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Abstract. We consider arbitrary polarized variations of Hodge struc-
ture of weight two and h2,0 = 1 over a non–singular complex algebraic
curve S and analyze the boundary behaviour of the associated Kudla–
Millson theta series using Schmid’s theorems on degenerations of Hodge
structure. This allows us to prove that this theta series is always inte-
grable over S and to describe explicitly the non-holomorphic part of the
Kudla–Millson generating series in terms of the mixed Hodge structures
at infinity.
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1. Introduction

The goal of this paper is to study the behaviour under degeneration of
Hodge structure of certain theta series introduced by Kudla and Millson to
study special cycles on Shimura varieties. Unlike previous work that ana-
lyzes the case where S is a special subvariety in a toroidal compactification of
a Shimura variety, here we consider polarized variations of Hodge structure
with h2,0 = 1 over an arbitrary non–singular complex curve S.

1.1. Main results. Let S be a connected compact Riemann surface and
denote by S the Riemann surface obtained by removing a finite number of
points from S. Consider an integral polarized variation of Hodge structure
(Z–PVHS)

(1.1) V = (VZ, Q,F•)

��

S
1
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of weight two with h2,0 = 1. Here VZ denotes the local system underlying
V and we write Q for the polarization and F• for the Hodge filtration. Let
us write L for the line bundle F2 over S and V∨

Z ⊇ VZ for the dual lattice
of VZ, that is,

V∨
Zs =

{
v ∈ VQs | Q(v, v′) ∈ Z for all v ∈ VZs

}
.

In order to state our main results succintly we will assume the following
mild condition on V (cf. Remark 1.3 below).

Hypothesis 1.1. For any s ∈ S, the lattice (VZs, Q) is even and VQs is a
simple π1(S, s)–module. Moreover, the fundamental group of S acts trivially
on V∨

Z /VZ and the monodromy of VZ around each P ∈ S \S is unipotent
and non–trivial.

We will be interested in the Noether–Lefschetz loci of V: for a positive
rational number m and µ ∈ V∨

Z /VZ, define

(1.2) NLV(m)µ = {s ∈ S | ∃v ∈ (µ+ VZs) ∩ F1
s with Q(v, v) = 2m}.

The locus NLV(m)µ ⊂ S has a natural complex analytic space structure
[24, §5.3.1]; in fact, by the celebrated theorem of Cattani–Deligne–Kaplan
it is a proper algebraic subset of S with a natural scheme structure. Let us
write deg NLV(m)µ for the degree of the divisor naturally associated with

NLV(m)µ and L for Deligne’s canonical extension of L to a line bundle over

S and form the generating series

(1.3) Z+
V (τ)µ = −deg(L)δµ,0 +

∑
m>0

degNLV(m)µ · qm, q = e2πiτ .

When S is compact, the series Z+
V (τ) are known to be modular forms of

possibly half–integral weight. More precisely, let Mp2(Z) denote the meta-
plectic double cover of SL2(Z) and let ρVZ be the Weil representation of
Mp2(Z) on the group algebra C[V∨

Z /VZ], which has a standard basis eµ in-
dexed by µ ∈ V∨

Z /VZ. The work of Kudla and Millson [18] implies that the
generating series

(1.4) Z+
V (τ) =

∑
µ

Z+
V (τ)µ · eµ

is a ρVZ–valued modular form of weight rk(VZ)/2. Their proof proceeds by
constructing first certain theta series

(1.5) ΘV(τ)µ ∈ Ω1,1(S), µ ∈ V∨
Z /VZ,

depending on τ ∈ H, that transform like non–holomorphic modular forms.
When S is compact one can consider the integral ∫

S
ΘV(τ)µ, which inherits

the transformation properties of ΘV(τ)µ, and so the modularity of Z+
V (τ)

follows from the identity (cf. [18, Theorem 2])

(1.6) Z+
V (τ)µ =

∫
S
ΘV(τ)µ.
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The goal of this paper is to generalize these results to the setting of (1.1)
with S non-compact. In this case the differential forms ΘV(τ)µ often have

singularities around the points in S\S. Our first result is the theorem below
showing that these are always mild enough that ΘV(τ)µ is integrable on S;
note that we do not impose Hypothesis 1.1.

Theorem 1.1. Let S be a smooth complex algebraic curve and V → S be a
Z–PVHS over S of weight two with h2,0 = 1 such that the action of π1(S, s)
on V∨

Z /VZ is trivial. Then the integral

ZV(τ)µ =

∫
S
ΘV(τ)µ

converges for every µ ∈ V∨
Z /VZ and the expression

ZV(τ) =
∑

µ∈V∨
Z /VZ

ZV(τ)µ · eµ

defines a (possibly non-holomorphic) modular form of weight rk(VZ)/2 valued
in ρVZ.

Our second main result gives the precise relation between the non-holo-
morphic modular form ZV(τ) and the generating series Z+

V (τ): one can write

ZV(τ)− Z+
V (τ) =

∑
P∈S \S

Z−
V,P (τ),

where the term Z−
V,P (τ) indexed by a given point P ∈ S \S is determined

explicitly from the polarized mixed Hodge structure defined by the degen-
eration of V at P . More precisely, let us write VZ for the space of global
multivalued sections of VZ, that is, the space of global sections of the pull-
back of VZ to a universal cover of S. The pair (VZ, Q) is an even lattice
of signature (h1,1, 2). A point P ∈ S\S determines then an endomorphism
N(P ) of VZ⊗Q (the local monodromy logarithm) and an ascending filtration
W (P )• of VZ ⊗Q (the shifted weight filtration) such that the quotients

Gr
W (P )
k VZ := (W (P )k ∩ VZ)/(W (P )k−1 ∩ VZ)

are free abelian groups of finite rank. The pair (Q,N(P )) determine bilin-

ear forms Qk on Gr
W (P )
k VZ that define a structure of positive definite even

lattice on Gr
W (P )
4 VZ and on a certain sublattice Gr

W (P )
2,primVZ ⊆ Gr

W (P )
2 VZ;

the elements of Gr
W (P )
2,primVZ can be thought of as classes that become Hodge

“at infinity”.
Associated with these data are positive integers rk(VZ, N(P )) (k = 1, 2),

deg(Q3) and Vol(Gr
W (P )
4 VZ) as well as holomorphic theta series

Θ
Gr

W (P )
2,primVZ

(τ), Θ
Gr

W (P )
4 VZ

(τ),
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valued in finite–dimensional representations ρ
Gr

W (P )
2,primVZ

and ρ
Gr

W (P )
4 VZ

. The

representations ρ
Gr

W (P )
2 VZ

and ρ
Gr

W (P )
2,primVZ

⊗ρ
Gr

W (P )
4 VZ

admit intertwining maps

to ρVZ that we denote by ι.

Theorem 1.2. Assume that V satisfies 1.1. For P ∈ S \ S, denote by N(P )
the local monodromy logarithm and by W (P )• the corresponding (shifted)
weight filtration and define

Z−
V,P (τ) =

r1(VZ, N(P ))

deg(Q3)

1

4πIm(τ)
ι(Θ

Gr
W (P )
2 VZ

)

if N(P )2 = 0 and

Z−
V,P (τ) =

r2(VZ, N(P ))

Vol(Gr
W (P )
4 VZ)1/2

1

4πi

∫ i∞

−τ

ι(Θ
Gr

W (P )
4 VZ

(z)⊗Θ
Gr

W (P )
2,primVZ

(τ))

((z + τ)/i)3/2
dz

if N(P )2 ̸= 0. Then

ZV(τ) = Z+
V (τ) +

∑
P∈S \S

Z−
V,P (τ).

In particular, the right hand side is a ρVZ-valued modular form of weight
rk(VZ)/2.

Remark 1.3. Hypothesis 1.1 is very mild: let V be an arbitrary Z–PVHS
of weight two with h2,0 = 1 such that VQs is a simple π1(S, s)–module (recall
that the category of polarizable Q–VHS over S is semisimple [20, Cor. 13]).
Since the monodromy of a Z-PVHS on the punctured disk is quasi–unipotent
[22, Lemma (4.5)], one can guarantee that 1.1 holds by picking a finite index
even sublattice VZ–module and passing to an appropriate finite cover of S so
that the local monodromies around S\S are unipotent (note that V extends
across any point in S\S with trivial monodromy by [22, Cor. (4.11)]).

Remark 1.4. If V is the PVHS associated with a polarized family X of
K3 surfaces parametrized by S, we can (after replacing S by a finite cover
if necessary) interpret the non-holomorphic terms Z−

V,P in terms of Hodge
classes in the irreducible components of the singular fibers of a semistable
model of X . This follows from the Clemens–Schmid exact sequence (see
e.g. [19]). A similar remark applies if VQ = (VQ, Q,F•) appears as a direct
summand of the PVHS naturally attached to a polarized family of non–
singular projective surfaces parametrized by S.

Remark 1.5. Let

G2(q) = − 1

24
+
∑
n≥1

σ1(n)q
n, σ1(n) :=

∑
d|n

d.

Then G∗
2(τ) := G2(q) + (8πy)−1 is a (non–holomorphic) modular form of

weight 2 for the full modular group SL2(Z) (see [26, eqs. (17) and (21)]);
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moreover, the operator

f 7→ q
d

dq
f + 2kG2(q) · f

sends modular forms of weight k to modular forms of weight k + 2 [26,
§5.1]. Thus in Theorem 1.2 we still obtain a ρVZ-valued modular form if we
replace any term Z−

V,P (τ) associated with a point P of type II with any of
the holomorphic expressions

−2
r1(VZ, N)

deg(Q3)
G2(q)ΘGrW2 VZ

(τ)

or
r1(VZ, N)

deg(Q3)

2

rk(VZ)− 4
· q d
dq

ΘGrW2 VZ
(τ).

Similarly, the Eichler integral of Θ
Gr

W (P )
4 VZ

appearing in the contribution

Z−
V,P of a type III degeneration is the non–holomorphic part of a weight

3/2–Eisenstein series defined in [25] and so we may replace any term Z−
V,P (τ)

associated with a degeneration of type III with a holomorphic expression
involving the holomorphic part of Zagier’s Eisenstein series.

1.2. Relation with other works. In the setting of the PVHS parametrized
by Shimura varieties of orthogonal or unitary type, several recent works ad-
dress the explicit computation of correction terms to the generating series of
special divisors coming from an appropriate toroidal compactification: the
case of modular curves was treated by Funke in [10] and related computa-
tions for toroidal compactifications of unitary Shimura varieties where only
type II degenerations appear are in [3]. Recently Bruinier and Zemel [4] have
proved a result for special divisors on orthogonal Shimura varieties that is
similar to the modularity statement in Theorem 1.2. Their proof involves
studying the asymptotic behaviour of Borcherds lifts along components of
a toroidal compactification. A different proof (and refinement) using more
geometric methods has been very recently obtained by Engel, Greer and
Tayou in [8]. Our paper contributes the explicit description of boundary
terms in terms of limiting mixed Hodge structures and, like [8], it also clar-
ifies the rationality properties of coefficients along type III contributions.

1.3. Strategy of proof. In contrast to the above works, this paper does not
rely on the theory of toroidal compactifications of Shimura varieties. Instead,
our proofs are analytic in nature and use Schmid’s results on degenerations
of Hodge structure, particularly his characterization of the weight filtration
by growth of the Hodge norm and his nilpotent and SL2–orbit theorems. For
a fixed point P ∈ S\S these results imply that in a neighbourhood of P the

variation V is well-approximated by a special type of nilpotent orbit Ṽnilp.
We prove Theorem 1.1 by showing that ΘV(τ)µ −ΘṼnilp(τ)µ and ΘṼnilp(τ)µ
are both locally integrable around P . The proof of Theorem 1.2 reduces
to the computation of the residue of certain canonical Green functions for
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NLV(m)µ along P ∈ S\S. We show that the residue agrees with that of

the corresponding Green function for Ṽnilp, which can be computed exactly
thanks to the explicit nature of nilpotent orbits.

One advantage of our methods over the use of toroidal compactifications
that originally motivated the author’s interest is that the theta series ΘV(τ)
and Schmid’s theorems are available and in definitive form for arbitrary
PVHS of weight two over the complement of a normal crossing divisor in
a higher–dimensional base. Schmid’s several variables SL2-orbit theorem
[6] approximates a degeneration of Hodge structure in n variables by an
(n−1)–dimensional pencil of one–dimensional nilpotent orbits; in particular,
to use his theorem to study the boundary behaviour of ΘV(τ) one must first
understand ΘV(τ) along one–variable degenerations. In future work, the
author hopes to develop the methods in this paper to address the conjectural
(mock) modularity of generating series of Noether–Lefschetz loci for certain
VHS with h2,0 > 1 that are not naturally parametrized by Shimura varieties;
for a particularly interesting example see [9].

1.4. Acknowledgements. The author would like to thank Nicolas Berg-
eron and Keerthi Madapusi for their interest and feedback, and Richard
Thomas for his questions regarding modularity of Noether–Lefschetz loci
for variations with h2,0 > 1.

2. Weight two PVHS over a complex algebraic curve

In this section we briefly review some relevant facts on variations of Hodge
structure over a one–dimensional base. We will only consider integral polar-
ized variations of weight two with Hodge numbers (1, n, 1) for some positive
integer n.

Throughout the paper we fix a connected compact Riemann surface S
and a finite collection of points P1, . . . , Pr ∈ S, and write

S = S − {P1, . . . , Pr}.

Sections 2.1 and 2.2 collect definitions and known facts on degenerations
of Hodge structure and approximation by nilpotent orbits. We refer the
reader to [22, 6] for proofs; our exposition follows closely Hain’s account
[12]. Sections 2.3 and 2.4 compute some nilpotent orbits explicitly. The
formulas in these Sections will be used later to understand the behaviour of
Kudla–Millson forms around the points P ∈ S\S.

