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Notation and Review

F: Number field.
S': finite set of primes of F'.
R := Op|1/5], the ring of S integers in F.

p: odd prime not divisible by primes in .S and v a prime of F' above
p with F, = Q,.

T :=SU{wlp}.
G := Gal(F/F). Gr := Gal(Fr/T).

X': smooth curve over Spec(R) with good compactification. (Itself
might be compact.)

X: generic fiber of X', assumed to be hyperbolic.
b € X(R), possibly tangential.




U = rt (X,0), the Q,-pro-unipotent étale fundamental group of
X =X®O0Q.
U' C U, lower central series, normalized so that U! = U.

U; = UN\U.

U = UN\U for j <.
UPE .= 7PR(X @ Q,,b), with corresponding notation for the

characteristic subquotients.
P(z) = "% (X:b, 2), Po(z) = P(z) xu U,.
PPE(x) .= 7PR(X ©@ Qs b, 7), ete.




Unipotent descent tower:




loc,

H}(G,Un)—>H1(GU,U) = UDR /0

H}(G, U): moduli space of U-torsors on Spec(R[1/p]|) that are

crystalline at all w|p.
H}(Gv, U, ): moduli space of crystalline U-torsors on Spec(F,).

The subgroup F° c UP® is the zeroth level of the Hodge filtration,
so that U/F? classifies UP* torsors with compatible action of

Frobenius and reduction of structure group to F°.




The map
Hi(Gy,Uy) — UYT/F°

sends a U-torsor Y = Spec(A) to

D(Y) := Spec(|A ® BCT]G“),

and diagram commutes by comparison isomorphism of non-abelian

p-adic Hodge theory.
The focus of the study then is the localization map

loc,
H}(G,U,) —> H;(G,,Uy,)

and its image.




Current status:

1. Whenever the image is not Zariski dense, X'(R) is finite.

X(R) = X(R,) Nloc,(HHG, Uy)).

Difficult to prove non-denseness in any situation where the

corresponding (Galois theory is genuinely non-abelian.




2. Suppose F' = Q and
Im(G) C Aut(H,(X,Q,)

is essentially abelian. Then loc, is not dominant for n >> 0.

Basic application of FEuler characteristic formula

dimH°(G7,U") — dimH (G, U") + dimH* (G, U")

= (H°(Gw,Up) — [Fy : R]dimU})

w|oo

and control of H2. In non-abelian situations, leads to difficult

questions about Galois cohomology.




3. One expects greater precision coming from some version of

duality for Galois cohomology.
Example:

E/Q elliptic curve with

rank £ (Q) =1,
integral j-invariant, and

[HI(E)[p™] < oo

for a prime p of good reduction.

X = FE '\ {0} given as a minimal Weierstrass model:

y* =% + ax + .

X(2) c E(Z) = EQ).




Let a = dz/y, B = xzdx/y. Get analytic functions on X (Q,),

0z () = [ “a; logy(e) = / 5

w(z) = /bz af.

Here, b is a tangential base-point at 0, and the integral is (iterated)

Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while

do=([

for the iteration,
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Suppose there is a point y € X (Z) of infinite order in E(Q). Then
the subset

X(Z) Cc X(Qyp)

lies in the zero set of the analytic function

P(2) = w(z) = (1/2) log, (2) logg(2)

B (w(y) — (1/2)log, (y) 10g5(y)) e
(log. (1))? (loga(2))°".

A fragment of non-abelian duality and explicit reciprocity.
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Linearization

Study the tangential localization map:

dloc,(c) : T-H3 (G, U)=Tjoe (o H}(Go, U)

at a point ¢ € Hy(G,U).

Formulae:
T.H;(G,U) ~ H{(G, L(c));

Toc, (o) H{(Gy,U) ~ H; (G, L(c));
where L is the Lie algebra of U with Galois action twisted by the

cocycle c.
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For non-denseness, suffices to show that dloc,(c) is not surjective at

generic points c.

Can formulate a criterion in terms of the cotangent space:

H} (G, U) = H' (G, (L(e))* () /H}(Gon (L(e))*(1))

Tf:)cv (c)

coming from local Tate duality.
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Theorem 0.1 Assume that for generic c there is a class
2 € H'(Gr, (La(c))"(1))
such that locy,(2) = 0 for w # v and
locy(2) ¢ Hp(Go, (Ln(c))*(1)).
Then

loc, : Hy(G,Uy)—H3(Gy,Uy)

18 not domainant.
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Proof.

