CONTAINMENT OF CERTAIN BRUHAT INTERVALS MODULO A MAXIMAL PARABOLIC SUBGROUP IN TYPE A

MATTHEW TOWERS

Let $W \cong S_n$ be the Weyl group of type A with generating set $\{s_1, \ldots, s_{n-1}\}$ where $s_i = (i, i+1)$, acting on the left on the set $\{1, 2, \ldots, n\}$. Permutations in W will be written in "complete form", that is we write

$$x = x_1 x_2 \cdots x_n$$

(or sometimes x_1, x_2, \ldots, x_n) where $x_i = x(i)$. Let $W_I \cong S_k \times S_{n-k}$ be the maximal parabolic subgroup generated by all s_i with $i \neq k$; both k and hence W_I are fixed throughout. Each coset xW_I contains a unique element \bar{x} of minimal length with respect to these generators: \bar{x} has the form $x_1x_2\cdots x_n$ where the sequences (x_1, x_2, \ldots, x_k) and $(x_{k+1}, x_{k+2}, \ldots, x_n)$ are both increasing.

The object of this note is to prove the following result:

Theorem 1. Let $x, q, w, y \in W$ be such that $q \leq \overline{x}$ and $y \leq \overline{w}$. Then

(1)
$$[q,\bar{x}]W_I \subseteq [y,\bar{w}]W_I$$

if and only if there exists $z \in W_I$ such that $\bar{x}z \leq \bar{w}$ and $qz \geq y$.

Here \leq denotes the Bruhat order, [a, b] is the Bruhat interval $\{c \in W : a \leq c \leq b\}$ and $[a, b]W_I$ means $\{cW_I : c \in [a, b]\}$.

1. Definitions and Lemmas

Before we begin on the proof we need a few definitions and lemmas on type A Bruhat order.

If (a_1, a_2, \ldots) is some sequence of distinct natural numbers we write (a_1, a_2, \ldots) for the unique rearrangement of this sequence whose terms are increasing. On the set \mathbb{N}^r we will use the product order \leq' defined by $(a_1, a_2, \ldots) \leq (b_1, b_2, \ldots)$ if and only if $a_i \leq b_i$ for all *i*. We say $(a_1, a_2, \ldots) \sim$ -**dominates** (b_1, b_2, \ldots) if $(a_1, a_2, \ldots) \geq (b_1, b_2, \ldots)$.

Lemma 2. Let $w, y \in W$. For any $1 \leq m \leq n$ the following are equivalent:

- $w \ge y$ in the Bruhat order.
- $(w_1,\ldots,w_r) \ge '(y_1,\ldots,y_r)$ for all $r \le m$ and $(w_r,\ldots,w_n) \le '(y_r,\ldots,y_n)$ for all r > m.
- For m = n this says $w \ge y$ if and only if $(w_1, \ldots, w_r) \ge (y_1, \ldots, y_r)$ for all r.

Lemma 3. Let $q \leq \bar{x}$. Then $q_i \leq \bar{x}_i$ for all $i \leq k$ and $q_i \geq \bar{x}_i$ for all i > k.

Proof. For $i \leq k$ we have $(q_1, \ldots, q_i) \leq '(x_1, \ldots, x_i)$ and the first part follows immediately. For the second, use Lemma 2 with m = k and a similar argument.

Lemma 4. Suppose $a_1, \ldots, a_m \sim$ -dominates b_1, \ldots, b_m and $a \ge b$. Then $a_1, \ldots, a_m, a \sim$ -dominates b_1, \ldots, b_m, b .

Proof. Let $(a_1, \ldots, a_m) = A_1, \ldots, A_m$ and $(b_1, \ldots, b_m) = B_1, \ldots, B_m$, so that $A_i \ge B_i$ for all *i*. Let $A_r \le a < A_{r+1}$ and $B_s \le b < B_{s+1}$. We want to compare the sequences $A_1, \ldots, A_r, a, A_{r+1}, \ldots, A_m$ and $B_1, \ldots, B_s, b, B_{s+1}, \ldots, B_m$. Suppose first that $s \ge r$:

$$\cdots \leqslant A_r \leqslant a \leqslant A_{r+1} \leqslant \cdots \leqslant A_{s-1} \leqslant A_s \leqslant A_{s+1} \leqslant \cdots \\ \cdots \leqslant B_r \leqslant B_{r+1} \leqslant B_{r+2} \leqslant \cdots \leqslant B_s \leqslant b \leqslant B_{s+1} \leqslant \cdots$$

Date: Monday 15th January, 2024.