2.1. Definitions. Consider an integral polarized variation of Hodge struc-
ture (Z-PVHS) V → S of weight two over S. Here V is a triple (VZ, Q,F•)
consisting of:

• a local system VZ of free and finite rank abelian groups over S,
• a (locally constant) non-degenerate symmetric bilinear form

Q : VZ × VZ → Z,
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• a descending filtration

V = F0 ⊃ F1 ⊃ F2

of the flat complex vector bundle V := VZ ⊗ OS by holomorphic
vector bundles Fk that are locally direct summands,

such that the fiber Vs = ((VZ)s, Qs,F•
s ) over any s ∈ S defines a polarized

Hodge structure of weight two. We assume that

h2,0 = rkF2 = 1,

so that F2 is a holomorphic line bundle over S that we denote by L.
For each s ∈ S we have the Hodge decomposition

(2.1) Vs = ⊕p+q=2Vp,q
s .

Let Cs ∈ End(Vs) denote the Weil operator: it acts as the identity on V1,1
s

and as −1 on V2,0
s ⊕V0,2

s . The polarization induces a hermitian metric ∥·∥V,s
on Vs. This is the Hodge metric, defined by

(2.2) ∥v∥2V,s = Q(Csv, v), v ∈ Vs.

When only one PVHS is being considered, we will suppress V from the
notation and denote the Hodge norm of v ∈ Vs simply by ∥v∥2s.

The polarization Q induces an isomorphism V ≃ V∨ sending a vector
v ∈ Vs to the linear functional v′ 7→ Q(v′, v). Composing this isomorphism
with the canonical surjection V∨ → L∨ dual to the inclusion L ⊂ V gives an
isomorphism V/F1 ≃ L∨. In particular, to a section v ∈ H0(U,V) defined
over U ⊂ S corresponds a section sv ∈ H0(U,L∨). It will be convenient to
define

(2.3) h(sv) = 2∥sv∥2L∨ .

Writing vz = Σvp,qz for the Hodge decomposition of vz ∈ Vz, the value of
h(sv) at z ∈ U is given by

(2.4) h(sv)z = 2∥v2,0z ∥2V = −2Q(v2,0z , v2,0z ).

2.2. Local monodromy and limit mixed Hodge structure. The as-
ymptotic behaviour of V → S around each of the points P ∈ S\S can
be described precisely in terms of limit mixed Hodge structures using the
results of Schmid in [22]. We briefly recall the results that we will use.

Let ∆ = {t ∈ C | |t| < 1} denote the open unit disk in C and let
∆∗ = ∆ − {0} be the punctured open unit disk. Consider a polarized
variation of Hodge structure V = (VZ, Q,F•) of weight two over ∆∗ with
h2,0 = 1.



8 LUIS E. GARCÍA

2.2.1. Local monodromy and weight filtration. For s ∈ ∆∗, let VZs be the
fiber of VZ over s. This fiber carries an action of the fundamental group
π1(∆

∗, s). We denote by

T ∈ O(VZs, Q) ⊂ GL(VZs)

the monodromy operator, that is, the image in GL(VZs) of the generator of
π1(∆

∗, s) defined by the loop t 7→ se2πit for t ∈ [0, 1]. Then ([22, Thm. 6.1])
T is quasi-unipotent, i.e. there exist positive integers e and M such that

(T e − 1)M = 0.

Passing to a cover of ∆∗ of degree e, we may assume that e = 1. Moreover,
we can take M ≤ 3 ([22, Thm. 6.1]) and, if T = 1, then the polarized
variation of Hodge structure (VZ, Q,F•) can be extended to the open unit
disk ∆ ([22, Cor. 4.11]).

Let

N = log T =
M−1∑
k=1

(−1)k−1 (T − 1)k

k
.

Then N3 = 0. If T ̸= 1, this leaves two possibilities:

• N2 = 0 (Type II degeneration), and
• N2 ̸= 0 (Type III degeneration).

To the nilpotent endomorphism N of VQs = VZs ⊗ Q corresponds an
increasing filtration W•(N) of VQs by Q-vector spaces called the weight
filtration. It is the unique filtration

· · · ⊆Wk(N) ⊆Wk+1(N) ⊆ · · ·
of VZs ⊗Q satisfying N ·Wk(N) ⊆Wk−2(N) and such that

Nk :Wk(N)/Wk−1(N) →W−k(N)/W−k−1(N)

is an isomorphism. We write

Wk =Wk−2(N)

for the (shifted) weight filtration of N . Since N3 = 0, this filtration satisfies
W−1 = 0 and W4 = VZs ⊗ Q. Abusing notation, we denote by W• the
corresponding filtration of the local system VQ:

0 =W−1 ⊆W0 ⊆W1 ⊆W2 ⊆W3 ⊆W4 = VQ.

Since N = log T ∈ so(VQs, Q), we have

(2.5) Q(Nv,w) = −Q(v,Nw).

It follows that the weight filtration W• is self-dual: writing W⊥
k for the

orthogonal complement of Wk under Q, we have

W⊥
k =W3−k.

Moreover, the quotients

GrWk VQ :=Wk/Wk−1
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carry canonical bilinear forms Qk defined as follows: if k ≥ 2 and ṽ, w̃ ∈
GrWk VQ are represented by v, w ∈Wk, we define

(2.6) Qk(ṽ, w̃) = Q(v,Nk−2w).

If k < 2, then we define Qk so that the isomorphism N2−k : GrW4−kVQ →
GrWk VQ is an isometry ([22, Lemma 6.4]).

2.2.2. Canonical extension and limit MHS. The vector bundle V = VZ⊗O∆∗

carries a canonical flat connection ∇. Let us fix a flat multi-valued basis
v1, . . . , vn+2 of VQ. We assume that this basis is chosen so as to provide a
splitting of the weight filtration: that is,

Wk = ⟨v1, . . . , vdimWk
⟩

for 0 ≤ k ≤ 4. Define a new basis (ṽi) of V by

ṽi(q) = exp

(
i

2π
log t ·N

)
vi(q)

Note that parallel translation of along a positively oriented circle changes vi

to Tvi and exp

(
i

2π
log t ·N

)
to

exp

(
i

2π
(log t+ 2πi) ·N

)
= exp

(
i

2π
log t ·N

)
· T−1.

It follows that the basis (ṽi) is single-valued and so it defines a trivialization

On+2
∆∗ ≃ V over ∆∗. The canonical extension Ṽ of V is defined to be the

extension of V as a constant bundle over ∆, that is, the extension corre-
sponding to On+2

∆ under the above isomorphism. We denote by Ṽ0 its fiber
over 0 ∈ ∆. By (2.5), we have

Q(ṽi(q), ṽj(q)) = Q(vi, vj)

and so the polarization Q extends to a symmetric bilinear form on the fiber
Ṽ0 that we still denote by Q.

Schmid’s nilpotent orbit theorem [22, Thm. 4.9] states that the Hodge

filtration F• extends to a filtration F̃• of the canonical extension Ṽ by locally
direct factors. We write F •

lim = F̃0 for the limit Hodge filtration, i.e. the

corresponding filtration of Ṽ0. Then we have

Q(F 1
lim, F

2
lim) = 0

N · F 2
lim ⊆ F 1

lim.
(2.7)

Moreover, the basis ṽ1(0), . . . , ṽn+2(0) defines a Z-structure on the fiber Ṽ0

that we denote by VZ, and the weight and limit Hodge filtrations

(W•, F
•
lim)

define a mixed Q-Hodge structure on V := VZ⊗Q. Together with the action
of N and the extension of Q to V , these filtrations define a polarized mixed
Q-Hodge structure. More precisely, we have (cf. [6, Def. (2.26)])
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i) (V,W•, F
•
lim) is a mixed Q-Hodge structure satisfying (2.7).

ii) W• =W•(N)[−2].
iii) Define

P2 = ker(N : GrW2 V → GrW0 V ) ⊆ GrW2 V

and, for k ̸= 2, set Pk = GrWk V . Then

(2.8) GrW2 V = P2 ⊕NP4

and the restriction of the bilinear form Qk in (2.6) to Pk defines a
polarized Q-Hodge structure of weight k.

We write
hp,qlim = GrpFlim

GrWp+q V

for the Hodge numbers of the limiting mixed Hodge structure.

2.2.3. Nilpotent orbit. Using the isomorphism On+2
∆ ≃ Ṽ, we extend the

filtration F •
lim of Ṽ0 to a filtration, still denoted by F •

lim, of Ṽ. The corre-
sponding nilpotent orbit is then given by the filtration

(2.9) F•
nilp := exp

(
1

2πi
log t ·N

)
F •
lim ⊂ V.

Using the uniformisation of ∆∗ via the exponential map

π : H → ∆∗, z 7→ t := e2πiz.

we may write

(2.10) Fk
nilp = ezNF k

lim.

In a small enough neighbourhood of 0, the triple

(2.11) Vnilp := (VZ, Q,F•
nilp)

defines a variation of Hodge structures of weight two polarized by Q with
the same Hodge numbers as V.

The variation Vnilp approximates V in the following sense. Let us denote
by D the period domain parametrising Hodge structures on VR polarised by
Q with h2,0 = 1: it is the hermitian symmetric domain attached to the Lie
group

GR := Aut(VR, Q).

We write D∨ for the compact dual of D; it contains D and is a homogeneous
complex manifold for GC. The pullback π∗V to H of the PVHS V defines a
holomorphic map

ΦV : H → D
satisfying ΦV(z+1) = eNΦV(z). Since e

zN belongs toGC, we have e
−zNΦV(z) ∈

D∨ for every z ∈ H. This gives a holomorphic map

Ψ̃V : H → D∨, Ψ̃V(z) = e−zNΦV(z)

that is invariant under z 7→ z+1, and so Ψ̃V(z) induces a holomorphic map

ΨV : ∆∗ → D∨, ΨV(e
2πiz) := e−zNΦV(z).
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Schmid’s nilpotent orbit theorem states that ΨV extends to a holomorphic
map defined on ∆ [7, §2.3]. For the nilpotent orbit Vnilp this map is constant
with

ΨVnilp(t) = ΨV(0) = F •
lim.

The map ΨV can be written as

ΨV(t) = ψV(t) · F •
lim

with
ψV : ∆ → GC

a holomorphic map satisfying ψV(0) = 1 (for a canonical choice of ψV, see
[5, (2.5)]). Thus we may write

ΦV(z) = ezNΨV(e
2πiz) = ezNψV(t)F

•
lim = ezNψV(t)e

−zNΦVnilp(z).

Equivalently, the Hodge filtrations of V and Vnilp satisfy

(2.12) F•
t = ezNψV(t)e

−zNF•
nilp,t, t ∈ ∆∗.

Given a norm | · | on End(VC) and assuming that |Re(z)| ≤ 1/2, we have the
trivial estimate

(2.13) |ezNψV(t)e
−zN − 1| = O(|t|(log |t|)2k)

for some positive integer k.

2.2.4. Approximation and Hodge norm estimates. We also need Schmid’s
estimates for the Hodge norm: fix an angular sector

U = U(t0, ϵ) = {t ∈ ∆∗|0 < arg(t− t0) < 2π − ϵ}
of ∆∗ and let v ∈ VC|U . If v ∈Wk −Wk−1, then

∥v∥2t ∼ (− log |t|)k−2,

uniformly on U ([22, Thm. 6.6’]). In 4.2 we will state a more precise version
that also gives bounds for the derivatives of ∥v∥2t .

2.3. Type II degenerations. We say that a degeneration is of type II if
N2 = 0 but N is non–trivial. For this type of degeneration, the Hodge
numbers of the limit mixed Hodge structure are

h1,0lim = h0,1lim = h2,1lim = h1,2lim = 1, h1,1lim = dimVC − 4

(all other Hodge numbers are zero) and the weight filtration is

W0 = 0

W1 = ImN

W2 = kerN

W3 =W4 = V.

Below we compute explicitly the Hodge norms ∥v∥2 and Chern form Ω
associated with the corresponding nilpotent orbit; these computations will
allow us to derive explicit expressions for Kudla–Millson forms for such
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degenerations. Let us assume that the limit mixed Hodge structure is R–
split, i.e. that VR is the direct sum of pure Hodge structures. This will
suffice for our intended application.

2.3.1. Let VC = ⊕a,bI
a,b (0 ≤ a, b ≤ 2) denote the canonical bigrading

defined by Deligne [6, (2.12)]. Since we assume that V is R–split, this
bigrading is simply given by

(2.14) Ia,b = F a
lim ∩ F b

lim ∩Wa+b,C.

Then we have

Wk,C = ⊕a+b≤kI
a,b, F p

lim = ⊕a≥pI
a,b

and Ib,a = Ia,b. Let us define

Vk = (⊕a+b=kI
a,b) ∩Wk,R,

so that VR = ⊕1≤k≤3Vk. Via the isomorphism

Vk ≃Wk,R/Wk−1,R = GrWk VR,

the Hodge filtration on GrWk VR induces on Vk a pure R-Hodge structure of
weight k (with Hodge filtration F •

lim ∩ Vk,C).
Since the form Q(·, N ·) polarizes the Hodge structure on GrW3 VR ≃ V3,

we can find a vector e2,1 ∈ I2,1 such that

iQ(e2,1, Ne2,1) = 1.

We fix such a vector and write e1,2 = e2,1 ∈ I1,2, e1,0 = Ne2,1 ∈ I1,0 and
e0,1 = e1,0 ∈ I0,1. Then {e2,1, e1,2} is a basis for V3 and {e1,0, e0,1} is a
basis for V1. Using Q(F 2

lim, F
1
lim) = 0 and Q(W1,W2) = 0, one sees that

V2 is orthogonal to V1 ⊕ V3 and that in the basis {e2,1, e1,2, e1,0, e0,1} the
restriction of Q to V1 ⊕ V3 is given by the matrix

(2.15)


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 .

