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Notation and Review

F : Number field.

S: finite set of primes of F .

R := OF [1/S], the ring of S integers in F .

p: odd prime not divisible by primes in S and v a prime of F above

p with Fv = Qp.

T := S ∪ {w|p}.

G := Gal(F̄ /F ). GT := Gal(FT /T ).

X : smooth curve over Spec(R) with good compactification. (Itself

might be compact.)

X : generic fiber of X , assumed to be hyperbolic.

b ∈ X (R), possibly tangential.
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U := π
et,Qp

1 (X̄, b), the Qp-pro-unipotent étale fundamental group of

X̄ = X ⊗ Q̄.

U i ⊂ U , lower central series, normalized so that U1 = U .

Ui = U i+1\U.

U i
j = U i+1\U j for j ≤ i.

UDR := πDR
1 (X ⊗ Qp, b), with corresponding notation for the

characteristic subquotients.

P (x) := π
et,Qp

1 (X̄ ; b, x), Pn(x) = P (x) ×U Un.

PDR(x) := πDR
1 (X ⊗ Qp; b, x), etc.
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Unipotent descent tower:

...
... H1

f (G,U4)

H1
f (G,U3)

?

H1
f (G,U2)

?

X (R) -

-
-

-

H1
f (G,U1)

?

x ∈ X (R) 7→ [P (x)] ∈ H1
f (G,U).
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X (R) - X (Rv)

H1
f (G,Un)

?
locv

- H1
f (Gv, Un)

?
≃
- UDR

n /F 0

-

H1
f (G,U): moduli space of U -torsors on Spec(R[1/p]) that are

crystalline at all w|p.

H1
f (Gv, Un): moduli space of crystalline U -torsors on Spec(Fv).

The subgroup F 0 ⊂ UDR is the zeroth level of the Hodge filtration,

so that U/F 0 classifies UDR torsors with compatible action of

Frobenius and reduction of structure group to F 0.
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The map

H1
f (Gv, Un) - UDR

n /F 0

sends a U -torsor Y = Spec(A) to

D(Y ) := Spec([A⊗Bcr]
Gv ),

and diagram commutes by comparison isomorphism of non-abelian

p-adic Hodge theory.

The focus of the study then is the localization map

H1
f (G,Un)

locv
- H1

f (Gv, Un)

and its image.
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Current status:

1. Whenever the image is not Zariski dense, X (R) is finite.

X (R) = X (Rv) ∩ locv(H1
f (G,Un)).

Difficult to prove non-denseness in any situation where the

corresponding Galois theory is genuinely non-abelian.
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2. Suppose F = Q and

Im(G) ⊂ Aut(H1(X̄,Qp)

is essentially abelian. Then locv is not dominant for n >> 0.

Basic application of Euler characteristic formula

dimH0(GT , U
n
n ) − dimH1(GT , U

n
n ) + dimH2(GT , U

n
n )

=
∑
w|∞

(H0(Gw, U
n
n ) − [Fw : R]dimUn

n )

and control of H2. In non-abelian situations, leads to difficult

questions about Galois cohomology.

8



3. One expects greater precision coming from some version of

duality for Galois cohomology.

Example:

E/Q elliptic curve with

rankE(Q) = 1,

integral j-invariant, and

|X(E)[p∞| <∞

for a prime p of good reduction.

X = E \ {0} given as a minimal Weierstrass model:

y2 = x3 + ax+ b.

So

X(Z) ⊂ E(Z) = E(Q).
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Let α = dx/y, β = xdx/y. Get analytic functions on X(Qp),

logα(z) =

∫ z

b

α; logβ(z) =

∫ z

b

β;

ω(z) =

∫ z

b

αβ.