Each thing in the bottom row is \leq the thing directly above it. This is clear up to B_r and after B_{s+1} . In between, $B_{r+1} \leq b \leq a$, $B_{r+2} \leq b \leq a \leq A_{r+1}$, and so on up to $B_s \leq b \leq a \leq A_{s-1}$ and $b \leq a \leq A_s$.

Now suppose $s \leqslant r$

 $\cdots \leqslant A_s \leqslant A_{s+1} \leqslant A_{s+2} \leqslant \cdots \leqslant A_r \leqslant a \leqslant A_{r+1} \leqslant \cdots \\ \cdots \leqslant B_s \leqslant b \leqslant B_{s+1} \leqslant \cdots \leqslant B_{r-1} \leqslant B_r \leqslant B_{r+1} \leqslant \cdots$

Again we only need worry about the places between s and r. There, $b \leq B_{s+1} \leq A_{s+1}$, $B_{s+1} \leq A_{s+1} \leq A_{s+2}$ and so on up to $B_r \leq A_r \leq a$.

An induction using the above Lemma shows that if $a_i \ge b_i$ for all $1 \le i \le m$ then for each $1 \le i \le m$, the sequence $a_1, \ldots, a_i \sim$ -dominates b_1, \ldots, b_i .

Corollary 5. Suppose $u, v \in W$ and there exists $1 \leq m \leq n$ such that $u_i \leq v_i$ for all $1 \leq i \leq m$ and $u_i \geq v_i$ for all i > m Then $u \leq v$.

The following is taken from Fulton's Young Tableaux where it is Lemma 10.11 on p.174.

Lemma 6. Let u < v be permutations, let j be minimal such that $u_j \neq v_j$ (so $u_j < v_j$) and let m be minimal such that m > j and $v_j > v_m \ge u_j$. Then $u \le v(j,m) < v$.

Here (j, m) is a transposition. Note that the complete form of v(j, m) looks the same as that of v, except that the entries in positions j and m are swapped.

Lemma 7. Let $q \leq \bar{x}$. Then for each $1 \leq r \leq k$ there is some permutation whose first k values are

$$q_1,\ldots,q_r,x_{r+1},\ldots,x_k$$

in the Bruhat interval $[q, \bar{x}]$.

Remark 8. It's clear that Lemma 6 will help with the proof of this: e.g. suppose $q_1 < \bar{x}_1$, so j = 1 in the notation of Lemma 6. Look for m minimal such that $q_1 \leq \bar{x}_m < \bar{x}_1$, clearly we must have m > k. Now after position k, \bar{x} looks like

$$1, 2, 3, \ldots, \bar{\bar{x}}_1, \ldots, \bar{\bar{x}}_2, \ldots$$

(the hat denotes an omitted term). So in fact $\bar{x}_m = q_1$, and Lemma 6 gives

$$q \leqslant q_1 x_2 \cdots x_k | \cdots \leqslant \bar{x}$$

where what appears after x_k looks like the sequence $1, \ldots, n$ with $\bar{x}_1, \ldots, \bar{x}_k$ removed and then \bar{x}_1 substituted for q_1 .

Proof. The proof is by induction on r, the base case being either vacuous (if $\bar{x}_1 = q_1$) or as discussed in the above remark. We need to strengthen the inductive hypothesis slightly: it will be that there is some element v in $[q, \bar{x}]$ of the form

$$q_1 \cdots q_r \bar{x}_{r+1} \cdots \bar{x}_k \cdots$$

where what appears after the kth place can be obtained by taking the sequence $1, \ldots, n$, deleting each of $\bar{x}_1, \ldots, \bar{x}_k$, then replacing some of q_1, \ldots, q_r with some of $\bar{x}_1, \ldots, \bar{x}_r$. Of course, some of q_1, \ldots, q_r may have been deleted as \bar{x}_i s. We do not assume q_i was replaced by \bar{x}_i .