2.3.2. We now consider the nilpotent orbit: for z ∈ H, we write

F k
z = ezNF k

lim.

Since N2 = 0 and I1,1 ⊂ kerN , we have ezN = 1 + zN and hence

F 2
z = ⟨e2,0z ⟩
F 1
z = ezN (F 2

lim ⊕ I1,1) = F 2
z ⊕ I1,1,

where

e2,0z := e2,1 + ze1,0.
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The Hodge norm of e2,0z can be computed explicitly using (2.15):

∥e2,0z ∥2V = −Q(e2,0z , e2,0z )

= −Q(e2,1 + ze1,0, e1,2 + ze0,1)

= i(z − z)

= 2Im(z).

(2.16)

We may think of z 7→ e2,0z as a holomorphic section of the hermitian line
bundle F 2

z . Writing Ω for its Chern form, we find

Ω =
1

2πi
∂∂ log ∥e2,0z ∥2V =

i

8π

dz ∧ dz
Im(z)2

(2.17)

Using (2.16) we can compute the Hodge norm ∥v∥2V of vectors v ∈ VR.
Fix such v and let vp,qz be the components of v ∈ Vz = ⊕p,qVp,q

z . Then

v2,0z = f(z)e2,0z

for some holomorphic function f : H → C. We have v0,2z = v2,0z and hence

Q(v, e2,0z ) = Q(v0,2z , e2,0z ) = −2f(z)Im(z).

This gives

h(sv) = −2Q(v2,0z , v0,2z )

= 4|f(z)|2Im(z)

=
|Q(v, e2,0z )|2

Im(z)

(2.18)

and, for the Hodge norm,

(2.19) ∥v∥2V,z = Q(v, v) + 2h(sv) = Q(v, v) +
2|Q(v, e2,0z )|2

Im(z)
.

Let us consider the special case v ∈ W2,R. Such a vector can be written
uniquely as

(2.20) v = v2 + ae1,0 + ae0,1

with v2 ∈ V2 and a complex number a. UsingQ(W1,W2) = Q(F 1
lim, F

2
lim) = 0

we find that

Q(v2, e
2,0
z ) = Q(v2, e

2,1) + zQ(v2, e
1,0) = 0

and hence

Q(v, e2,0z ) = Q(ae1,0 + ae0,1, e2,1 + ze1,0) = −ia.

We conclude that for v ∈W2,R we have

(2.21) h(sv) =
|a|2

Im(z)
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and

(2.22) ∥v∥2V,z = Q(v2, v2) +
2|a|2

Im(z)
.

2.4. Type III degenerations. We say that a degeneration is of type III if
N2 ̸= 0. In this case we have

h0,0lim = h2,2lim = 1, h1,1lim = rankVZ − 2,

and all other Hodge numbers are zero, i.e. the real mixed Hodge structure
(VR,W, F ) is Hodge–Tate. The weight filtration is

W0 =W1 = ImN2

W2 =W3 = ImN + kerN.

We will now do some computations analogous to the ones above in the type
II case. We assume again that the limit mixed Hodge structure is R–split.

2.4.1. Let VC = ⊕a,bI
a,b denote Deligne’s canonical bigrading [6, (2.12)].

For R–split type III degenerations we have Ip,q = 0 if p ̸= q and

Ip,p = F p
lim ∩ F p

lim ∩W2p,C.

The bigrading satisfies

W2k,C = ⊕a≤kI
a,a, F p

lim = ⊕a≥pI
a.a.

We set
V2k = Ik,k ∩Wk,R, k = 0, 1, 2.

Then V2k is a real Hodge structure of type (k, k) and VR = ⊕V2k.
Since the form Q(·, N2·) polarizes the Hodge structure on GrW4 VR ≃ V4,

we can find a vector (unique up to multiplication by ±1) e2,2 ∈ V4 such that

(2.23) Q(e2,2, N2e2,2) = 1.

Then Ne2,2 ∈ V2 and N2e2,2 ∈ V0 and both vectors are non-zero. Since V0
and V4 are one–dimensional we have

V4 = ⟨e2,2⟩, V0 = ⟨N2e2,2⟩.
Let us define

U = ker(N : V2 → V0)

Under the isomorphism V2 ≃ GrW2 VR induced by the quotient map W2,R →
GrW2 VR, the subspace U ⊂ V2 corresponds to the primitive part P2,R ⊂
GrW2 VR; in particular, the restriction of Q to U is positive definite. We have

V2 = U ⊕ ⟨Ne2,2⟩.
This decomposition is orthogonal for Q since N ∈ so(V,Q). It follows that
VR can be written as

(2.24) VR = U ⊕ ⟨e2,2, Ne2,2, N2e2,2⟩
with ⟨e2,2, Ne2,2, N2e2,2⟩ = U⊥ (in fact this is a decomposition as real mixed
Hodge structures with the natural Hodge filtrations defined by intersecting
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F •
lim with each summand). By (2.23), the matrix of the restriction of Q to

U⊥ in the basis {e2,2, Ne2,2, N2e2,2} is

(2.25)

0 0 1
0 −1 0
1 0 0

 .

2.4.2. Consider now the nilpotent orbit corresponding to an R–split type
III degeneration: for z ∈ H, let

F k
z = ezNF k

lim.

Since the restriction of N to U vanishes, we have

F 2
z = ⟨e2,0z ⟩
F 1
z = ezN (V4,C ⊕ V2,C) = UC ⊕ ⟨e2,0z , Ne2,0z ⟩,

with

e2,0z := ezNe2,2 = e2,2 + zNe2,2 +
z2

2
N2e2,2.

Using (2.25) we can compute the Hodge norm of e2,0z :

∥e2,0z ∥2V = −Q(e2,0z , e2,0z )

= −Q(e2,2 + zNe2,2 + z2

2 N
2e2,2, e2,2 + zNe2,2 + z2

2 N
2e2,2)

= −( z
2

2 + z2

2 − |z|2)
= 2Im(z)2.

(2.26)

Writing Ω for the first Chern form of the hermitian line bundle F 2
z , this gives

(2.27) Ω =
1

2πi
∂∂ log ∥e2,0z ∥2V =

i

4π

dz ∧ dz
Im(z)2

.

The argument we used in the case of type II degenerations shows that

(2.28) h(sv) = −2
|Q(v, e2,0z )|2

Q(e2,0z , e2,0z )
=

|Q(v, e2,0z )|2

Im(z)2

and, for the Hodge norm,

(2.29) ∥v∥2V,z = Q(v, v) + 2h(sv) = Q(v, v) +
2|Q(v, e2,0z )|2

Im(z)2
.

Again we consider the special case v ∈ W2,R = V0 ⊕ V2. Such a vector can
be written as

(2.30) v = vU + aNe2,2 + bN2e2,2

for unique vU ∈ U and real numbers a and b. Using Q(F 1
lim, F

2
lim) = 0 and

Q(v,Nv′) = −Q(Nv, v′), we find that

Q(vU , e
2,0
z ) = Q(vU , e

2,2) + zQ(vU , Ne
2,2) + z2

2 Q(vU , N
2e2,2) = 0
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and hence

Q(v, e2,0z ) = Q(aNe2.2 + bN2e2,2, e2,2 + zNe2,2 + z2

2 N
2e2,2)

= b− az.
(2.31)

We conclude that for v ∈W2,R we have

(2.32) h(sv) =
|b− az|2

Im(z)2
= a2 +

(
b− aRe(z)

Im(z)

)2

and

∥v∥2V,z = Q(vU , vU )− a2 +
2|b− az|2

Im(z)2

= Q(vU , vU ) + a2 + 2

(
b− aRe(z)

Im(z)

)2

.

(2.33)

Remark 2.1. The formulas for Hodge norms will be used in Section 4.5 to
derive explicit expressions for φV(v) for type III degenerations that agree
with those computed by Funke in [10].

3. Kudla–Millson theta series and degenerations of Hodge
structure

In this section we briefly review some of the needed background regarding
the Weil representation and the construction of theta series attached to a
Z–PVHS V on S by pulling back Kudla–Millson theta series via the period
map associated with V. We will also define certain theta series attached to
limiting mixed Hodge structures.

3.1. Weil representation.

3.1.1. Let L be an even lattice, that is, a free abelian group of finite rank
endowed with a non–degenerate symmetric bilinear form Q : L×L→ Z such
that Q(v, v) is even for every v ∈ L. We denote its signature by (b+, b−)
and write

L∨ = {v ∈ L⊗Q | Q(v, w) ∈ Z for all w ∈ L}
for the dual of L. Thus L ⊆ L∨, and the finite group L∨/L is known as the
discriminant group of L. We denote by

C[L∨/L]

its group algebra and by eµ (µ ∈ L∨/L) its standard basis.
We write Mp2(Z) for the metaplectic double cover of SL2(Z). Its elements

are pairs of the form ((
a b
c d

)
, ϕ(τ)

)
,
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where
(
a b
c d

)
∈ SL2(Z) and ϕ(τ) satisfies ϕ(τ)2 = cτ + d. It is generated by

the elements

T =

((
1 1
0 1

)
, 1

)
,

S =

((
0 −1
1 0

)
,
√
τ

)
.

(3.1)

There is a representation ρL of Mp2(Z) on C[L∨/L] determined by the
formulas

ρL(T )(e
µ) = eπiQ(µ,µ)eµ

ρL(S)(e
µ) =

eπi(b
−−b+)/4√
|L∨/L|

∑
λ∈L∨/L

e−2πiQ(µ,λ)eλ.
(3.2)

The representation ρL factors through a double cover of SL2(Z/NZ), where
N (sometimes called the level of L) is the smallest integer such thatNQ(λ, λ)/2
is an integer for all λ ∈ L∨.

3.1.2. Let V = L⊗Q and suppose given a filtration

0 ̸=W1 ⊆W2 ⊆ V

of V by Q-vector spaces such that W1 is isotropic and W2 = W⊥
1 . Define

Lk = Wk ∩ L and set GrW2 L = L2/L1. Then GrW2 L is an even lattice with
respect to the bilinear form induced by Q. The group Mp2(Z) acts on

C[(GrW2 L)
∨/GrW2 L] = C[(L∨ ∩W2)/(L

∨ ∩W1 + L2)]

via the corresponding Weil representation ρGrW2 L. The map

(3.3) ι : ρGrW2 L → ρL, eµ 7→
∑

λ∈(L∨∩W1+L)/L

eλ+µ

intertwines the Mp2(Z)–actions [21, Prop. 6.1].

3.1.3. We briefly recall some notions of modular forms for Mp2(Z) valued
in ρL; see [2, Chap. 1] for more details. Let

f : H → ρL

be a smooth function and k+, k− ∈ 1
2Z. We say that f is a non–holomorphic

modular form of weight (k+, k−) valued in ρL if

(3.4) f

(
aτ + b

cτ + d

)
= ϕ(τ)2k

+
ϕ(τ)

2k−
ρL

((
a b
c d

)
, ϕ(τ)

)
f(τ)

for every
((

a b
c d

)
, ϕ(τ)

)
∈ Mp2(Z).

If f : H → ρL is holomorphic and satisfies (3.4) with (k+, k−) = (k, 0),
then we may write

f(τ) =
∑
µ

fµ · eµ,
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where the components fµ of f are weakly modular forms of weight k. We
say that f is a modular (resp. cusp) form of weight k valued in ρL if it each
component is a modular (resp. cusp) form of weight k.

The most important examples of modular forms valued in ρL arise from
theta series. For a positive definite even lattice L and µ ∈ L∨, define

ΘL(τ)µ =
∑

λ∈µ+L

eπiQ(λ,λ)τ

and set

ΘL(τ) =
∑
µ

ΘL(τ)µ · eµ.

Then ΘL(τ) is a modular form valued in ρL of weight rk(L)/2 ([1, Thm
4.1]).

3.2. Kudla–Millson theta series.

3.2.1. Let V → S be a Z–PVHS satisfying 1.1. Associated with V there is
a period map

ΦV : S → Γ\D
into a quotient of the hermitian symmetric space attached to SO(h1,1, 2) (see

e.g. [22, p. 227-228]). More precisely, fix a point s0 ∈ S and let π : S̃ → S

be the universal cover of S. The pullback π∗VZ to S̃ is then a constant local
system endowed with a constant bilinear form induced by Q, i.e. of the form
VZ for some indefinite lattice (VZ, Q). It carries a canonical action

(3.5) π1(S, s0) → Aut(VZ, Q).

Let now VR = VZ ⊗ R and denote by D the space of all Hodge structures
on VR polarized by Q with h2,0 = 1; thus D is the hermitian symmetric
domain attached to the orthogonal group Aut(VR, Q). The pullback π∗V
induces a holomorphic map Φπ∗V : S̃ → D. If Γ ⊆ Aut(VZ, Q) is any
subgroup containing the image of (3.5), then the composite of Φπ∗V with
the projection D → Γ\D induces a holomorphic map S → Γ\D. Under
assumption 1.1, and identifying V∨

Z /VZ ≃ V ∨
Z /VZ, we can take for Γ the

group

Γ := ΓVZ =
{
γ ∈ Aut(VZ, Q) | γ ≡ id on V ∨

Z /VZ
}
,

and denote the corresponding period map by

(3.6) ΦV : S → Γ\D.

3.2.2. Let S(VR) be the Schwartz space of VR. In their seminal works
[16, 17, 18], Kudla and Millson have introduced certain differential forms

φKM ∈ (Ω1,1(D)⊗ S(VR))SO(VR,Q)

and associated theta series

ΘKM(τ)µ =
∑

v∈µ+VZ

φKM(y1/2v)eπixQ(v,v) ∈ Ω1,1(D)Γ ≃ Ω1,1(Γ\D).
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Using the period map ΦV we can define differential forms on S canonically
associated with V by pulling back the Kudla–Millson theta series.