Here, b is a tangential base-point at 0, and the integral is (iterated)

Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while

for the iteration,

dω = (

∫ z

b

β)α.
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Suppose there is a point y ∈ X(Z) of infinite order in E(Q). Then

the subset

X(Z) ⊂ X(Qp)

lies in the zero set of the analytic function

ψ(z) := ω(z) − (1/2) logα(z) logβ(z)

−
(ω(y) − (1/2) logα(y) logβ(y))

(logα(y))2
(logα(z))2.

A fragment of non-abelian duality and explicit reciprocity.
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Linearization

Study the tangential localization map:

dlocv(c) : TcH
1
f (G,U)→Tlocv(c)H

1
f (Gv, U)

at a point c ∈ H1
f (G,U).

Formulae:

TcH
1
f (G,U) ≃ H1

f (G,L(c));

Tlocv(c)H
1
f (Gv, U) ≃ H1

f (Gv, L(c));

where L is the Lie algebra of U with Galois action twisted by the

cocycle c.
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For non-denseness, suffices to show that dlocv(c) is not surjective at

generic points c.

Can formulate a criterion in terms of the cotangent space:

T ∗
locv(c)

H1
f (Gv, U) ≃ H1(Gv, (L(c))∗(1))/H1

f (Gv, (L(c))∗(1))

coming from local Tate duality.
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Theorem 0.1 Assume that for generic c there is a class

z ∈ H1(GT , (Ln(c))∗(1))

such that locw(z) = 0 for w 6= v and

locv(z) /∈ H1
f (Gv, (Ln(c))∗(1)).

Then

locv : H1
f (G,Un)→H1

f (Gv, Un)

is not dominant.
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Proof.

By Poitou-Tate duality, we know that the images of the localization

maps

locT : H1(GT , Ln(c))→⊕w∈T H
1(Gw, Ln(c))

and

locT : H1(GT , (Ln(c))∗(1))→⊕w∈T H
1(Gw, (Ln(c))∗(1))

are exact annihilators under the natural pairing

< ·, · >: ⊕w∈TH
1(Gw, Ln(c)) ×⊕w∈TH

1(Gw, (Ln(c))∗(1))→Qp.

With respect to the pairing < ·, · >v at v, H1
f (Gv, Ln(c)) and

H1
f (Gv, (Ln(c))∗(1)) are mutual annihilators.
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Given any element (aw) ∈ ⊕w∈TH
1(Gw, Ln(c)), we have

< locT (z), (aw) >=< locv(z), av >v .

Hence, for any a ∈ H1
f (G,Ln(c)), we get

< locv(a), locv(z) >v=< locT (a), locT (z) >= 0.

Since < ·, locv(z) > defines a non-trivial linear functional on

H1
f (Gv, Ln(c)), this implies the desired results. 2
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Duality in families

In the following, Γ is GT or Gv.

Given a point c of H1(Γ, U) in a Qp-algebra R, compose it with a

section s of the projection

Z1(Γ, U)→H1(Γ, U)

to get an element of Z1(Γ, U)(R) = Z1(Γ, U(R)).

Given representation

ρ : U→Aut(E)

of U , twist it with the cocycle c to get ρc acting on

E(R) = E ⊗Qp
R defined by

ρc(g)x = Ad(c(g))ρ(g)x.
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The cocycles Zi(Γ, E(c)(R)) and the cohomology Hi(Γ, E(c)(R)),

acquire structures of R modules, defining a sheaf Hi(Γ,L) of

modules on Hi(Γ, U).

Carry this out for the Lie algebra L to get the sheaf Hi(Γ,L), as

well as for the dual L∗(1) to get the Tate dual sheaf Hi(Γ,L∗(1)).