If $\bar{x}_{r+1} = q_{r+1}$, the inductive step goes through immediately so we may as well assume $q_{r+1} < \bar{x}_{r+1}$. We apply Lemma 6 to q < v, its output will be between q and v so certainly in the interval $[q, \bar{x}]$. The first place in which q and v differ is r+1, so this is the first element of the transposition occuring in Lemma 6. To find the second we must look for the first v_m in the interval $[q_{r+1}, \bar{x}_{r+1})$; clearly m > k.

Inductively the values of v from the kth place onwards look like

$$1, 2, 3, \ldots, \widehat{\overline{x}_1}, \ldots, \widehat{\overline{x}_2}, \ldots$$

with some of the q_1, \ldots, q_r that remain replaced by some of $\bar{x}_1, \ldots, \bar{x}_r$. Thus the first v_m in $[q_{r+1}, \bar{x}_{r+1})$ is either q_{r+1} itself, or one of $\bar{x}_1, \ldots, \bar{x}_r$. If it was q_{r+1} , the inductive step goes through. Otherwise v_m is some \bar{x}_* in the interval (q_{r+1}, \bar{x}_{r+1}) . The result of applying Lemma 6 in this case is a permutation

$$q \leqslant q_1 \cdots q_r \bar{x}_* \bar{x}_{r+2} \cdots \bar{x}_k \cdots \leqslant \bar{x}$$

where the part of the permutation after place k is in the correct inductive form: we have swapped some \bar{x}_* which was in the position of a q_* for \bar{x}_{r+1} .

Apply Lemma 6 repeatedly: each time we preserve the inductive form in places after k, each time we either put q_{r+1} in place r + 1 or we put a *strictly smaller* \bar{x}_* there. This can't go on forever, so eventually we get a permutation with q_{r+1} in place r + 1, completing the inductive step.

2. Only if

Suppose throughout this section that $q \leq \bar{x}, y \leq \bar{w}$, and that (1) holds. Thus

(2)
$$\forall u : q \leqslant u \leqslant \bar{x} \implies uW_I \cap [y, \bar{w}] \neq \emptyset.$$

Lemma 9. The *i*th largest element of y_1, \ldots, y_k is dominated by at least *i* elements of q_1, \ldots, q_k .

Proof. Applying (2) with u = q we see that $qz_1 \ge y$ for some $z_1 \in W_I$ Thus

$$(y_1,\ldots,y_k) \leqslant' (q_1,\ldots,q_k)$$

and the result follows.

Consider the following **proceedure P**. Initial step: choose z(1) to be the minimal element of $\{1, \ldots, k\}$ such that $q_{z(1)} \ge y_1$ if such an element exists, otherwise stop. General step: suppose the proceedure has constructed $z(1), \ldots, z(m-1)$ successfully. Let z(m) be the minimal element of $\{1, \ldots, l\} \setminus \{z(1), \ldots, z(m-1)\}$ such that $(q_{z(1)}, \ldots, q_{z(m)}) \ge '(y_1, \ldots, y_m)$ if such an element exists, otherwise stop.

Lemma 10. Proceedure P successfully constructs $z(1), \ldots, z(k)$.

Remark 11. Applying (2) with u = q we see that $qz_1 \ge y$ for some $z_1 \in W_I$, thus some q_* is greater than or equal to y_1 and z(1) is defined. Let's look at the next step. What we need is the existence of some q_i with $z(1) \ne i \le k$ such that $q_i, q_{z(1)} \sim$ -dominates y_1, y_2 . If there is some q_* other than $q_{z(1)}$ that is $\ge y_2$, this will do by Lemma 4. If not, y_2 must be $\le q_{z(1)}$ and is the largest of all y_1, \ldots, y_k by Lemma 9. Furthermore y_1 is at most the second largest, so it is dominated by a q_* other than z(1), and this q_* together with $q_{z(1)}$ \sim -dominate y_1, y_2 by Lemma 3.

