6.3 Orthogonal and orthonormal vectors

Definition. We say that 2 vectors are orthogonal if they are perpendicular to each other. i.e. the dot product of the two vectors is zero.
Definition. We say that a set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ are mutually orthogonal if every pair of vectors is orthogonal. i.e.

$$
\vec{v}_{i} \cdot \vec{v}_{j}=0, \text { for all } i \neq j
$$

Example. The set of vectors $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}1 \\ \sqrt{2} \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -\sqrt{2} \\ 1\end{array}\right)$ is mutually orthogonal.

$$
\begin{array}{r}
(1,0,-1) \cdot(1, \sqrt{2}, 1)=0 \\
(1,0,-1) \cdot(1,-\sqrt{2}, 1)=0 \\
(1, \sqrt{2}, 1) \cdot(1,-\sqrt{2}, 1)=0
\end{array}
$$

Definition. A set of vectors S is orthonormal if every vector in S has magnitude 1 and the set of vectors are mutually orthogonal.
Example. We just checked that the vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right)
$$

are mutually orthogonal. The vectors however are not normalized (this term is sometimes used to say that the vectors are not of magnitude 1). Let

$$
\begin{aligned}
& \vec{u}_{1}=\frac{\vec{v}_{1}}{\left|\vec{v}_{1}\right|}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 / \sqrt{2} \\
0 \\
-1 / \sqrt{2}
\end{array}\right) \\
& \vec{u}_{2}=\frac{\vec{v}_{2}}{\left|\vec{v}_{2}\right|}=\frac{1}{2}\left(\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
\sqrt{2} / 2 \\
1 / 2
\end{array}\right) \\
& \vec{u}_{3}=\frac{\vec{v}_{3}}{\left|\vec{v}_{3}\right|}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-\sqrt{2} / 2 \\
1 / 2
\end{array}\right)
\end{aligned}
$$

The set of vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$ is orthonormal.
Proposition An orthogonal set of non-zero vectors is linearly independent.

6.4 Gram-Schmidt Process

Given a set of linearly independent vectors, it is often useful to convert them into an orthonormal set of vectors. We first define the projection operator.

Definition. Let \vec{u} and \vec{v} be two vectors. The projection of the vector \vec{v} on \vec{u} is defined as folows:

$$
\operatorname{Proj}_{\vec{u}} \vec{v}=\frac{(\vec{v} \cdot \vec{u})}{|\vec{u}|^{2}} \vec{u} .
$$

Example. Consider the two vectors $\vec{v}=\binom{1}{1}$ and $\vec{u}=\binom{1}{0}$. These two vectors are linearly independent.
However they are not orthogonal to each other. We create an orthogonal vector in the following manner:

$$
\begin{aligned}
\vec{v}_{1} & =\vec{v}-\left(\operatorname{Proj}_{\vec{u}} \vec{v}\right) \\
\operatorname{Proj}_{\vec{u}} \vec{v} & =\frac{(1)(1)+(1)(0)}{\left(\sqrt{1^{2}+0^{2}}\right)^{2}}\binom{1}{0}=(1)\binom{1}{0} \\
\vec{v}_{1} & =\binom{1}{1}-(1)\binom{1}{0}=\binom{0}{1}
\end{aligned}
$$

\vec{v}_{1} thus constructed is orthogonal to \vec{u}.

The Gram-Schmidt Algorithm:

Let $v_{1}, v_{2}, \ldots, v_{n}$ be a set of n linearly independent vectors in \mathcal{R}^{n}. Then we can construct an orthonormal set of vectors as follows:

Step 1. Let $\vec{u}_{1}=\vec{v}_{1}$.

$$
\vec{e}_{1}=\frac{\vec{u}_{1}}{\left|\vec{u}_{1}\right|} .
$$

Step 2. Let $\vec{u}_{2}=\vec{v}_{2}-\operatorname{Proj}_{\vec{u}_{1}} \overrightarrow{\vec{r}}_{2}$.