Similarly, for each term Li
j occurring in the descending central

series:

Hi(Γ,Li
j), Hi(Γ, (Li

j)
∗(1)).
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We have exact sequences,

0→H1(Γ,Ln
n)(R)→H1(Γ,Li

n)(R)→H1(Γ,Li
n−1)(R)

δ
→ H2(Γ,Ln

n)(R)

and

H0(Γ, (Ln
n)∗(1))

→H1(Γ, (Li
n−1)

∗(1))(R)→H1(Γ, (Li
n)∗(1))(R)→H1(Γ, (Ln

n)∗(1))(R)

δ
→ H2(Γ, (Li

n−1)
∗(1))(R)
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Furthermore,

Hi(Γ, (Ln
n)∗(1))(R) ≃ Hi(Γ, (Ln

n)∗(1))) ⊗R;

Hi(Γ,Ln
n)(R) ≃ Hi(Γ, Ln

n) ⊗R.

By induction on n, we see that both H1(Γ,Li
n) and

H1(Γ, (Li
n)∗(1)) are coherent sheaves.
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Now consider the case where Γ = Gv.

The sheaves

H1(Gv, (L
i
n)∗(1))

and

H1(Gv,L
i
n)

are locally free for i ≥ 2, and we have arbitrary base-change

H1(Gv, (L
i
n)∗(1))(R) ⊗A = H1(Gv, (L

i
n)∗(1))(A);

H1(Gv,L
i
n)(R) ⊗A = H1(Gv,L

i
n)(A);

Global sheaves are more complicated in general.
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The cup product pairings

H2(Gv,L
i
n)(R) ×H0(Gv, (L

i
n)∗(1))(R)→H2(Gv,Qp(1)) ⊗R ≃ R;

H1(Gv,L
i
n)(R) ×H1(Gv, (L

i
n)∗(1))(R)→H2(Gv,Qp(1)) ⊗R ≃ R.

define maps

H0(Gv, (L
i
n)∗(1))(R)→H2(Gv,L

i
n)(R)∗;

H1(Gv, (L
i
n)∗(1))(R)→H1(Gv,L

i
n)(R)∗,

which are isomorphisms for i ≥ 2.
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Back to P1 \ {0, 1,∞}

X = P1 \ {0, 1,∞}.

U is freely generated by two elements e and f lifting generators of

U1 = Qp(1) ⊕ Qp(1).

However, using tangential basepoint, can make f stable under the

Galois action:

gf = χ(g)f.

I ⊂ Lie(U): ideal generated by Lie monomials in e and f degree at

least two in f .

N = Lie(U)/I and M corresponding quotient group of U .
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N1 = Lie(U)1 = H1(X̄,Qp).

Nk
k = Nk+1\Nk is one-dimensional, generated by ad(e)k−1(f).

We have a decomposition of Galois representations

N2 = ⊕∞
i=2N

i+1\N i

with N i+1\N i ≃ Qp(i).

Structure of N(c) for c non-trivial can be more complicated.
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However,

H2(Γ, Nn
n ) = H2(Γ,Qp(n)) = 0

for n ≥ 2. Furthermore, there exists a K ≥ 2 such that

H2(Γ, (Nn
n )∗(1)) = 0

for n ≥ K.

As a consequence, global cohomology variety is smooth, and

dimH2(Γ, Nn(c)), dimH2(Γ, (Nn(c))∗(1))

are bounded independently of n and c.
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Short exact sequences:

0→H1(Γ,Nn
n )→H1(Γ,N i

n)→H1(Γ,N i
n−1)→0

0→H1(Γ, (Nn
n )∗(1))→H1(Γ, (N i

n)∗(1))→H1(Γ, (N i
n−1)

∗(1))→0

of locally-free sheaves and arbitrary base-change

H1(Γ,N i
n)(R) ⊗A ≃ H1(Γ,N i

n)(A),

H1(Γ, (N i
n)∗(1))(R) ⊗A ≃ H1(Γ, (N i

n)∗(1))(A)

locally and globally, for i ≥ K.
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Some consequences:

-We have an embedding

H1(GT , (N
i
n)∗(1))→֒

∏
w|p

loc∗wH
1(Gv, (N

i
n)∗(1))

as a local direct factor for i ≥ K.