Proof. As in the remark above, z(1) is defined. Suppose that

- z(1) is minimal such that $q_{z(1)} \ge y_1$
- z(2) is minimal such that $(q_{z(1)}, q_{z(2)}) \ge (y_1, y_2)$
- ...
- z(r) is minimal such that $(q_{z(1)}, \ldots, q_{z(r)}) \ge (y_1, \ldots, y_r)$

and r < k. We must show that the set of $q_* \in \{q_1, \ldots, q_k\} \setminus \{q_{z(1)}, \ldots, q_{z(r)}\}$ such that $q_{z(1)}, \ldots, q_{z(r)}, q_* \sim$ -dominates y_1, \ldots, y_{r+1} is non-empty.

As before, if there is any element of $\{q_1, \ldots, q_k\} \setminus \{q_{z(1)}, \ldots, q_{z(k)}\}$ dominating y_{r+1} we are done. So we assume this fails, and therefore by Lemma 9 y_{r+1} is the *r*th largest (or larger) element of the set y_1, \ldots, y_k . This mean that one of y_1, \ldots, y_r is only the (r+1)st largest (or smaller) of the set y_1, \ldots, y_k , so is dominated by a q_* which is not any of the $q_{z(i)}$ s. Take y_i to be the largest element of y_1, \ldots, y_k such that there exists $q_M \notin \{q_{z(1)}, \ldots, q_{z(r)}\}$ with $M \leq k$ and $q_M \geq y_i$. We have $y_i < y_{r+1}$, otherwise $y_{r+1} < y_i < q_M$ contradicting our assumption.

Let $(y_1, \ldots, y_r) = Y_1, \ldots, Y_r$ and $(q_{z(1)}, \ldots, q_{z(r)}) = Q_1, \ldots, Q_r$. Suppose $Y_{l-1} < y_{r+1} < Y_l$. We have the following diagram of inequalities:

 y_i appears somewhere amongst Y_1, \ldots, Y_{l-1} . Now y_{r+1} is at most the (r-l+2)th largest of y_1, \ldots, y_k so it is dominated by at least (r-l+2) of q_1, \ldots, q_k , all of which by assumption are Q_* s. It follows $y_{r+1} \leq Q_{l-1}$.

Say $y_i = Y_A$, where $A \leq l-1$. Each of Y_{A+1}, \ldots, Y_{l-1} is only dominated by elements of q_1, \ldots, q_k that are amongst our Q_* by definition of y_i . Furthermore if $Y_{l-1} \neq y_i$ then it is at most the (r-l+3)th largest of y_1, \ldots, y_k , so it is dominated by at least (r-l+3) of q_1, \ldots, q_k all of which are Q_* s, so it must be $\leq Q_{l-2}$. The same argument shows each Y_a is $\leq Q_{a-1}$ for $A+1 \leq a \leq l-1$. So:

We have $(Q_1, \ldots, Q_r) \geq '(Y_1, \ldots, Y_{A-1}, Y_{A+1}, \ldots, Y_{l-1}, y_{r+1}, Y_l, \ldots, Y_r)$ and $q_M \geq y_i$. By Lemma 4, (Q_1, \ldots, Q_r, q_M) , a rearrangement of $(q_{z(1)}, \ldots, q_{z(r)}, q_M)$, ~-dominates $(Y_1, \ldots, Y_r, y_{r+1})$ which is a rearrangement of (y_1, \ldots, y_{r+1}) . This completes the proof.

Note that $\{z(1), \ldots, z(k)\} = \{1, \ldots, k\}$, so we may think of z as a permutation of $\{1, \ldots, k\}$.

Lemma 12. Let $1 \leq m \leq k$. No *m*-tuple from $q_1, \ldots, q_{z(m)-1} \sim$ -dominates y_1, \ldots, y_m .