Definition 3.1. For µ ∈ V∨
Z /VZ, define

ΘV(τ)µ = Φ∗
VΘKM(τ)µ.

The results of Kudla and Millson imply that the forms ΘV(τ)µ have mod-
ularity properties that can be described most easily by saying that the dif-
ferential form

(3.7) ΘV(τ) :=
∑

µ∈V∨
Z /VZ

ΘV(τ)µ · eµ ∈ Ω1,1(S)⊗ ρVZ .

transforms under Mp2(Z) like a non–holomorphic modular form of weight
rk(VZ)/2 valued in ρVZ .

Using the formulas given by Kudla and Millson we can describe ΘV(τ)µ
as

(3.8) ΘV(τ)µ =
∑
µ+VZ

φV(y
1/2v)eπixQ(v,v),

with φV(v) (which is only locally defined, e.g. on a small disk around a
given point in S) given by

(3.9) φV(v) = e−π∥v∥2V (−Ω+ ih(sv)θ ∧ θ), θ =
∂h(sv)

h(sv)
.

We briefly explain the terms in this formula; for more details, see also [11].
The terms ∥v∥2V and h(sv) have been defined in 2.1: ∥v∥2V denotes the Hodge
norm of v and the value of h(sv) at z ∈ S is

h(sv)z = −2Q(v2,0z , v0,2z ).

The term Ω denotes the first Chern form of L, i.e.

(3.10) Ω = (2πi)−1∂∂ log ∥s∥2V

for any meromorphic section s of L. We will sometimes write

(3.11) φV(v) = e−πQ(v,v)φ◦
V(v),

with

(3.12) φ◦
V(v) = e−2πh(sv)(−Ω+ ih(sv)θ ∧ θ), θ =

∂h(sv)

h(sv)
.

3.3. Theta series and limit MHS. We now associate a vector–valued
theta series to a limiting mixed Hodge structure of type II or III.
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3.3.1. Type II. For a type II degeneration, the polarization Q induces a
quadratic form on GrW2 V that we still denote by Q; note that in this case

GrW2 V = P2 and hence this quadratic form is positive definite. The image

of VZ ∩W2 in GrW2 V defines a lattice that we denote by GrW2 VZ. We write

ρGrW2 VZ
= C[(GrW2 VZ)

∨/GrW2 VZ]

= C
[
W2 ∩ V ∨

Z /(W1 ∩ V ∨
Z +W2 ∩ VZ)

](3.13)

for the corresponding Weil representation of Mp2(Z). Associated to the

positive–definite even lattice (GrW2 VZ, Q) is the theta series

ΘGrW2 VZ
(τ) =

∑
µ

ΘGrW2 VZ
(τ)µ · eµ.

It is a modular form valued in ρGrW2 VZ
of weight (rk(VZ)− 4)/2.

More generally, the image of VZ∩Wk in GrWk V is a lattice that we denote

by GrWk VZ. Then

N : GrW3 VZ → GrW1 VZ

is an injective map between lattices of the same rank; following [23] we write

r1(VZ, N)

for the size of its cokernel. The formQ also induces a non-degenerate bilinear
pairing

(3.14) GrW3,1Q : GrW3 VZ ×GrW1 VZ → Z.

Let disc(GrW3,1Q) be its discriminant, that is

disc(GrW3,1Q) = | det(GrW3,1Q(ṽi, w̃j))|

for any bases (ṽi) of GrW3 VZ and (w̃j) of GrW1 VZ. Note that the form

Q3(v, w) = Q(v,Nw) is symplectic and takes integral values on GrW3 VZ,
and hence

r1(VZ, N)disc(GrW3,1Q) = |det(Q3(ṽi, ṽj))| = deg(Q3)
2

for a positive integer deg(Q3).
Let us write

(3.15) ι : ρGrW2 VZ
→ ρVZ

for the Mp2(Z)–intertwining map defined in (3.3); we recall that

ι(eλ) =
∑

γ∈(W1∩V ∨
Z +VZ)/VZ

eγ+λ.

For µ ∈ (GrW2 VZ)
∨/GrW2 VZ, define

(3.16) Z−
V,P (τ)µ =

(
r1(VZ, N)

disc(GrW3,1Q)

)1/2
1

4πy
ΘGrW2 VZ

(τ)µ
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and set

(3.17) Z−
V,P (τ) =

∑
µ∈(GrW2 VZ)∨/GrW2 VZ

Z−
V,P (τ)µ · ι(eµ).

3.3.2. Type III. Let us now consider degenerations of type III. Let

(3.18) GrW2,primV = ker(N :W2/W1 →W0) ⊂ GrW2 V.

Then Gr2,primV is a vector space over Q of dimension n− 1. The subgroup

GrW2,primVZ := GrW2,primV ∩GrW2 VZ

is a lattice in GrW2,primV . Since W1 is Q-isotropic, the polarization Q induces

a quadratic form on GrW2,primV that is positive definite and that we still
denote by Q. Let us write

ρGrW2,primVZ
= C[(GrW2,primVZ)

∨/GrW2,primVZ](3.19)

for be the corresponding Weil representation of Mp2(Z). Associated to the

positive definite even lattice (GrW2,primVZ, Q) is the theta series

ΘGrW2,primVZ
(τ) =

∑
µ

ΘGrW2,primVZ
(τ)µ · eµ

that transforms under Mp2(Z) like a holomorphic modular form valued in
ρGrW2,primVZ

of weight (n− 1)/2.

The bilinear form Q induces a pairing

GrW4,0Q : GrW4 VZ ×GrW0 VZ → Z.

Let disc(GrW4,0Q) be its discriminant, that is

disc(GrW4,0Q) = |det(GrW4,0Q(ṽi, w̃j))|

for any bases (ṽi) of GrW4 VZ and (w̃j) of GrW0 VZ respectively.
Let us now consider the rank one lattice

GrW4 VZ = image of VZ in GrW4 V,

endowed with the positive–definite quadratic Q4(v, v) = Q(v,N2v) defined
in (2.6).

Lemma 3.2. Let L be the rank one lattice GrW4 VZ endowed with the positive–
definite quadratic form v 7→ Q4(v, v).

(i) The lattice L is even.

(ii) The image of L under N : GrW4 V → GrW2 V lies in GrW2 VZ.

(iii) The image of L∨ under N : GrW4 V → GrW2 V contains (GrW2 VZ)
∨ ∩

N(GrW4 V ).
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Proof. For a degeneration of type III we have

N = (T − 1)− (T − 1)2/2

and so N2 = (T − 1)2. Hence we can write N = (T − 1) − N2/2 and for
v ∈ VZ we have

Q(v,N2v) = −Q(Nv,Nv) = −Q((T − 1)v, (T − 1)v)

which is an even integer since (T−1)v ∈ VZ. This proves (i). Part (ii) follows
from the identity N = (T − 1) − N2/2, which implies that N ≡ (T − 1)

mod W0. For part (iii), suppose that w ∈ (GrW2 VZ)
∨ ∩N(GrW4 V ) and write

w = Nv with v ∈ GrW4 V . For any w′ ∈ GrW2 VZ, we have

Q(v,Nw′) = −Q(w,w′) ∈ Z,

i.e. Q(v, v′) ∈ Z for every v′ ∈ N(GrW2 VZ). Part (ii) implies that N2(L) ⊆
N(GrW2 VZ) and hence that v ∈ L∨. □

The proof the lemma shows that N2 = (T − 1)2 is integral. Thus

GrWN2 : GrW4 VZ → GrW0 VZ

is an injective map of lattices of the same rank; we denote its cokernel by

r2(VZ, N).

Writing Vol(GrW4 VZ) := Q4(v0, v0) ∈ 2N where v0 is a generator of GrW4 VZ,
we have

Vol(GrW4 VZ) = r2(VZ, N)disc(GrW4,0Q).

Associated to the positive–definite even lattice (GrW4 VZ, Q4) is the Weil
representation

ρGrW4 VZ
= C[(GrW4 VZ)

∨/GrW4 VZ]

of Mp2(Z) and the non–holomorphic unary theta series

(3.20) RGrW4 VZ
(τ)ν =

1

4π
√
y

∑
v∈ν+GrW4 VZ

β3/2(2πyQ4(v, v))q
−Q4(v,v)/2,

where

β3/2(t) =

∫ ∞

1
u−3/2e−tudu.

Let us write (GrW4 VZ)
− for the negative–definite even lattice defined by

−Q4. By the above lemma, the map

GrW2,primVZ⊕̂(GrW4 VZ)
− → GrW2 VZ, (v, w) 7→ v +Nw

identifies Gr2,primVZ⊕̂(GrW4 VZ)
− with a sublattice of GrW2 VZ of finite index.

This induces a natural Mp2(Z)–intertwining map

(3.21) ρGr2,primVZ ⊗ ρ(GrW4 VZ)−
≃ ρGr2,primVZ⊕(GrW4 VZ)−

→ ρGrW2 VZ

eλ ⊗ eν 7→
{

0, if λ+Nν /∈ (GrW2 VZ)
∨,

λ+Nν +GrW2 VZ, otherwise.
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Let

(3.22) ι : ρGr2,primVZ ⊗ ρ(GrW4 VZ)−
→ ρVZ

be the map obtained by composing (3.21) with the map (3.15). For µ ∈
(GrW2 VZ)

∨/GrW2 VZ, define

Z−
V,P (τ)µ =

(
r2(VZ, N)

2disc(GrW4,0Q)

)1/2

×
∑

λ+Nν≡µ
mod GrW2 VZ

RGrW4 VZ
(τ)ν ·ΘGrW2,primVZ

(τ)λ
(3.23)

and set

(3.24) Z−
V,P (τ) =

∑
µ∈(GrW2 VZ)∨/GrW2 VZ

Z−
V,P (τ)µ · ι(eµ).

4. Integrability of Kudla–Millson theta series

4.1. A convergence result. Let S be a compact Riemann surface and
let S be obtained by removing a finite set of points from S. Consider a
polarized variation of Hodge structure V → S of weight two with h2,0 = 1
and h1,1 = n satisfying 1.1. In the previous section we have attached to V a
collection of closed differential forms

ΘV(τ)µ ∈ Ω1,1(S), µ ∈ V∨
Z /VZ,

that vary smoothly in τ ∈ H and transform like (non-holomorphic) modular
forms of weight rk(VZ)/2. If S = S, i.e. when S is compact, the integral

(4.1) ZV(τ)µ :=

∫
S
ΘV(τ)µ

is obviously convergent, and the results of Kudla and Millson [18] show that
ZV(τ)µ is a holomorphic modular form of weight 1 + n/2 with q-expansion

−deg(L)δµ,0 +
∑
m>0

deg NLV(m)µ · qm.

A little more precisely: the ZV(τ)µ are the components of a modular form
of weight 1 + n/2 valued in ρVZ .

Now suppose that S is not compact; in that case, the differential form
ΘV(τ) might not extend to a smooth form on S. Fortunately, as we will show
below, the singularities of ΘV(τ) around the points in S \S are very mild.
In particular, ΘV(τ) is always integrable over S and so one can define ZV(τ)
as in (4.1) for arbitrary S. This is the content of the following proposition,
whose proof will comprise most of this section. Let us write

ΘV(τ)µ =
∑

m∈1
2Q(µ,µ)+Z

Θ◦
V(y)m,µ · qm,
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with
Θ◦

V(y)m,µ =
∑

v∈µ+VZ
Q(v,v)=2m

φ◦
V(y

1/2v).

Theorem 4.1. Let V be a Z–PVHS over S of weight two with h2,0 = 1.
Then the integral

ZV(τ)µ :=

∫
S
ΘV(τ)µ

converges for all µ ∈ V∨
Z /VZ. The forms Θ◦

V(y)m,µ are also integrable over
S for any m and µ and we have

ZV(τ)µ =
∑

m∈Q(µ,µ)
2 +Z

(∫
S
Θ◦

V(y)m,µ

)
qm.

The expression

ZV(τ) :=
∑

µ∈V∨
Z /VZ

ZV(τ)µ · eµ

defines a (possibly non-holomorphic) modular form of weight 1+n/2 valued
in ρVZ.

The following remarks reduce the proof of this theorem to the analogous
local question around each cusp. Moreover, they show that when addressing
the local question we may assume the local monodromy to be unipotent and
non-trivial.

(1) Fix a point s0 ∈ S and a simply connected neighbourhood U of
s0 and choose a trivialization of VZ|U . The Hodge metric on V|U
can then be identified with a smooth map from U to the space of
hermitian metrics on Cn+2. Hence, after possibly shrinking U , the
Hodge metric on V|U is uniformly bounded below by some constant
metric v 7→ |v|0 on Cn+2. It follows that on such a neighbourhood
we can find ϵ > 0 so that

|φV(v)|s < e−ϵ|v|20

for every s ∈ U and every flat section v ∈ VZ over U . By dominated
convergence, this implies that the above proposition holds locally,
that is, replacing S by a small enough neighbourhood of any given
point s0 ∈ S. Taking a finite covering of S shows that it suffices to
prove the proposition for a coordinate neighbourhood of each cusp,
i.e. for S ≃ ∆∗. In the rest of Section 4 we will assume that S = ∆∗

and denote by T the local monodromy as in Section 2.2.
(2) Recall that T is quasi–unipotent: there exist positive integers e and

m such that (T e−id)m = 0. Let π : ∆∗ → ∆∗ be the covering map of
degree e. Then π∗V is a PVHS over ∆∗ with unipotent monodromy
T e. Since

Θπ∗V(τ) = π∗ΘV(τ),
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the integrability of Θπ∗V(τ) over ∆
∗ implies that of ΘV(τ). It follows

that we may assume that T is unipotent.
(3) Finally, recall from Section 2.2 that if T = id, then the period map

associated to the PVHS V extends to ∆; in this case the argument
in (1) proves the proposition. So in the rest of Section 4 we will
assume that T is unipotent and T ̸= 1.