-After base change to any smooth curve mapping to H1(GT ,Mn),

the image of the map

H1(GT , (N
i
n)∗(1))→

∏
w|p,w 6=v

loc∗wH
1(Gv, (N

i
n)∗(1))

is a local direct factor for i ≥ K.

-The kernel Keri
n of the the above map is a local direct factor that

commutes with base-change for i ≥ K.

Now we analyze all these objects at the tangential base-point.
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Define

N+
n := ⊕K≤i≤n,evenN

i/N i+1.

Proposition 0.2 Let F be totally real. There is a subspace

ZK
n ⊂ H1(GT , [N

K
n ]∗(1)) such that locw(ZK

n ) = 0 for w 6= v and

locv : Zn ≃ H1(Gv, [N
+
n ]∗(1)).
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Key point is that

NK
n = ⊕n

i=KN
i
i .

and

H1(GT ,Qp(1 − i)) ≃ ⊕w|pH
1(Gw,Qp(1 − i))

for i ≥ K even, while

H1(GT ,Qp(1 − i)) = 0

for i ≥ K odd.
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By deforming this subspace to the nearby fibers, we get

Proposition 0.3 Let F be totally real. At a generic point c, there

is a subspace ZK
n (c) ⊂ H1(GT , (N

K
n (c))∗(1)) of dimension

≥ ⌊(n−K)/2⌋ such that

locw(ZK
n (c)) = 0

for w 6= v and

locv : ZK
n (c)→֒H1(Gv, (N

K
n (c))∗(1)).
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Proposition 0.4 Let F be totally real. Then for n sufficiently

large, and generic c there is an element z ∈ H1(GT , N
∗
n(1)(c)) such

that locw(z) = 0 for w 6= v and

locv(z) /∈ H1
f (Gv, N

∗
n(1)(c)).
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Proof.

Note that dimZK
n (c) ≥ ⌊(n−K)/2⌋. From the exact sequence

0→[NK−1(c)]
∗(1)→[Nn(c)]∗(1)→[NK

n (c)]∗(1)→0,

we get

0→H1(GT , [NK−1(c)]
∗(1))→H1(GT , [Nn(c)]∗(1))→

→H1(GT , [N
K
n (c)]∗(1))→H2(GT , [NK−1(c)]

∗(1)),

and an exact sequence

0→H1(GT , [NK−1(c)]
∗(1))→H1(GT , [Nn(c)]∗(1))→Imn→0,

for a subspace

Imn ⊂ H1(GT , [N
K
n (c)]∗(1))

of codimension at most dimH2(GT , [NK−1(c)]
∗(1)).
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Now we consider

0→ H1(GT , [NK−1(c)]
∗(1)) → H1(GT , [Nn(c)]∗(1))

↓ ↓

0→ ⊕w∈T,w 6=vH
1(Gw, [NK−1(c)]

∗(1)) → ⊕w|p,w 6=vH
1(Gw, [Nn(c)]∗(1))

→ Imn →0

↓

→ ⊕w|p,w 6=vH
1(Gw, [N

K
n (c)]∗(1)) →0
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Clearly,

dimZK
n (c) ∩ Imn→∞

as n→∞. But the cokernel of

H1(GT , [NK−1(c)]
∗(1))→⊕w|p,w 6=v H

1(Gw, [NK−1(c)]
∗(1))

has of course dimension bounded independently of n.
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So we see from the snake lemma that there is an element

z ∈ H1(GT , [Nn(c)]∗(1))

lifting an element of Zn(c) ∩ Imn, such that

locw(z) = 0

for w ∈ T,w 6= v and

locv(z) 6= 0.

In fact, since z is being chosen to map to a non-zero element of

dimZn(c) ∩ Imn and H1
f (Gv, [N

K
n (c)]∗(1)) = 0, we see that

locv(z) /∈ H1
f (Gv, [Nn(c)]∗(1)).

2
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Corollary 0.5 For n sufficiently large,

TcH
1
f (GT ,Mn)→Tlocv(c)H

1
f (Gv,Mn)

is not surjective.
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