Remark 13. In the case $q_{z(r)-1} < r$, this lemma says nothing. Let's see how it works for r = 2: suppose a pair $q_r < q_s$ from $q_1, \ldots, q_{z(2)-1}$ is such that $(q_r, q_s) \ge '(y_1, y_2)$. Neither r nor s can equal z(1) otherwise we contradict the definition of z(2). So we have $q_R \ge y_1, q_S \ge y_2$ for some $\{R, S\} = \{r, s\}$. We may replace q_R by $q_{z(1)}$ and preserve these inequalities, so by Lemma 4, $q_{z(1)}, q_S \sim$ -dominates y_1, y_2 . This contradicts the definition of z(2).

Proof. Suppose some *m*-tuple q_{a_1}, \ldots, q_{a_m} from $q_1, \ldots, q_{z(m)-1}$ ~-dominates y_1, \ldots, y_m . We will show that some element of this *m*-tuple together with $q_{z(1)}, \ldots, q_{z(m-1)}$ form another *m*-tuple ~-dominating y_1, \ldots, y_m , contradicting the minimality of z(m).

Write $(y_1, \ldots, y_{m-1}) = Y_1, \ldots, Y_{m-1}, (q_{z(1)}, \ldots, q_{z(m-1)}) = Q_1, \ldots, Q_{m-1}$. Since $(y_1, \ldots, y_m) \ge ' (q_{a_1}, \ldots, q_{a_m})$ there are $\{\alpha_1, \ldots, \alpha_m\} = \{a_1, \ldots, a_m\}$ such that

$$\begin{array}{cccc} Q_1 \geqslant & Y_1 & \leqslant q_{\alpha_1} \\ Q_2 \geqslant & Y_2 & \leqslant q_{\alpha_2} \\ \vdots & \vdots & \vdots \\ Q_{m-1} \geqslant & Y_{m-1} & \leqslant q_{\alpha_{m-1}} \\ & y_m & \leqslant q_{\alpha_m} \end{array}$$

If $q_{\alpha_m} \notin \{Q_1, \ldots, Q_{m-1}\} = \{q_{z(1)}, \ldots, q_{z(m-1)}\}$ then we have $\alpha_m < z(m)$ and $q_{z(1)}, \ldots, q_{z(m-1)}, q_{\alpha_m}$ ~-dominates y_1, \ldots, y_m , a contradiction to minimality of z(m). So we may assume $q_{\alpha_m} = Q_{M_0}$ some $1 \leqslant M_0 \leqslant m-1$.

Suppose $q_{\alpha_m} = Q_{M_0}, q_{\alpha_{M_0}} = Q_{M_1}, \dots, q_{\alpha_{M_X}} = Q_{M_{X+1}},$ but $q_{\alpha_{M_{X+1}}} \notin \{Q_1, \dots, Q_{m-1}\}.$

First, I claim that the M_0, \ldots, M_{X+1} are pairwise distinct. Suppose this holds for M_0, \ldots, M_L but $M_{L+1} = M_R$ where $R \leq L$. Then $q_{\alpha_{M_L}} = Q_{M_{L+1}} = Q_{M_R} = q_{\alpha_{M_{R-1}}}$ (or q_{α_m} if R = 0). But the q_* are pairwise distinct, so $M_{R-1} = M_L$ contradicting pairwise distinctness of M_0, \ldots, M_L .

- We now have:
 - $y_m \leqslant Q_{M_0}$
 - $Y_i \leqslant Q_i$ if *i* is not one of the M_*
 - $Y_{M_i} \leqslant q_{\alpha_{M_i}} = Q_{M_{i+1}}$ if $i \leqslant X$
 - $Y_{M_{X+1}} \leqslant q_{\alpha_{M_{X+1}}} \notin \{Q_1, \dots, Q_{m-1}\}$

It follows from Lemma 4 that $Y_1, \ldots, Y_{m-1}, y_m$ is ~-dominated by $Q_1, \ldots, Q_{m-1}, q_{\alpha_{M_{X+1}}}$, hence by $q_{z(1)}, \ldots, q_{z(m-1)}, q_{\alpha_{M_{X+1}}}$. This contradicts the definition of z(m).