So we will prove the proposition for S = ∆∗ and a PVHS V → ∆∗

with unipotent non-trivial monodromy. In order to ensure that the only
degeneration of V happens as t→ 0, we may and do assume that V extends
to a punctured disk centered at 0 of radius strictly larger than one.

The proof is based on Schmid’s Hodge norm estimates and his nilpotent
orbit and SL2–orbit theorems. As a first step, let us write

ΘV(τ)µ = ΘV(τ)
′
µ +ΘV(τ)

′′
µ,

with

ΘV(τ)
′
µ =

∑
v∈µ+VZ
v∈W2

φV(y
1/2v) eπiQ(v,v)x

ΘV(τ)
′′
µ =

∑
v∈µ+VZ
v/∈W2

φV(y
1/2v) eπiQ(v,v)x,

(4.2)

and similarly we write Θ◦
V(y)m,µ = Θ◦

V(y)
′
m,µ +Θ◦

V(y)
′′
m,µ.

It turns out that the integrability of ΘV(τ)
′′
µ and Θ◦

V(y)
′′
m,µ is easier to

prove: it is a straightforward consequence of the Hodge norm estimates. The
integrability of ΘV(τ)

′
µ and Θ◦

V(y)
′
m,µ is more delicate: our proof proceeds by

bounding the difference φV(v)−φVnilp(v) and computing φVnilp(v) explicitly.

4.2. Integrability of Θ′′
V. Let us fix a Z-PVHS V with h2,0 = 1 over the

punctured unit disk

∆∗ = {t ∈ C | 0 < |t| < 1}
with unipotent non-trivial monodromy. We will first establish the integra-
bility of ΘV(τ)

′′ and Θ◦
V(τ)

′′
m.

For this it suffices to work on a fixed angular sector

(4.3) U := {t ∈ ∆∗|ϵ < arg(t) < 2π − ϵ} ⊂ ∆∗.

In order to estimate the size of differential forms on ∆∗, we work with the

Poincaré metric, defined by declaring that the coframe dt
t log |t| and

dt
t log |t| is

unitary. In particular, a form α ∈ Ω1,1(∆∗) can be written as

α = α11
dtdt

|t|2(log |t|)2

for a unique smooth function α11 on ∆∗, and for t ∈ ∆∗ we set

|α|t := |α11(t)|.
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We say that α is rapidly decreasing if |α|t = O(tϵ) for some ϵ > 0 and t in
a given U .

Fix a basis v1, . . . , vn+2 adapted to the weight filtration as in 2.2.2 giving
a trivialization V|U ≃ Cn+2 and denote by h(t) = (hij(t)) the matrix of the
Hodge metric in this basis: for a flat section v = a1v1 + . . . an+2vn+2 and
t ∈ U we have

(4.4) ∥v∥2t = a∗h(t)a =
∑
i,j

aiajhij(t).

The basis v1, . . . , vn+2 gives a splitting of the complexified weight filtra-
tion: writing

(4.5) Yk = ⟨v1+dimWk−1
, . . . vdimWk

⟩ ⊂ VC,

we have Wk,C = Yk ⊕Wk−1,C for all k ≥ 0. Following Kóllar [13, Definition
5.3.(v)], denote by

e : V|U → V|U
the endomorphism of the vector bundle V|U that acts on the fiber Vt by

v 7→ (− log |t|)(k−2)/2v if v ∈ Yk

and set

h̃ = te−1he−1.

It follows from the Hodge norm estimates that the entries h̃ij of h̃ and

(det h̃)−1 are bounded. More precisely, write Cω(∆) for the set of real ana-

lytic functions on ∆ and L for the set of Laurent polynomials in (− log |t|)1/2
with complex coefficients and define

B∆ = {f ∈ Cω(∆)⊗ L | f bounded}.

Then

(4.6) h̃ij , (det h̃)
−1 ∈ B∆

(cf. [13, Prop. 5.4]). Moreover, B∆ is closed under the operators t log |t| ddt
and t log |t| d

dt
. Hence, in the coframe given by dt

t log |t| and
dt

t log |t| , the forms

(4.7) ∂h̃ij , ∂h̃ij , ∂∂h̃ij

have components that belong toB∆; we will refer to forms with this property
as nearly bounded (loc. cit., Def. 5.3). Note that the product of two nearly
bounded forms is nearly bounded.

We can use the bounds (4.6) and (4.7) to give an estimate for the form
φV(v).

Lemma 4.2. There exists a positive constant C such that

|φV(v)|t < Ce−π∥v∥2t
(
1 + ∥v∥2t

)
for any t ∈ U and any v ∈ VR.
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Proof. Let

(4.8) pV(v) =
(
−Ω+ ih(sv)θ ∧ θ

)
, θ :=

∂h(sv)

h(sv)
.

Since φV(v) = e−π∥v∥2t pV(v), it suffices to show that

|pV(v)|t < C(1 + ∥v∥2t )
for t ∈ U and v ∈ VR. Now the form Ω is the first Chern form of the
hermitian line bundle F 2. It is known to be bounded when the monodromy
is unipotent [27, Prop. 1.11]; that is, |Ω|t is bounded on ∆∗. To estimate
the term h(sv)θ ∧ θ, recall that

−2πiΩ = ∂∂ log h(sv) =
∂∂h(sv)

h(sv)
− θ ∧ θ.

Multiplying by h(sv) gives

(4.9) h(sv)θ ∧ θ = 2πih(sv)Ω + ∂∂h(sv).

Since h(sv) = 2∥v2,0∥2t ≤ 2∥v∥2t , we have |h(sv)Ω|t ≤ 2∥v∥2t |Ω|t, and so it
remains to estimate the term ∂∂h(sv). Writing vt = Σvp,qt for the Hodge

decomposition of vt ∈ Vt, we have h(sv) = −2Q(v2,0t , v0,2t ) and hence

(4.10) ∥v∥2t = Q(v1,1t , v1,1t )− 2Q(v2,0t , v0,2t ) = Q(v, v) + 2h(sv)

and
∂∂h(sv) = 2−1∂∂∥v∥2t = 2−1

∑
aiaj∂∂hij(t).

Let us next give a bound for the forms ∂∂hij(t). We have h̃ij = e−1
ij hij , where

eij(t) = (− log |t|)aij/2 and aij is the integer defined by aij = (m−2)+(l−2)
if vi ∈ Wm −Wm−1 and vj ∈ Wl −Wl−1. A direct computation shows that

the forms e−1
ij ∂eij , e

−1
ij ∂eij and e−1

ij ∂∂eij are nearly bounded; writing

∂∂hij = h̃ij∂∂eij + ∂h̃ij∂eij − ∂h̃ij∂eij + eij∂∂h̃ij

and applying (4.7) shows that e−1
ij ∂∂hij is nearly bounded too. Thus

|∂∂h(sv)|t = O(
∑

|aiaj |eij(t)),

and by [13, Lemma 5.6], we have

(4.11)
∑

|aiaj |eij(t) = O(∥v∥2t ).

This finishes the proof. □

The lemma implies the (very coarse) bound

|ΘV(τ)
′′
µ|t ≤ C

∑
v∈µ+VZ
v/∈W2

e−πy∥v∥2t (1 + y∥v∥2t )

≤ C ′
∑
v∈V∨

Z
v/∈W2

e−πy∥v∥2t /2,
(4.12)
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for some constant C ′ > 0 depending only on V and the basis (vi). Using
this bound we can prove the integrability of ΘV(τ)

′′
µ.

Proposition 4.3. For any m and µ, the forms ΘV(τ)
′′
µ and Θ◦

V(y)
′′
m,µ are

rapidly decreasing as t→ 0, uniformly on any angular sector U . We have∫
∆∗

ΘV(τ)
′′
µ =

∑
m

(∫
∆∗

Θ◦
V(y)

′′
m,µ

)
· qm.

Proof. Fix a basis v1, . . . , vn+2 of V∨
Z |U adapted to the weight filtration and

denote by | · | the metric on V obtained from the standard metric on Cn+2

via the corresponding trivialization V|U ≃ Cn+2. Define Yk as in (4.5). For

v ∈ VQ, let us write v =
∑

vk with vk ∈ Yk. It follows from (4.6) that there

is a positive constant c, depending only on V and the basis (vi), such that
for all v ∈ VQ we have

(4.13) ∥v∥2t > 2c
∑
k

|vk|2(− log |t|)k−2.

Combined with (4.12), this immediately implies the following bound: let

us write Y Z
k = Yk ∩ V∨

Z and let l = 1 if V is of type II and l = 0 if V is of
type III; then

W2 ∩ V∨
Z = Y Z

2 ⊕ (W1 ∩ V∨
Z ) = Y Z

2 ⊕ Y Z
l

and

V∨
Z = Y Z

4−l ⊕ (W2 ∩ V∨
Z ) = Y Z

4−l ⊕ Y Z
2 ⊕ Y Z

l

and we have

|ΘV(τ)
′′
µ|t ≤ C ′

∑
v∈V∨

Z
v/∈W2

e−πy∥v∥2t /2

= C ′
∑

0̸=u∈Y Z
4−l

v∈Y Z
2

w∈Y Z
l

e−πy∥u+v+w∥2t /2

< C ′
∑

0̸=u∈Y Z
4−l

e−πcy|u|2(− log |t|)2−l

×
∑
v∈Y Z

2

e−πcy|v|2

×
∑
w∈Y Z

l

e−πcy|w|2(− log |t|)l−2
.

(4.14)

In the last expression, the sum over u is clearly rapidly decreasing as t→ 0,
and the sum over v is independent of t. It remains to estimate the sum over
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w. This can be done by Poisson summation: since Y Z
l =W1∩V∨

Z is a lattice
of rank l + 1, we have

(4.15)
∑
w∈Y Z

l

e−πcy|w|2(− log |t|)l−2
= O (− log |t|) .

This shows that ΘV(τ)
′′
µ and Θ◦

V(y)
′′
m,µ are rapidly decreasing as t→ 0. The

identity in the statement follows by dominated convergence. □

Note that (4.14) and (4.15) give the bound

|ΘV(τ)
′
µ|t = O

 ∑
v∈V∨

Z ∩W2

e−πy∥v∥2t /2


= O(− log |t|).

(4.16)

This estimate will be useful later but it is not enough to guarantee the
integrability of ΘV(τ)

′
µ.

4.3. Reduction to nilpotent orbits. Following the strategy outlined at
the end of 4.1, we must now consider the integrability of ΘV(τ)

′ and Θ◦
V(y)

′
m.

Our next goal is to prove the following Proposition, which shows that it is
enough to consider the case where V is a nilpotent orbit.

Proposition 4.4. Let V → ∆∗ be a weight two polarized variation of Hodge
structure with h2,0 = 1. Assume that the monodromy is unipotent and non–
trivial and let Vnilp be the corresponding nilpotent orbit. For any τ ∈ H and
any m and µ, the forms

ΘV(τ)
′
µ −ΘVnilp(τ)′µ and Θ◦

V(y)
′
m,µ −Θ◦

Vnilp(y)
′
m,µ ∈ Ω1,1(∆∗)

are rapidly decreasing as t→ 0. We have∫
∆∗

ΘV(τ)
′
µ −ΘVnilp(τ)′µ =

∑
m

(∫
∆∗

Θ◦
V(y)

′
m,µ −Θ◦

Vnilp(y)
′
m,µ

)
· qm.

As a first step towards the proof let us establish an estimate for the
difference between the Hodge norms ∥v∥V,t and ∥v∥Vnilp,t of a flat section
v ∈ VR as t→ 0.

Lemma 4.5. There are positive constants A, B such that∣∣∣∥v∥2V,t − ∥v∥2Vnilp,t

∣∣∣ ≤ A|t|B∥v∥2Vnilp,t

for every t ∈ U and v ∈ VR.

Proof. Let π : H → ∆∗ be the uniformizing map z 7→ t = e2πiz and let
Φ1 : H → D and Φ2 : H → D be the period maps induced by π∗V and
π∗Vnilp respectively. Let us write GR = SO(VR, Q) and fix z0 ∈ D. Pick
differentiable lifts

ϕ1, ϕ2 : H → GR
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of Φ1 and Φ2, i.e. maps ϕi that satisfy

Φi(z) = ϕi(z)x0, z ∈ H, i = 1, 2.

(For example, use the Iwasawa decomposition of GR.) Writing ∥ · ∥x for the
euclidean metric on VR corresponding to x ∈ D, we have the equivariance
property ∥gv∥gx = ∥v∥x for all g ∈ GR. Hence

∥v∥2V,t = ∥v∥2Φ1(t)
= ∥ϕ1(t)−1v∥2x0

.

and similarly ∥v∥2Vnilp,t = ∥ϕ2(t)−1v∥2x0
. Thus it suffices to prove that

|∥ϕ1(t)−1ϕ2(t)v∥2x0
− ∥v∥2x0

| ≤ A|t|B∥v∥2x0

for all v ∈ VR, or equivalently to show that the norm ∥ϕ1(t)−1ϕ2(t)∥ of the
operator ϕ1(t)

−1ϕ2(t) ∈ End(VR) satisfies

|∥ϕ1(t)−1ϕ2(t)∥2 − 1| ≤ A|t|B.
This follows directly from Schmid’s nilpotent orbit theorem [22, Thm 4.12]
(see also p. 244 of loc. cit. for a comparison between the operator norm
and Riemannian distance on D). □

Lemma 4.5 leads to the following upper bound for the difference between
φV and φVnilp .

Lemma 4.6. There exist positive constants A, B and C such that

|φV(v)− φVnilp(v)|t < C|t|Be−π(1−A|t|B)∥v∥2V,t(1 + ∥v∥4V,t)
for any t ∈ U and any v ∈ VR.