By Poitou-Tate duality, we know that the images of the localization
maps
locr : HY (G, L, (c))— ®wer H' (G, Ln(c))

and
locr : HY (G, (Ln(€))*(1))= ®wer H' (Gu, (Ln(c))* (1))
are exact annihilators under the natural pairing

< sy 2> @wETHl(GwaLn(C)) X @wETHl(Gwa (Ln(c))*(1>)

With respect to the pairing < -,- >, at v, H{ (G, Ly(c))
H(Gy, (Ln(c))*(1)) are mutual annihilators.
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Given any element (ay) € SperH'(Guw, Ly(c)), we have

< locr(2), (ay) >=<loc,(2),ay >y .

Hence, for any a € H;(G, Ly(c)), we get

< locy(a),locy(2) >,=<locr(a),locr(z) >= 0.

Since < -,loc,(z) > defines a non-trivial linear functional on
H;(Gy, Ln(c)), this implies the desired results. O
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Duality in families

In the following, I is G or G,,.

Given a point ¢ of H'(T',U) in a Q,-algebra R, compose it with a

section s of the projection
ZNT,U)—HYT,U)

to get an element of ZY(I',U)(R) = ZY(I',U(R)).

Given representation
p: U—Aut(F)

of U, twist it with the cocycle ¢ to get p. acting on
FE(R) = E ®q, R defined by

pe(g)r = Ad(c(g))p(g)z.
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The cocycles Z*(T', E(c)(R)) and the cohomology H*(T', E(c)(R)),
acquire structures of R modules, defining a sheaf H*(I", L) of
modules on H*(T', U).

Carry this out for the Lie algebra L to get the sheaf H(T', £), as
well as for the dual L*(1) to get the Tate dual sheaf H*(T", £*(1)).

Similarly, for each term L; occurring in the descending central

series:

H'(T, £5),  H'(T, (£5)"(1)).
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We have exact sequences,

0—H (T, L) (R)—H' (T, L) (R)

2, H*(T, L")(R)

HO(T, (£3)(1))
) (D)(R)—H (T, (£3,)" (1) (R)

—H\(T, (L, (
(1))(R)

n—1

9 7 *
= H*(T, (L},_1)

19



Furthermore,

H'(T, (£)"(D))(R) = H'(T, (Ly)*(1))) ® R;

H'T,L")(R) ~ H'(I',L") ® R.

By induction on n, we see that both H*(I", £ ) and
HYT,(L£Y)*(1)) are coherent sheaves.
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Now consider the case where I' = G,,.
The sheaves
H' (G, (£3,)"(1))
and
HY (G, L))

are locally free for ¢ > 2, and we have arbitrary base-change

HY (G, (£3)"(1))(R) ® A = H (G, (£3,)"(1))(A);

H (G, £3,)(R) ® A= H'(Gy, L},)(A);

Global sheaves are more complicated in general.
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The cup product pairings

H* (G, £3,)(R) x H (G, (£3,)"(1))(R)—=H*(G,,Qp(1)) ® R~ R;

H' (G, £3,)(R) x H (G, (£,,)"(1))(R)—~H?(Gy,Qp(1)) ® R~ R.
define maps
H®(Go, (£3,)" (D)) (R)—H*(Gy, L3,)(R)";

H (G, (£;,)" (D)) (R)—H (G, L3,)(R)",

which are isomorphisms for z > 2.
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Back to P\ {0,1, 00}

X =P\ {0,1, 00}.
U is freely generated by two elements e and f lifting generators of

U = Qp(1) © Qp(1).

However, using tangential basepoint, can make f stable under the
Galois action:

gf =x(9)f.

I C Lie(U): ideal generated by Lie monomials in e and f degree at

least two in f.

N = Lie(U)/I and M corresponding quotient group of U.
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N1 — LZQ(U)l — Hl(X,Qp).
NF = N*T1\ N* is one-dimensional, generated by ad(e)*~1(f).

We have a decomposition of GGalois representations
N2 — @;022Nz—|—1\Nz
with N*TH\N* ~ Q, (7).

