4.2 Directional Derivative

For a function of 2 variables $f(x, y)$, we have seen that the function can be used to represent the surface

$$z = f(x, y)$$

and recall the geometric interpretation of the partials:

(i) $f_x(a, b)$-represents the rate of change of the function $f(x, y)$ as we vary x and hold $y = b$ fixed.

(ii) $f_y(a, b)$-represents the rate of change of the function $f(x, y)$ as we vary y and hold $x = a$ fixed.

We now ask, at a point P can we calculate the slope of f in an arbitrary direction?

Recall the definition of the vector function ∇f,

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right).$$

We observe that,

$$\nabla f \cdot \hat{i} = f_x$$
$$\nabla f \cdot \hat{j} = f_y$$

This enables us to calculate the directional derivative in an arbitrary direction, by taking the dot product of ∇f with a unit vector, \vec{u}, in the desired direction.

Definition. The directional derivative of the function f in the direction \vec{u} denoted by $D_{\vec{u}}f$, is defined to be,

$$D_{\vec{u}}f = \frac{\nabla f \cdot \vec{u}}{|\vec{u}|}$$

Example. What is the directional derivative of $f(x, y) = x^2 + xy$, in the direction $\hat{i} + 2\hat{j}$ at the point $(1, 1)$?
Solution: We first find ∇f.

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right)$$

$$= (2x + y, x)$$

$\nabla f(1, 1) = (3, 1)$

Let $u = \vec{i} + 2\vec{j}$.

$$|\vec{u}| = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5}.$$

$$D_{\vec{u}} f(1, 1) = \frac{\nabla f \cdot \vec{u}}{|\vec{u}|}$$

$$= \frac{(3, 1). (1, 2)}{\sqrt{5}}$$

$$= \frac{(3)(1) + (1)(2)}{\sqrt{5}}$$

$$= \frac{5}{\sqrt{5}}$$

$$= \sqrt{5}$$

Properties of the Gradient deduced from the formula of Directional Derivatives

$$D_{\vec{u}} f = \frac{\nabla f \cdot \vec{u}}{|\vec{u}|}$$

$$= \frac{|\nabla f||\vec{u}| \cos \theta}{|\vec{u}|}$$

$$= |\nabla f| \cos \theta$$

1. If $\theta = 0$, i.e. i.e. \vec{u} points in the same direction as ∇f, then $D_{\vec{u}} f$ is maximum. Therefore we may conclude that

(i) ∇f points in the steepest direction.

(ii) The magnitude of ∇f gives the slope in the steepest direction.
2. At any point \(P \), \(\nabla f(P) \) is \textbf{perpendicular to the level set} through that point.

Example. 1. Let \(f(x, y) = x^2 + y^2 \) and let \(P = (1, 2, 5) \). Then \(P \) lies on the graph of \(f \) since \(f(1, 2) = 5 \). Find the slope and the direction of the steepest ascent at \(P \) on the graph of \(f \).

Solution:
- We use the first property of the Gradient vector. The direction of the steepest ascent at \(P \) on the graph of \(f \) is the direction of the gradient vector at the point \((1, 2) \).

\[
\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = (2x, 2y)
\]

\[
\nabla f(1, 2) = (2, 4).
\]

- The slope of the steepest ascent at \(P \) on the graph of \(f \) is the magnitude of the gradient vector at the point \((1, 2) \).

\[
|\nabla f(1, 2)| = \sqrt{2^2 + 4^2} = \sqrt{20}.
\]

2. Find a normal vector to the graph of the equation \(f(x, y) = x^2 + y^2 \) at the point \((1, 2, 5) \). Hence write an equation for the tangent plane at the point \((1, 2, 5) \).

Solution: We use the second property of the gradient vector. For a function \(g \), \(\nabla g(P) \) is \textbf{perpendicular to the level set}. So we want our surface \(z = x^2 + y^2 \) to be the level set of a function.

Therefore we define a new function, \(g(x, y, z) = x^2 + y^2 - z \).

Then our surface is the level set

\[
\begin{align*}
g(x, y, z) &= 0 \\
x^2 + y^2 - z &= 0 \\
z &= x^2 + y^2
\end{align*}
\]
\[\nabla g = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) \]
\[= (2x, 2y, -1) \]
\[\nabla g(1, 2, 5) = (2, 4, -1) \]

By the above property, \(\nabla g(P) \) is perpendicular to the level set \(g(x, y, z) = 0 \). Therefore \(\nabla g(P) \) is the required normal vector.

Finally an equation for the tangent plane at the point \((1, 2, 5)\) on the surface is given by

\[2(x - 1) + 4(y - 2) - 1(z - 5) = 0. \]

4.3 Curl and Divergence

We denoted the gradient of a scalar function \(f(x, y, z) \) as

\[\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \]

Let us separate or isolate the operator \(\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \). We can then define various physical quantities such as div, curl by specifying the action of the operator \(\nabla \).