Proof. Let pV be as in (4.8). The proof of Lemma 4.2 shows that

(4.17) |pV(v)|t = O(1 + ∥v∥2V,t).
By Lemma 4.5 the same upper bound holds for |pVnilp(v)|t. Hence it suffices
to establish the bounds

|e−π∥v∥2V,t − e
−π∥v∥2

Vnilp,t | < C|t|Be−π(1−A|t|B)∥v∥2V,t∥v∥2V,t(4.18)

|pV(v)− pVnilp(v)|t < C|t|B(1 + ∥v∥2V,t).(4.19)

The first bound is equivalent to

|e−π(∥v∥2
Vnilp,t

−∥v∥2V,t) − 1| < C|t|BeπA|t|B∥v∥2V,t∥v∥2V,t,

which follows readily from Lemma 4.5 and the inequality |ex − 1| ≤ |x|e|x|
valid for all real x. As to the second bound, let us use (4.9) and (4.10) to
write pV(v) as

pV(v) = −(1 + 2πh(sv))ΩL + i∂∂h(sv)

= −(1 + π∥v∥2V − πQ(v, v))ΩL + i∂∂∥v∥2V/2
(4.20)

and similarly

pVnilp(v) = −(1 + π∥v∥2Vnilp − πQ(v, v))ΩLnilp + i∂∂∥v∥2Vnilp/2.
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By Lemma 4.5 and the fact that ΩL and ΩLnilp are nearly bounded, it suffices
to show that

(4.21) |ΩL − ΩLnilp |t = O(|t|B)

and

(4.22) |∂∂(∥v∥2V,t − ∥v∥2Vnilp,t)|t = O(|t|B∥v∥2V,t).

Both bounds follow from (4.6). Namely, let us write ∥v∥2V,t = a∗hV(t)a and

∥v∥2Vnilp,t = a∗hVnilp(t)a as in (4.4) and let fij(t) = e−1
ij (hV(t)ij − hVnilp(t)ij);

then

∥v∥2V,t − ∥v∥2Vnilp,t =
∑
i,j

aiajeij(t) · fij(t).

Let us write a∗ea = Σi,jaiajeij ; then |a∗e(t)a| = O(∥v∥2V,t) by (4.11). Since

the forms e−1
ij ∂eij , e

−1
ij ∂eij and e

−1
ij ∂∂eij are nearly bounded, the expressions

|∂(a∗ea)|t, |∂(a∗ea)|t and |∂∂(a∗ea)|t are all O(∥v∥2V,t). Hence to establish
the bound (4.22) it suffices to prove that the expressions |fij(t)|, |∂fij |t,
|∂fij |t and |∂∂fij |t are all O(|t|B) for some positive constant B. Now Lemma
4.5 gives the bound

(4.23) t−B(hV(t)ij − hVnilp(t)ij)) ∈ B∆

for some B > 0, and so the required bounds on fij and its derivatives follow

from the fact that B∆ is closed under the operators t log |t| ddt and t log |t|
d
dt
.

It remains to prove the bound (4.21). To see this, pick a non-zero ele-
ment v ∈ W1; then Q(v, v) = 0 and hence ∥v∥2V = 2hV(sv) and ∥v∥2Vnilp =

2hVnilp(sv) by (4.10). We can then write−2πiΩL = ∂∂ log ∥v∥2V and similarly
−2πiΩLnilp = ∂∂ log ∥v∥2Vnilp and so to prove (4.21) it suffices to establish
that ∣∣∣∣∣∂∂∥v∥2V∥v∥2V

−
∂∂∥v∥2Vnilp

∥v∥2Vnilp

∣∣∣∣∣
t

and

∣∣∣∣∣∂∥v∥2V∥v∥2V
−
∂∥v∥2Vnilp

∥v∥2Vnilp

∣∣∣∣∣
t

are of the form O(|t|B) for some B > 0. This follows the Hodge norm

estimates ∥v∥2V , ∥v∥2Vnilp ∼ (− log |t|)k−2 (for v ∈Wk −Wk−1) together with
the bounds provided by Lemma 4.5 and (4.22). □

Proof of Proposition 4.4. Lemma 4.6 implies that for |t| small enough we
have

|φV(v)− φVnilp(v)|t < C|t|Be−π∥v∥2V,t/2

for all v ∈ VR. Then

|ΘV(τ)
′
µ −ΘVnilp(τ)′µ|t < C|t|B

∑
v∈V∨

Z ∩W2

e−πy∥v∥2V,t/2
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With the notation of the proof of Proposition 4.3 we have∑
v∈V∨

Z ∩W2

e−πy∥v∥2V,t/2 <
∑
v∈Y Z

2

e−πcy|v|2

×
∑
w∈Y Z

l

e−πcy|w|2(− log |t|)l−2
(4.24)

and as argued in that proof the last expression is O(− log |t|). This gives
|ΘV(τ)

′
µ −ΘVnilp(τ)′µ|t = O(−|t|B log |t|)

and a similar upper bound for |Θ◦
V(y)

′
m,µ − Θ◦

Vnilp(y)
′
m,µ|t. The identity in

the statement follows from dominated convergence. □

It will convenient to pass from an arbitrary nilpotent orbit Vnilp to a
special type of nilpotent orbit that we denote by Ṽnilp. The special feature
of Ṽnilp is that the corresponding limiting mixed Hodge structure splits over
R; one might refer to Ṽnilp as an “R–split nilpotent orbit”.

To a nilpotent orbit Vnilp one can canonically attach an R–split nilpotent
orbit Ṽnilp. The Hodge filtration F̃• of Ṽnilp lives in the same complex vector
space as the Hodge filtration F• of Vnilp, and both are related by

F̃• = eiδF•

for a certain element δ defined by Deligne (see [6, Prop. 2.20, p. 480]). The

two orbits Vnilp and Ṽnilp are close in a sense made precise by Schmid’s SL2–
orbit theorem [6, Thm 3.25]. As a result one obtains the following bound
for the difference between the forms φVnilp(v) and φṼnilp(v).

Lemma 4.7. There exists a positive constant C such that

(4.25) |∥v∥2Vnilp,t − ∥v∥2Ṽnilp,t
| ≤ C(− log |t|)−1∥v∥2Vnilp,t

for all t ∈ U and all v ∈ VR.

Proof. As in the proof of Lemma 4.5, this bound is equivalent to a bound
for operator norm of an element gz ∈ GR relating ΦVnilp(t) and ΦṼnilp(t).
The relevant bound is proved in [6, pp. 480-481]: in the notation of that
paper, the element

gz = exN g̃(y)e−xN ∈ GR

(cf. loc. cit., eq. (3.19)) relates both filtrations, i.e. it satisfies

ΦVnilp(t) = gzΦṼnilp(t).

The bound (4.25) is then equivalent to

(4.26) sup
v∈VR−0

∣∣∣∣∥gzv∥Vnilp,t

∥v∥Vnilp,t

− 1

∣∣∣∣ ≤ C(− log |t|)−1.

Schmid’s SL2–orbit theorem [6, Thm 3.25] shows that g̃(y) admits a conver-
gent expansion

g̃(y) = g̃(∞)(1 + g̃1y
−1 + g̃2y

−2 + · · · ).
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To prove (4.26) it suffices to establish that

sup
v∈VR−0

∥(gz g̃(∞)−1 − 1)v∥Vnilp,t

∥v∥Vnilp,t

and sup
v∈VR−0

∥(g̃(∞)− 1)v∥Vnilp,t

∥v∥Vnilp,t

are O((− log |t|)−1). For the first expression this follows directly from the
above expansion for g̃(y) together with the fact that g̃k maps Wn,R to
Wn+k−1,R. For the second expression one uses that g̃(∞)− 1 maps Wn,R to
Wn−2,R (cf. [6, Thm. 3.25.(ii) and (iv)]). □

Lemma 4.8. There exists a positive constant C such that

|φVnilp(v)− φṼnilp(v)|t < C(− log |t|)−1e
−π

2
∥v∥2

Vnilp,t

for any v ∈ VR and any t ∈ U with |t| sufficiently small.

Proof. The proof follows closely that of Lemma 4.6, replacing the use of
Lemma 4.5 by (4.25). The needed bounds

|ΩLnilp − ΩL̃nilp |t = O((− log |t|)−1)

and

|∂∂(∥v∥2Vnilp,t − ∥v∥2Ṽnilp,t
)|t = O((− log |t|)−1∥v∥2Vnilp,t)

follow in the same way as (4.21) and (4.22) using the fact that the subspace

(− log |t|)−1B∆ ⊂ B∆

is stable under the operators t log |t| ddt and t log |t| d
dt
. □

Combined with the estimate (4.16), the lemma implies the bound

|ΘVnilp(τ)′µ −ΘṼnilp(τ)
′
µ|t ≤

∑
v∈V∨

Z ∩W2

|φVnilp(v)− φṼnilp(v)|t

≤ C(− log |t|)−1

 ∑
v∈V∨

Z ∩W2

e
−π

2 ∥v∥
2
Vnilp,t


= O(1),

(4.27)

and similarly that |Θ◦
Vnilp(y)

′
m,µ − Θ◦

Ṽnilp(y)
′
m,µ|t is also bounded for all m

and µ.
It follows that to prove Theorem 4.1 it suffices to show that ΘṼnilp(τ)

′
µ

and Θ◦
Ṽnilp(y)

′
m,µ are integrable over ∆∗ for all m and µ and satisfy

(4.28)

∫
∆∗

ΘṼnilp(τ)
′
µ =

∑
m

(∫
∆∗

Θ◦
Ṽnilp(y)

′
m,µ

)
· qm.

We will prove (4.28) in the next two sections by distinguishing the nilpo-
tent orbits of types II and III, using the explicit nature of φṼnilp(v) in each
case.

4.4. Integrability for type II nilpotent orbits.
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4.4.1. Let us first determine explicitly the form φV(v) corresponding to a

type II nilpotent orbit V = Ṽnilp. The setting is that of Section 2.3; in
particular, we assume that the associated limiting mixed Hodge structure is
R–split.

For a vector v ∈ W2,R, we can write v = v2 + ae1,0 + ae0,1 with v2 ∈ V2,
and by (2.22) we have

(4.29) φV(v) = e−πQ(v2,v2)φV(ae
1,0 + ae0,1)

and

(4.30) ∥ae1,0 + ae0,1∥2z = 2|a|2/Im(z).

For v ∈W1, we have

Q(v, v) = 0 ⇒ ∥v1,1z ∥2z = 2∥v2,0z ∥2z
and hence

h(sv) = 2∥v2,0∥2z = (∥v1,1∥2z + 2∥v2,0∥2z)/2 = ∥v∥2z/2.
For v ∈W1, we conclude using (2.17) that

θ =
∂h(sv)

h(sv)
=
∂∥v∥2z
∥v∥2z

= −∂Im(z)

Im(z)
=

idz

2Im(z)

θ ∧ θ = dz ∧ dz
4Im(z)2

= −2πiΩ

and hence

φV(v) = e−π∥v∥2z(−Ω+ ih(sv)θ ∧ θ)

= e−π∥v∥2z(π∥v∥2z − 1)Ω
(4.31)

For v = ae1,0 + ae0,1, by (4.30) we obtain

(4.32) φV(ae
1,0 + ae0,1) = ϕ

(
a

(Im(z)/2)1/2

)
Ω,

where ϕ : C → R is the Schwartz form defined by

(4.33) ϕ(a) = e−π|a|2(π|a|2 − 1).

Let us write Fϕ for the Fourier transform of ϕ. In order to estimate ΘV(τ)
′
µ

we will need to compute Fϕ(0). Using polar coordinates we find

Fϕ(0) =
∫
C
ϕ(a)da

=

∫ ∞

0

∫ 2π

0
ϕ(r cos θ, r sin θ)rdrdθ

= 2π

∫ ∞

0
e−πr2(πr2 − 1)rdr

= 2π

(
−e−πr2 r

2

2

∣∣∣∣∞
0

= 0.

(4.34)
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4.4.2. Using the above description of φV we can compute ΘV(τ)
′ explicitly.

We write WZ
j = VZ ∩Wj and obtain a filtration

0 =WZ
0 ⊂WZ

1 ⊂WZ
2 ⊂WZ

3 = VZ

of the local system VZ. The associated quotients

GrWj VZ :=WZ
j /W

Z
j−1, j = 1, 2, 3,

are local systems of free abelian groups of ranks 2, n− 2 and 2 respectively.
Note that if µ /∈W2 + VZ, then (µ+ VZ) ∩W2 = ∅ and ΘV(τ)

′
µ = 0.

Recall the Deligne splitting introduced in (2.3): we have

W1 ⊗ C = I1,0 ⊕ I0,1, W2 ⊗ C = I1,0 ⊕ I0,1 ⊕ I1,1.

Since I1,1 is stable under complex conjugation, this induces a splitting of
the filtration W1 ⊗ R ⊂W2 ⊗ R:

W2 ⊗ R =W1 ⊗ R⊕ (I1,1 ∩ VR).

We denote by π1 : W2 ⊗ R → W1 ⊗ R and π2 : W2 ⊗ R → (I1,1 ∩ VR) the

resulting projections. By (4.29), for v ∈WZ
2 we have

(4.35) φV(v) = e−πQ(π2(v),π2(v))φV(π1(v)).

Since Q(W1,W2) = 0, we can rewrite this as

(4.36) φV(v) = e−πQ(v,v)φV(π1(v)).

For the theta series ΘV(τ)
′
µ with µ ∈W2+VZ we have (µ+VZ)∩W2 = µ+WZ

2

and hence

ΘV(τ)
′
µ =

∑
v∈µ+WZ

2

φV(y
1/2v)eπiQ(v,v)x

=
∑

v∈(µ+WZ
2 )/W

Z
1

qQ(v,v)/2
∑

v1∈WZ
1

φV(y
1/2(v1 + π1(v))).

