k we have x̄z(r) ⩽ w̄r.

Proof. Lemma 7 combined with 2 show that there is some u ∈ W whose first k values are

q1 · · · qz(r)−1x̄z(r) · · · x̄k

with the property that there exists v ∈ uWI such that y ⩽ v ⩽ w̄. In particular,

˜(y1, . . . , yr) ⩽
′ ˜(v1, . . . , vr) ⩽

′ (w̄1, . . . , w̄r).

Not all of (v1, . . . , vr) can come from q1, . . . , qz(r)−1 by Lemma 12. Thus one of x̄z(r), . . . , x̄k appears amongst
v1, . . . , vr. In particular, the smallest such x̄∗ namely x̄z(r) is ⩽ w̄r. □
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Corollary 15. For each 1 ⩽ r ⩽ k we have ˜(y1, . . . , yr) ⩽′ ˜(qz(1), . . . , qz(r)) and ˜(x̄z(1), . . . , x̄z(r)) ⩽′

(w̄1, . . . , w̄r).

Proof. The statement about y∗s and qz(∗)s is true by construction of z. The statement about x̄z(∗)s and
w̄∗s follows by Lemma 14 and an induction using Lemma 4. □

Similar arguments for the positions k + 1, . . . , n will produce z(k + 1), . . . , z(n) such that for all k + 1 ⩽

r ⩽ n we have ˜(yr, . . . , yn) ⩾′ ˜(qz(r), . . . , qz(n)) and ˜(x̄z(r), . . . , x̄z(n)) ⩾′ (w̄r, . . . , w̄n). This completes the
construction of the z required for our theorem by Lemma 2.

3. If

Suppose q ⩽ x̄, y ⩽ w̄ and that there exists z ∈ WI such that x̄z ⩽ w̄ and y ⩽ qz. We will give a proof
that [q, x̄]WI ⊆ [y, w̄]WI which works for any parabolic subgroup (not just maximal ones) and in any Coxeter
group.

We can get a reduced expression for x̄z by concatenating reduced expressions for x̄ and z. Since q ⩽ x̄ this
is a reduced expression for x̄z that contains a possibly non-reduced expression for qz, which can be refined
to a reduced expression by omitting some terms. Thus qz ⩽ x̄z.

Let q ⩽ r ⩽ x̄, we need to show rWI ∩ [y, w̄]WI ̸= ∅ and it is enough to show rWI ∩ [qz, x̄z]WI ̸= ∅ because
y ⩽ qz ⩽ x̄z ⩽ w̄. This we do by induction on the length of z, and the base case when z = e is immediate.

Now let z = z0s where s is a simple reflection in WI and l(z) = l(z0) + 1. By induction there is some
z′ ∈ WI such that qz0 ⩽ rz′ ⩽ x̄z0. We seek an element of rWI ∩ [qz0s, x̄z0s].
Case 1 qz0s < qz0. Then

qz0s < qz0 ⩽ rz′ ⩽ x̄z0 < x̄z0s.

Case 2.i qz0s > qz0, rz
′s > rz′. Then

qz0s ⩽ rz′s ⩽ x̄z0s.

Case 2.ii qz0s > qz0, rz
′s < rz′. Then rz′ > rz′s, rz′ ⩾ qz0 < qz0s, so by a lemma from Björner and Brenti,

qz0s ⩽ rz′. Thus
qz0s ⩽ rz′ ⩽ x̄z0 ⩽ x̄z0s

This completes the proof.
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