$$
\vec{e}_{2}=\frac{\vec{u}_{2}}{\left|\overrightarrow{u_{2}}\right|} .
$$

Step 3. Let $\vec{u}_{3}=\vec{v}_{3}-\operatorname{Proj}_{\vec{u}_{1}} \vec{v}_{3}-\operatorname{Proj}_{\vec{u}_{2}} \vec{v}_{3}$.

$$
\vec{e}_{3}=\frac{\vec{u}_{3}}{\left|\overrightarrow{u_{3}}\right|} .
$$

Step 4. Let $\vec{u}_{4}=\vec{v}_{4}-\operatorname{Proj}_{\vec{u}_{1}} \vec{v}_{4}-\operatorname{Proj}_{\vec{u}_{2}} \vec{v}_{4}-\operatorname{Proj}_{\vec{u}_{3}} \vec{v}_{4}$.

$$
\vec{e}_{4}=\frac{\vec{u}_{4}}{\left|\vec{u}_{4}\right|} .
$$

Example. We will apply the Gram-Schmidt algorithm to orthonormalize the set of vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) .
$$

To apply the Gram-Schmidt, we first need to check that the set of vectors are linearly independent.

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right|=1(0-1)-1((-1)(2)-(1)(1))+1((-1)(1)-0)=1 \neq 0 .
$$

Therefore the vectors are linearly independent.
Gram-Schmidt algorithm:
Step 1. Let

$$
\begin{aligned}
\vec{u}_{1} & =\vec{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
\vec{e}_{1} & =\frac{\vec{u}_{1}}{\left|\vec{u}_{1}\right|}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) .
\end{aligned}
$$

Step 2. Let

$$
\begin{aligned}
\vec{u}_{2} & =\vec{v}_{2}-\operatorname{Proj}_{\vec{u}_{1}} \vec{v}_{2} \\
\operatorname{Proj}_{\vec{u}_{1}} \vec{v}_{2} & =\frac{(1,0,1) \cdot(1,-1,1)}{1^{2}+(-1)^{2}+1^{2}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\frac{2}{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
\vec{u}_{2} & =\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\frac{2}{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right) \\
\vec{e}_{2} & =\frac{\vec{u}_{2}}{\left|\vec{u}_{2}\right|}=\frac{3}{\sqrt{6}}\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right) .
\end{aligned}
$$

Step 3. Let

$$
\begin{aligned}
\vec{u}_{3} & =\vec{v}_{3}-\operatorname{Proj}_{\vec{u}_{1}} \vec{v}_{3}-\operatorname{Proj}_{\vec{u}_{2}} \vec{v}_{3} \\
\operatorname{Proj}_{\vec{u}_{1}} \vec{v}_{3} & =\frac{(1,1,2) \cdot(1,-1,1)}{1^{2}+(-1)^{2}+1^{1}}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)=\frac{2}{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \\
\operatorname{Proj}_{\vec{u}_{2}} \vec{v}_{3} & =\frac{(1,1,2) \cdot(1 / 3,2 / 3,1 / 3)}{(1 / 3)^{2}+(2 / 3)^{2}+(1 / 3)^{2}}\left(\begin{array}{c}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right)=\frac{5}{2}\left(\begin{array}{l}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right) \\
\vec{u}_{3} & =\left(\begin{array}{c}
1 \\
1 \\
2
\end{array}\right)-\frac{2}{3}\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)-\frac{5}{2}\left(\begin{array}{l}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right) \\
& =\left(\begin{array}{c}
-1 / 2 \\
0 \\
1 / 2
\end{array}\right) \\
\vec{e}_{3} & =\frac{\vec{u}_{3}}{\left|\vec{u}_{3}\right|}=\sqrt{2}\left(\begin{array}{c}
-1 / 2 \\
0 \\
1 / 2
\end{array}\right) .
\end{aligned}
$$

Example. Consider the vectors $\{[3,0,4],[-1,0,7],[2,9,11]\}$ Check that the vectors are linearly independent and use the Gram-Schmidt process to find orthogonal vectors.

Ans. $\{[3,0,4],[-4,0,3],[0,9,0]\}$ Check that the vectors are mutually orthogonal.