(4.37)

We will now use Poisson summation to give an upper bound for the inner
sum. Let us fix flat sections λ1, λ2 of WZ

1 giving a trivialization

(4.38) Φ : Z2 ∼→WZ
1 , Φ((a1, a2)) = a1λ1 + a2λ2.

Write

λi = αie
1,0 + αie

0,1, i = 1, 2,(4.39)

for some complex numbers α1, α2. By (2.22), for a vector a = (a1, a2) ∈ R2,
the Hodge metric of Φ(a) is given by

∥Φ(a)∥z = 2|a1α1 + a2α2|2/Im(z),

Let us define a Schwartz function ϕ̃ : R2 → C by

ϕ̃(x1, x2) = ϕ (x1α1 + x2α2) .
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Writing π1(v) = Φ(a) for some a ∈ R2 and using (4.32) and (4.33) we have

∑
v1∈WZ

1

φV(y
1/2(v1 + π1(v))) =

∑
n∈Z2

ϕ̃

(
a+ n√
Im(z)/2y

)Ω.(4.40)

Writing F ϕ̃ for the Fourier transform of ϕ̃, an application of Poisson
summation gives

(4.41)
∑
n∈Z2

ϕ̃

(
a+ n√
Im(z)/2y

)
=

Im(z)

2y

∑
m∈Z2

e2πim·aF ϕ̃(
√

Im(z)/2y ·m).

By (4.34), the term corresponding to m = 0 vanishes, and we obtain the
upper bound, uniform in a,
(4.42)∣∣∣∣∣∣

∑
v1∈WZ

1

φV(
√
y(v1 + π1(v)))

∣∣∣∣∣∣
t

≤ Im(z)

2y

∑
m∈Z2−0

|F ϕ̃(
√
Im(z)/2y ·m)| · |Ω|t

This expression decreases rapidly as Im(z) → ∞, which implies the integra-
bility of ΘV(τ)

′
µ. Similarly, using Q(W1,W2) = 0, we may write

Θ◦
V(y)

′
m,µ =

∑
v∈µ+WZ

2
Q(v,v)=2m

φ◦
V(y

1/2v)

=
∑

v∈(µ+WZ
2 )/W

Z
1

Q(v,v)=2m

∑
v1∈WZ

1

φ◦
V(y

1/2(v1 + π1(v))).
(4.43)

Note that the outer sum is finite since Q polarizes the pure Hodge structure
GrW2 V, which is purely of type (1, 1). The above bound establishes that
Θ◦

V(y)
′
m,µ is integrable for all m and implies the identity∫

∆∗
ΘV(τ)

′
µ =

∑
m

(∫
∆∗

Θ◦
V(y)

′
m,µ

)
· qm

by dominated convergence.

4.5. Integrability for type III nilpotent orbits. We now determine the
form φV(v) and theta series ΘV(τ)

′
µ for a type III nilpotent orbit V = Ṽnilp.

We will work in the setting of Section 2.4; in particular, we assume that the
associated limiting mixed Hodge structure is R–split.

4.5.1. Let v ∈W2,R. As in (2.30), we may write v = vU +aNe2,2+ bN2e2,2

with vU ∈ U and real numbers a and b. By (2.32) and (2.33), we have

(4.44) φV(v) = e−πQ(vU ,vU )φV(aNe
2,2 + bN2e2,2).
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Differentiating h(sv) = |b− az|2/Im(z)2 gives

θ(sv) =
∂h(sv)

h(sv)
=

(
− a

b− az
+

i

Im(z)

)
dz

and hence

θ ∧ θ =
∣∣∣∣ b− aRe(z)

(b− az)Im(z)

∣∣∣∣2 dz ∧ dz.
Using (2.27) we obtain

ih(sv)θ ∧ θ =
|b− aRe(z)|2

Im(z)2
· idz ∧ dz
Im(z)2

=

(
b− aRe(z)

Im(z)

)2

4πΩ.

(4.45)

For v = aNe2,2 + bN2e2,2 we obtain the explicit formula

(4.46) φV(aNe
2,2 + bN2e2,2) = e−πa2ϕ

(
b− aRe(z)

Im(z)

)
Ω,

where ϕ : R → R is the Schwartz function defined by

(4.47) ϕ(b) = e−2πb2(4πb2 − 1).

The most important consequence of this explicit description of ϕ is that its
Fourier transform Fϕ satisfies

(4.48) Fϕ(0) = 0,

as follows from the identity d
db(−be

−2πb2) = e−2πb2(4πb2 − 1).

4.5.2. Let us now compute ΘV(τ)
′ explicitly using the above description of

φV. As in 4.4, we define WZ
j =Wj ∩ VZ and obtain a filtration

0 ⊂WZ
0 =WZ

1 ⊂WZ
2 =WZ

3 ⊂WZ
4 = VZ

whose associated quotients GrWk VZ :=WZ
k /W

Z
k−1 are free abelian groups (of

rank one in the case of GrW0 VZ and GrW4 VZ). Let us define

WZ
2,prim =WZ

2 ∩ kerN.

Fix a generator v0 of WZ
0 and vectors v1, . . . , vn−1 of WZ

2,prim such that

WZ
2,prim = ⟨v0, v1, . . . , vn−1⟩,

i.e. so that Y Z
2,prim := ⟨v1, . . . , vn−1⟩ is a complement of WZ

0 in WZ
2,prim. We

also fix a vector v′n ∈ VZ mapping to a generator of GrW4 VZ and a vector

vn ∈ WZ
2 such that vn ≡ Nv′n mod W0; then the image of vn in GrW2 VZ

generates the rank one lattice

N(GrW4 VZ) = im(N : GrW4 VZ → GrW2 VZ)

(cf. Lemma 3.2.(ii)). Define

Y Z
2 := ⟨v1, . . . , vn⟩ = Y Z

2,prim ⊕ ⟨vn⟩
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(orthogonal sum). Then WZ
0 + Y Z

2 is a (finite index) sublattice of WZ
2 and

the quotient map W2 → GrW2 V induces an isometry

(4.49) Y Z
2 ≃ GrW2,primVZ ⊕N(GrW4 VZ)

onto a (finite-index) sublattice of GrW2 VZ. With the notation of 3.3.2 we

may then write µ = µ2 + µ0 with µ2 ∈ Y Z
2 ⊗Q and µ0 ∈W0 and

(4.50) ΘV(τ)
′
µ =

∑
Nλ+ν≡µ2

mod WZ
2

ΘV(τ)
′
λ⊗ν

with

(4.51) ΘV(τ)
′
λ⊗ν :=

∑
v′∈Nλ+⟨vn⟩
v∈ν+Y Z

2,prim

w∈µ0+WZ
0

φV(y
1/2(v′ + v + w))eπix(Q(v′,v′)+Q(v,v)).

To estimate this sum, we use (2.30) to write

v′ = a(v′)Ne2,2 + b(v′)N2e2,2

v = πU (v) + b(v)N2e2,2

w = b(w)N2e2,2,

(4.52)

where πU : W2,R → U is the projection to U and a, b are linear func-
tionals on W2,R. Since W0 is anisotropic and Q(W0,W2) = 0, we have

Q(πU (v), πU (v)) = Q(v, v) and Q(v′, v′) = −a(v′)2 and hence, by (4.44) and
(4.46),

φV(v
′ + v + w) = e−πQ(v,v)

× φV(a(v
′)Ne2,2 + b(v + v′)N2e2,2 + w).

= e−π(Q(v,v)−Q(v′,v′))

× ϕ

(
b(v + v′ + w)− a(v′)Re(z)

Im(z)

)
Ω,

(4.53)

with ϕ given by (4.47). For the theta series ΘV(τ)
′
λ⊗ν this gives

ΘV(τ)
′
λ⊗ν =

∑
v′∈Nλ+⟨vn⟩
v∈ν+Y Z

2,prim

qQ(v,v)/2q(−Q(v′,v′)/2)

×
∑

w∈µ0+WZ
0

ϕ

(
√
y
b(v + v′ + w)− a(v′)Re(z)

Im(z)

)
Ω.

(4.54)

To estimate the sum over µ0 + WZ
0 = Zv0 we apply Poisson summation:

writing Fϕ for the Fourier transform of ϕ and

A =
b(v + v′ + µ0)− a(v′)Re(z)

Im(z)/
√
y

,
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we have∑
n∈Z

ϕ

(
A+

nb(v0)

Im(z)/
√
y

)
=

Im(z)

|b(v0)|
√
y

∑
m∈Z

e2πimAFϕ
(

Im(z)

b(v0)
√
y
m

)
.

The term corresponding to m = 0 vanishes by (4.48); this gives the upper
bound, uniform in A,

∣∣∣∣∣∣
∑

w∈WZ
0

ϕ

(
√
y
b(v + v′ + w)− a(v′)Re(z)

Im(z)

)∣∣∣∣∣∣
t

≤ Im(z)

|b(v0)|
√
y

∑
m∈Z−0

∣∣∣∣Fϕ( Im(z)

b(v0)
√
y
m

)∣∣∣∣ |Ω|t
(4.55)

The right hand side is rapidly decreasing as Im(z) → ∞. This implies
the integrability of ΘV(τ)

′
µ. Similarly, using Q(W0,W2) = 0, we have

Θ◦
V(y)

′
m,µ =

∑
Nλ+ν≡µ2

mod WZ
2

Θ◦
V(y)

′
m,λ⊗ν with

Θ◦
V(y)

′
m,λ⊗ν · qm =

∑
v′∈Nλ+⟨vn⟩
v∈ν+Y Z

2,prim

Q(v+v′,v+v′)=2m

qQ(v,v)/2q(−Q(v′,v′)/2)

×
∑

w∈µ0+WZ
0

ϕ

(
√
y
b(v + v′ + w)− a(v′)Re(z)

Im(z)

)
Ω.

(4.56)

The bound (4.55) and the fact that Q is positive definite on Y Z
2,prim and

negative definite on N(GrW4 VZ) show that Θ◦
V(y)

′
m,λ⊗ν is integrable for all

m. The identity ∫
∆∗

ΘV(τ)
′
µ =

∑
m

(∫
∆∗

Θ◦
V(y)

′
m,µ

)
· qm

follows by dominated convergence.

5. Generating series of Noether–Lefschetz numbers

The goal of this section is to determine the Fourier expansion of the non–
holomorphic modular forms ZV(τ)µ in Theorem 4.1. We will see that their
Fourier coefficients can be expressed in terms of the degrees of the Noether–
Lefschetz loci NLV(m)µ defined below and some discrete invariants of the
limiting mixed Hodge structures arising from the degeneration of V around
each point P in S − S.



40 LUIS E. GARCÍA

More precisely, to V one can attach the q-series

Z+
V (τ)µ := −deg(L)δµ,0 +

∑
m>0

deg NLV(m)µ · qm, q = e2πiτ

as well as theta series Z−
V,P (τ) for each P ∈ S \S (see (3.17) and (3.24)).

We will prove the following theorem which implies Theorem 1.2.

Theorem 5.1. Assume that V satisfies 1.1. For all τ ∈ H and µ ∈ V∨
Z /VZ,

ZV(τ)µ = Z+
V (τ)µ +

∑
P∈S\S

Z−
V,P (τ)µ.

The proof proceeds by checking that both sides have the same Fourier
coefficients. That is, let

Z−
V,P (τ)µ =

∑
m

Z−
V,P (y)m,µ · qm

be the Fourier expansion of Z−
V,P (τ)µ and write similarly

Z+
V (τ)m,µ =


deg NLV(m)µ if m > 0,

−deg(L), if (m,µ) = (0, 0),
0, otherwise,

for the Fourier coefficients of Z+
V (τ)µ. Theorem 5.1 is then equivalent to the

identity

(5.1)

∫
S
Θ◦

V(y)m,µ = Z+
V (τ)m,µ +

∑
P∈S \S

Z−
V,P (y)m,µ

for all m and µ.

5.1. Kudla–Millson forms and Noether–Lefschetz loci. The main in-
put needed to prove Theorem 5.1 is the computation of the residues at the
boundary of certain Green functions g◦(y)m,µ for the Noether–Lefschetz loci
obtained by pulling back Green functions for special divisors on orthogonal
Shimura varieties. The latter Green functions were introduced by Kudla in
[15]. Let us briefly recall their definition. Consider the Kudla–Millson theta
series

ΘKM(τ)µ =
∑

v∈µ+VZ

φKM(y1/2v)eπixQ(v,v)

and let us write

ΘKM(τ)µ =
∑

m∈1
2Q(µ,µ)+Z

Θ◦
KM(y)m,µ · qm

for its Fourier expansion. One of the main properties of ΘKM(τ)µ is that it
defines a closed differential form and its Fourier coefficients Θ◦

KM(y)m,µ are
Poincaré dual to a certain special divisor Z(m,µ) (see [14]) whose intersec-
tion with S gives the Noether–Lefschetz locus NLV(m)µ.
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In [15], Kudla introduced a Green function g◦(y)m,µ for the special divi-
sor Z(m,µ), i.e. a smooth function on Γ\D − |Z(m,µ)| satisfying Green’s
equation

(5.2) ddc[g◦(y)m,µ] + δZ(m,µ) = [Θ◦
KM(y)m,µ − φKM(0)δ(m,µ)=(0,0)].

Here dc = (4πi)−1(∂−∂), so that ddc = −(2πi)−1∂∂, and the term δ(m,µ)=(0,0)

equals one if (m,µ) = (0, 0) and vanishes otherwise.
Pulling back g◦(y)m,µ by the period map ΦV associated with V, we obtain

a function g◦V(y)m,µ whose main properties are summarized in the following
Proposition.