Lemma 14. For each $1 \leq r \leq k$ we have $\bar{x}_{z(r)} \leq \bar{w}_r$.

Proof. Lemma 7 combined with 2 show that there is some $u \in W$ whose first k values are

$$q_1 \cdots q_{z(r)-1} \bar{x}_{z(r)} \cdots \bar{x}_k$$

with the property that there exists $v \in uW_I$ such that $y \leq v \leq \overline{w}$. In particular,

$$(y_1,\ldots,y_r) \leqslant' (v_1,\ldots,v_r) \leqslant' (\bar{w}_1,\ldots,\bar{w}_r).$$

Not all of (v_1, \ldots, v_r) can come from $q_1, \ldots, q_{z(r)-1}$ by Lemma 12. Thus one of $\bar{x}_{z(r)}, \ldots, \bar{x}_k$ appears amongst v_1, \ldots, v_r . In particular, the smallest such \bar{x}_* namely $\bar{x}_{z(r)}$ is $\leq \bar{w}_r$.

Corollary 15. For each $1 \leq r \leq k$ we have $(y_1, \ldots, y_r) \leq '(qz(1), \ldots, qz(r))$ and $(\bar{x}z(1), \ldots, \bar{x}z(r)) \leq '(\bar{w}_1, \ldots, \bar{w}_r)$.

Proof. The statement about y_*s and qz(*)s is true by construction of z. The statement about $\bar{x}z(*)s$ and \bar{w}_*s follows by Lemma 14 and an induction using Lemma 4.

Similar arguments for the positions k + 1, ..., n will produce z(k + 1), ..., z(n) such that for all $k + 1 \leq r \leq n$ we have $(y_r, ..., y_n) \geq '(qz(r), ..., qz(n))$ and $(\bar{x}z(r), ..., \bar{x}z(n)) \geq '(\bar{w}_r, ..., \bar{w}_n)$. This completes the construction of the z required for our theorem by Lemma 2.

3. If

Suppose $q \leq \bar{x}, y \leq \bar{w}$ and that there exists $z \in W_I$ such that $\bar{x}z \leq \bar{w}$ and $y \leq qz$. We will give a proof that $[q, \bar{x}]W_I \subseteq [y, \bar{w}]W_I$ which works for any parabolic subgroup (not just maximal ones) and in any Coxeter group.

We can get a reduced expression for $\bar{x}z$ by concatenating reduced expressions for \bar{x} and z. Since $q \leq \bar{x}$ this is a reduced expression for $\bar{x}z$ that contains a possibly non-reduced expression for qz, which can be refined to a reduced expression by omitting some terms. Thus $qz \leq \bar{x}z$.

Let $q \leq r \leq \bar{x}$, we need to show $rW_I \cap [y, \bar{w}]W_I \neq \emptyset$ and it is enough to show $rW_I \cap [qz, \bar{x}z]W_I \neq \emptyset$ because $y \leq qz \leq \bar{x}z \leq \bar{w}$. This we do by induction on the length of z, and the base case when z = e is immediate.

Now let $z = z_0 s$ where s is a simple reflection in W_I and $l(z) = l(z_0) + 1$. By induction there is some $z' \in W_I$ such that $qz_0 \leq rz' \leq \bar{x}z_0$. We seek an element of $rW_I \cap [qz_0s, \bar{x}z_0s]$.

Case 1 $qz_0s < qz_0$. Then

$$qz_0s < qz_0 \leqslant rz' \leqslant \bar{x}z_0 < \bar{x}z_0s.$$

Case 2.i $qz_0 s > qz_0, rz's > rz'$. Then

$$qz_0s \leqslant rz's \leqslant \bar{x}z_0s.$$

Case 2.ii $qz_0 s > qz_0, rz's < rz'$. Then $rz' > rz's, rz' \ge qz_0 < qz_0 s$, so by a lemma from Björner and Brenti, $qz_0 s \le rz'$. Thus

 $qz_0s \leqslant rz' \leqslant \bar{x}z_0 \leqslant \bar{x}z_0s$

This completes the proof.