Structure of N(c) for ¢ non-trivial can be more complicated.
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However,
H*(T,NJ') = H*(T, Q,(n)) = 0

for n > 2. Furthermore, there exists a K > 2 such that

H*(T, (N;)"(1)) =0

for n > K.

As a consequence, global cohomology variety is smooth, and
dimH?*(T', N,,(c)), dimH?*(T, (N,(c))*(1))

are bounded independently of n and c.
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Short exact sequences:
0—H' (T, N)—~H" (T, N;)—H (T, N}, 1)—0

0—H (T, (M) (1) —=H (T, (N,)" (1)) = H (T, (N, _1)" (1)) =0

of locally-free sheaves and arbitrary base-change

HY (T, N)(R) ® A~ HY (T, N;,)(A),

H'(T, (M) (D)(R) @ A~ H' (T, (NV,)"(1)(4)
locally and globally, for : > K.
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Some consequences:

-We have an embedding
H'(Gp, (N;)* (1) | [ locs, H (G, (N)*(1))
wlp

as a local direct factor for + > K.

-After base change to any smooth curve mapping to H*(Gr, M,),

the image of the map
HY(Gr, N2 ()= [ loch,H' (Gy, (N2)*(1))
w|p,w#v
is a local direct factor for 7 > K.

-The kernel Ker?, of the the above map is a local direct factor that

commutes with base-change for i > K.

Now we analyze all these objects at the tangential base-point.
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Define

o
N, = G9K§z'gn,evenNZ/NZJr :

Proposition 0.2 Let F' be totally real. There is a subspace
Z5 c HY(Gr,[NE]*(1)) such that loc,(ZE) =0 for w # v and

loc, : Zp, ~ HY (G, [NT1*(1)).
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Key point is that
N, = ®gN;.

and

Hl(GTva(l - Z)) = EBwlpj_ll(GwvQp(l - Z))

for ¢+ > K even, while
H'(Gr,Qy(1—1)) = 0

for + > K odd.
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By deforming this subspace to the nearby fibers, we get

Proposition 0.3 Let F' be totally real. At a generic point c, there
is a subspace ZX (¢) ¢ HY(Gr, (N2 (c))*(1)) of dimension
> |(n— K)/2]| such that

locw(ZX(c)) =0

for w # v and

loc, : Z,,If(c)%Hl(Gv,( ())*(1)).
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Proposition 0.4 Let F' be totally real. Then for n sufficiently

large, and generic c there is an element z € H' (G, N}(1)(c)) such
that loc,(z) = 0 for w # v and

loc,(z) ¢ H (G, Ny (1)(c)).
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Proof.
Note that dimZX% (¢) > |(n — K)/2]. From the exact sequence

0—[Ng—1(c)]"(1)—=[Na(e)]" (1) =[Ny (e)]"(1)—0,

we get
0—H"(Gr,[Nk—-1(c)]*(1))—=H"(Gr, [Ny(c)]*(1))—
—H(Gr, [N, (0)]"(1)—H*(Gr, [Nx-1(c)]" (1)),
and an exact sequence
0—H (G, [Nk-1(c)]"(1))=H (G, [Na(e)]" (1)) —Imy—0,

for a subspace
Im, € H'(Gr [N ())(1))

of codimension at most dimH?(Gr, [Nx_1(c)]*(1)).
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Now we consider

0—  HY(Gr[Nx—1(c)]"(1))
|
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Clearly,

dimZ% (¢) N Im,—o0

as n—oo. But the cokernel of

HY(Gr, [Nk-1(0)]" (1)) = Buwlpwte H' (Gus [Nx-1(c)]"(1))

has of course dimension bounded independently of n.
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So we see from the snake lemma that there is an element

z € H'(Gr, [Na(c)]*(1))

lifting an element of Z,,(c¢) N Im,,, such that
locy,(2) =0

for w € T, w # v and
loc,(2) # 0.

In fact, since z is being chosen to map to a non-zero element of
dimZ,, (c¢) N I'm,, and H}(GU, [INE(c)]*(1)) = 0, we see that

loc,(2) & Hf(Gy, [Nn(0)]"(1)).
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Corollary 0.5 For n sufficiently large,

T.H(Gr, M) =Tloe (o Hp (Go, M)

1S not surjective.
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