Divergence

Definition. Given a vector field \(\vec{v}(x, y, z) = (v_1(x, y, z), v_2(x, y, z), v_3(x, y, z)) \), the divergence of \(\vec{v} \) is a scalar function defined as the dot product of the vector operator \(\nabla \) and \(\vec{v} \),

\[\text{Div} \ \vec{v} = \nabla \cdot \vec{v} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (v_1, v_2, v_3) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} \]

Example. Compute the divergence of \((x - y)\hat{i} + (x + y)\hat{j} + z\hat{k} \).
Solution:

\[\vec{v} = ((x - y), (x + y), z) \]
\[\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \]
\[\text{Div } \vec{v} = \nabla \cdot \vec{v} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot ((x - y), (x + y), z) \]
\[= \frac{\partial(x - y)}{\partial x} + \frac{\partial(x + y)}{\partial y} + \frac{\partial z}{\partial z} \]
\[= 1 + 1 + 1 \]
\[= 3 \]

Curl

Definition. The curl of a vector field is a vector function defined as the cross product of the vector operator \(\nabla \) and \(\vec{v} \),

\[\text{Curl } \vec{v} = \nabla \times \vec{v} = \left| \begin{array}{ccc} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{array} \right| \]
\[= \left(\frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \right)i - \left(\frac{\partial v_3}{\partial x} - \frac{\partial v_1}{\partial z} \right)j + \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right)k \]

Example. Compute the curl of the vector function \((x - y)i + (x + y)j + zk\).

Solution:

\[\text{Curl } \vec{v} = \nabla \times \vec{v} = \left| \begin{array}{ccc} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x - y) & (x + y) & z \end{array} \right| \]
\[= \left(\frac{\partial z}{\partial y} - \frac{\partial(x + y)}{\partial z} \right)i - \left(\frac{\partial z}{\partial x} - \frac{\partial(x - y)}{\partial z} \right)j + \left(\frac{\partial(x + y)}{\partial x} - \frac{\partial(x - y)}{\partial y} \right)k \]
\[= (0 - 0)i - (0 - 0)j + (1 - (-1))k \]
\[= 2k \]
4.4 Laplacian

We have seen above that given a vector function, we can calculate the divergence and curl of that function. A scalar function \(f \) has a vector function \(\nabla f \) associated to it. We now look at \(\text{Curl}(\nabla f) \) and \(\text{Div}(\nabla f) \).

\[
\text{Curl}(\nabla f) = \nabla \times \nabla f = (\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z})i + (\frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x})j + (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y})k
\]

\[= (f_{yz} - f_{zy})i + (f_{xz} - f_{zx})j + (f_{xy} - f_{yx})k \]

\[= 0 \]

\[
\text{Div}(\nabla f) = \nabla \cdot \nabla f = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)
\]

\[= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \]

Definition. The Laplacian of a scalar function \(f(x, y) \) of two variables is defined to be \(\text{Div}(\nabla f) \) and is denoted by \(\nabla^2 f \),

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.\]

The Laplacian of a scalar function \(f(x, y, z) \) of three variables is defined to be \(\text{Div}(\nabla f) \) and is denoted by \(\nabla^2 f \),

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.\]

Example. Compute the Laplacian of \(f(x, y, z) = x^2 + y^2 + z^2 \).

Solution:

\[
\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}
\]

\[= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\]

\[= 2 + 2 + 2
\]

\[= 6.\]
We have the following identities for the Laplacian in different coordinate systems:

Rectangular: \[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \]

Polar:
\[\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} \]

Cylindrical:
\[\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} \]

Spherical:
\[\nabla^2 f = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{\rho^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2} \]

Example. Consider the same function \(f(x, y, z) = x^2 + y^2 + z^2 \). We have seen that in rectangular coordinates we get
\[\nabla^2 f = 6. \]

We now calculate this in cylindrical and spherical coordinate systems, using the formulas given above.

1. **Cylindrical Coordinates.**
 We have \(x = r \cos \theta \) and \(y = r \sin \theta \) so
 \[f(r, \theta, z) = r^2 \cos^2 \theta + r^2 \sin^2 \theta + z^2 = r^2 + z^2. \]
 Using the above formula:
 \[\nabla^2 f = \frac{1}{r} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} = \frac{1}{r} \left(2r \right) + \frac{0}{r^2} + \frac{2}{r} = 4 + 2 = 6 \]

2. **Spherical Coordinates.**
 We have \(x = \rho \sin \phi \cos \theta, y = \rho \sin \phi \sin \theta, z = \rho \cos \phi \) and \(\rho = \sqrt{x^2 + y^2 + z^2} \), so
 \[f(r, \theta, z) = \rho^2. \]
Using the above formula:

\[
\nabla^2 f = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{\rho^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}
\]

\[
= \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 2\rho \right) + 0 + 0
\]

\[
= \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(2\rho^3 \right)
\]

\[
= \frac{1}{\rho^2} (6 \rho^2)
\]

\[
= 6.
\]

These three different calculations all produce the same result because \(\nabla^2\) is a derivative with a real physical meaning, and does not depend on the coordinate system being used.
References

1. A brilliant animated example, showing that the maximum slope at a point occurs in the direction of the gradient vector. The animation shows:
 - a surface
 - a unit vector rotating about the point \((1, 1, 0)\), (shown as a rotating black arrow at the base of the figure)
 - a rotating plane parallel to the unit vector, (shown as a grey grid)
 - the traces of the planes in the surface, (shown as a black curve on the surface)
 - the tangent lines to the traces at \((1, 1, f(1, 1))\), (shown as a blue line)
 - the gradient vector (shown in green at the base of the figure)

2. A complete set of notes on Pre-Calculus, Single Variable Calculus, Multi-variable Calculus and Linear Algebra. Here is a link to the chapter on Directional Derivatives.

 Here is a link to the chapter on Curl and Divergence.