Proposition 5.2. For v a local section of VR, define

(5.3) ν◦V(v) = e−2πh(sv)

and νV(v) = e−πQ(v,v)ν◦V(v). Then

(5.4) g◦V(y)m,µ :=

∫ ∞

1

 ∑
0 ̸=v∈µ+VZ
Q(v,v)=2m

ν◦V((yu)
1/2v)

 du

u

defines a smooth function on S − |NLV(m)µ| that satisfies the differential
equation

(5.5) ddc[g◦V(y)m,µ] + δNLV(m)µ = [Θ◦
V(y)m,µ +Ωδ(m,µ)=(0,0)]

as currents on S. (Here δNLV(m)µ denotes the current of integration against
the divisor associated with NLV(m)µ, understood to vanish if m ≤ 0.)

Let us fixm and µ and choose small disks DP,ϵ around each point P in the

support of NLV(m)µ as well as in S \S whose radii tend to zero as ϵ → 0.
By the above proposition and the integrability of Θ◦

V(y)m,µ we have∫
S
Θ◦

V(y)m,µ + deg(L)δ(m,µ)=(0,0)

= lim
ϵ→0

∫
S−∪DP,ϵ

(Θ◦
V(y)m,µ +Ωδ(m,µ)=(0,0))

= lim
ϵ→0

∫
∂(S−∪DP,ϵ)

dcg◦V(y)m,µ

= deg NLV(m)µ −
∑

P∈S \S

lim
ϵ→0

∫
∂DP,ϵ

dcg◦V(y)m,µ

= deg NLV(m)µ −
∑

P∈S \S

resP ∂g◦V(y)m,µ,

(5.6)

where in the last line resP denotes the residue at P of the (1, 0)–form
∂g◦V(y)m,µ. Thus to establish (5.1) it suffices to prove the identity

(5.7) −resP ∂g◦V(y)m,µ = Z−
V,P (y)m,µ
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for all m and µ and all P ∈ S \S. Note that the residue resP depends only
on the restriction of V to a small disk centered at P .

5.2. Local residue computations. It follows from (5.7) that to prove
Theorem 5.1 it suffices to prove the following three lemmas. In their state-
ments we assume that V is an arbitrary Z-PVHS of weight two with h2,0 = 1
satisfying 1.1 on the punctured unit disk S = ∆∗. With the notation of Sec-
tion 2.2 we define

g◦V(y)
′
m,µ =

∫ ∞

1

 ∑
0̸=v∈(µ+VZ)∩W2

Q(v,v)=2m

ν◦V((yu)
1/2v)

 du

u
.

The strategy is now the same as for the proof of Theorem 4.1: one first
shows that the residue of ∂g◦V(y)m,µ agrees with that of ∂g◦Ṽnilp(y)

′
m,µ and

then one computes the latter residue using the explicit formulas for the
“R–split nilpotent orbit” Ṽnilp in Sections 2.3 and 2.4.

Lemma 5.3. For any m and µ, we have

rest=0 (∂g◦V(y)m,µ − ∂g◦Vnilp(y)
′
m,µ) = 0.

Lemma 5.4. For any m and µ, we have

rest=0 (∂g◦Vnilp(y)
′
m,µ − ∂g◦Ṽnilp(y)

′
m,µ) = 0.

Lemma 5.5. For any m and µ, we have

−rest=0 ∂g
◦
Ṽnilp(y)

′
m,µ = Z−

V,P (τ)m,µ.

The proof of these lemmas is analogous to the proofs of similar lemmas
in Sections 4.2, 4.3, 4.4 and 4.5. It will be convenient to define

(5.8) Θ̃V(y)m,µ =
∑

v∈µ+VZ
Q(v,v)=2m

ν◦V(y
1/2v)

and write

Θ̃V(y)m,µ = Θ̃V(y)
′
m,µ + Θ̃V(y)

′′
m,µ,

where in Θ̃V(y)
′
m,µ the sum runs over vectors in W2 while in Θ̃V(y)

′′
m,µ it

runs over vectors not in W2. Since ν
◦
V(0) = 1 and hence ∂ν◦V(0) = 0, we can

drop the condition v ̸= 0 in (5.4) when computing ∂g◦V(y)m,µ ; that is, we
have

(5.9) ∂g◦V(y)m,µ =

∫ ∞

1
∂Θ̃V(uy)m,µ

du

u

and

∂g◦V(y)m,µ = ∂g◦V(y)
′
m,µ + ∂g◦V(y)

′′
m,µ
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with

∂g◦V(y)
′
m,µ =

∫ ∞

1
∂Θ̃V(uy)

′
m,µ

du

u

∂g◦V(y)
′′
m,µ =

∫ ∞

1
∂Θ̃V(uy)

′′
m,µ

du

u
.

(5.10)

Proof of Lemma 5.3. This reduces to

rest=0 ∂g
◦
V(y)

′′
m,µ = 0(5.11)

rest=0 (∂g◦V(y)
′
m,µ − ∂g◦Vnilp(y)

′
m,µ) = 0.(5.12)

To prove (5.11) we can use (5.10) and the explicit expression

(5.13) ∂ν◦V(y
1/2v) = ∂(e−2πyh(sv)) = e−2πyh(sv) · (−πy∂∥v∥2V)

(recall that ∥v∥2V = Q(v, v)+2h(sv) and hence 2∂h(sv) = ∂∥v∥2V). With the
notation of (4.4), we have

∂∥v∥2V =
∑
i,j

aiaj∂hij(t).

As in the proof of Lemma 4.2 one shows that the forms e−1
ij ∂hij are nearly

bounded and hence that

(5.14) |∂∥v∥2V |t ≤ C∥v∥2V,t
for some positive constant C, giving the bound

|∂Θ̃V(uy)
′′
m,µ|t ≤ C ·

∑
v∈V∨

Z
v/∈W2

Q(v,v)=2m

e−2πuyh(sv)πuy∥v∥2t

and hence

|∂g◦V(y)′′m,µ|t ≤ C ·
∑
v∈V∨

Z
v/∈W2

Q(v,v)=2m

∫ ∞

1
e−2πuyh(sv)πy∥v∥2tdu

= C ·
∑
v∈V∨

Z
v/∈W2

Q(v,v)=2m

e−2πyh(sv) ∥v∥2t
2h(sv)

= e2πymC ·
∑
v∈V∨

Z
v/∈W2

Q(v,v)=2m

e−πy∥v∥2t
(
1− 2m

∥v∥2t

)−1

.

(5.15)

By (4.13), the factor (1 − 2m∥v∥−2
t )−1 in the last expression is bounded

above by an expression of the form (1 − A(− log |t|)−1)−1 for some A > 0.
The argument in the proof of Proposition 4.3 now shows that |∂g◦V(y)′′m,µ|t
is rapidly decreasing as t→ 0, proving (5.11).
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To show that (5.12) holds one can follow closely the arguments proving
Lemma 4.6 and Proposition 4.4. One first shows by differentiating (4.23)
that

(5.16) |∂∥v∥2V,t − ∂∥v∥2Vnilp,t|t = O(|t|B∥v∥2V,t)

for some positive constant B. Multiplying (4.18) by eπQ(v,v) yields

(5.17) |e−2πhV (sv) − e−2πhVnilp (sv)|t < C|t|Be−π(2hV (sv)−A|t|B∥v∥2V,t)∥v∥2V,t.

Combined with (5.14) and (5.16), this gives the bound

|∂ν◦V(v)− ∂ν◦Vnilp(v)|t < C|t|Be−π(2hV (sv)−A|t|B∥v∥2V ) · ∥v∥2V(1 + ∥v∥2V)
(5.18)

for some positive constants A, B and C. Writing f(v, t) = 2hV(sv) −
A|t|B∥v∥2V , we have∫ ∞

1
e−πuf(v,t)u∥v∥2V

du

u
= ∥v∥2V

e−πf(v,t)

πf(v, t)

and ∫ ∞

1
e−πuf(v,t)u2∥v∥4V

du

u
= ∥v∥4V

(
e−πf(v,t)

πf(v, t)
+

e−πf(v,t)

(−πf(v, t))2

)
.

By (4.13), there existA > 0 and k ∈ N such that f(y1/2v, t)−1 < Ay−1((− log |t|)k)
for all non–zero v ∈ V∨

Z , and so for v ∈ V∨
Z with Q(v, v) = 2m we obtain∫ ∞

1
|∂ν◦V((yu)1/2v)− ∂ν◦Vnilp((yu)

1/2v)|t
du

u

< C(y−1 + y−2)|t|B(− log |t|)Ke2πyme−πy∥v∥2V/2
(5.19)

for positive constants B, C and K. Property (5.12) now follows as in the
proof of Proposition 4.4. □

Proof of Lemma 5.4. It suffices to show that

|∂g◦Vnilp(y)
′
m,µ − ∂g◦Ṽnilp(y)

′
m,µ|t

is bounded for t in a fixed angular sector where | · |t denotes the Poincaré
metric, i.e. that the form g◦Vnilp(y)

′
m,µ − ∂g◦Ṽnilp(y)

′
m,µ is nearly bounded.

To see this, let us write V = Vnilp and Ṽ = Ṽnilp. Using (5.13), (4.25) and

the elementary inequality |ex − 1| ≤ |x|e|x| we estimate

π−1|∂ν◦Vnilp(v)− ∂ν◦Ṽnilp(v)|t
= |e−2πhV (sv)∂∥v∥2V − e−2πhṼ (sv)∂∥v∥2Ṽ |t
≤ |e−2πhV (sv) − e−2πhṼ (sv)| · |∂∥v∥2Ṽ |t
+ e−2πhṼ (sv) · |∂∥v∥2V − ∂∥v∥2Ṽ |t

≤ Ce−πhṼ (sv) · (− log |t|)−1,

(5.20)
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where C depends only on m. This gives

|∂g◦Vnilp,m(y)′ − ∂g◦Ṽnilp,m
(y)′|t ≤

∫ ∞

1

∑
v∈µ+VZ

Q(v,v)=2m

|ν◦Vnilp((yu)
1/2v)− ν◦Ṽnilp((yu)

1/2v)|t
du

u

≤ C(− log |t|)−1

∫ ∞

1

∑
v∈µ+VZ

Q(v,v)=2m

e−πyuhṼ (sv)
du

u
.

(5.21)

The proof of Lemma 5.5 will show that the integrand in the last expression
is O((− log |t|)/

√
u). It follows that ∂g◦Vnilp,m(y)′ − ∂g◦Ṽnilp,m

(y)′ is nearly

bounded. □

Proof of Lemma 5.5. We consider the type II and Type III cases separately.
Assume first that Ṽnilp has a degeneration of type II at P ; this is the set-

ting of Section 4.4. Arguing as in that section, and with the same notation,
we note first that for v ∈WZ

2 we have

(5.22) ν◦Ṽnilp(v) = e−2πh(sv) = e−π∥π1(v)∥2V

(cf. (4.36)). For Θ̃Ṽnilp(uy)
′
m,µ, this gives

Θ̃Ṽnilp(uy)
′
m,µ =

∑
v∈µ+WZ

2
Q(v,v)=2m

ν◦Ṽnilp((uy)
1/2v)

=
∑

v∈(µ+WZ
2 )/W

Z
1

Q(v,v)=2m

∑
v1∈WZ

1

e−πyu∥v1+π1(v)∥2V .
(5.23)

The singularity of the inner sum as t→ 0 can be determined using Poisson
summation: with Φ as in (4.38) we can write

∑
v1∈WZ

1

e−πyu∥v1+π1(v)∥2V =
∑
n∈Z2

e
−2π yu

Im(z)
|(a1+n1)α1+(a1+n2)α2|2

=

∣∣∣∣det(α1 α1

α2 α2

)∣∣∣∣−1 Im(z)

yu
+ o(Im(z)/yu)

=
1

2πyu

∣∣∣∣det(α1 α1

α2 α2

)∣∣∣∣−1

· (− log |t|) + o((− log |t|)/(yu)).

(5.24)

To compute the determinant, recall that α1, α2 are defined by

λj = αje
1,0 + αje

0,1, j = 1, 2,

where λ1, λ2 are a fixed basis of WZ
1 . Pick λ̃1, λ̃2 ∈ VQ such that Nλ̃j = λj ;

then

λ̃j ≡ αje
2,1 + αje

1,2 mod W2,R, j = 1, 2,
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and by (2.15) we have

Q(λ̃j , λk) =

(
0 iα1α2 − iα1α2

iα1α2 − iα1α2 0

)
.

It follows that ∣∣∣∣det(α1 α1

α2 α2

)∣∣∣∣ = 2|Im(α1α2)|

= | det(Q(λ̃j , λk))|1/2

=

(
disc(GrW3,1Q)

r1(VZ, N)

)1/2

(5.25)

and hence∫ ∞

1
Θ̃Ṽnilp(uy)

′
m,µ

du

u
= Z−

V,P (y)m,µ · (− log |t|2) + o((− log |t|)/√y),

which implies the statement for type II degenerations.
Let us now consider the case when Ṽnilp has a degeneration of type III at

P ; this case was considered in Section 4.5. Arguing as in that section, and
with same notation, note first that (2.32) and (2.33) imply that for

v = vU + aNe2,2 + bN2e2,2 ∈W2,Z

we have

ν◦Ṽnilp(v) = e−2πh(sv) = e−2πa2e−2π(b−aRe(z))2/Im(z)2

(cf. (4.44) and (4.46)). The same argument that led to (4.54) shows that

Θ̃Ṽnilp(yu)
′
m,µ =

∑
λ+Nν≡µ
mod GrW2 VZ

Θ̃Ṽnilp(yu)
′
m,λ⊗ν

with

Θ̃Ṽnilp(yu)
′
m,λ⊗ν =

∑
v′∈Nλ+⟨vn⟩
v∈ν+Y Z

2,prim

Q(v+v′,v+v′)=2m

e2πyuQ(v′,v′)

·
∑

w∈µ0+WZ
0

e
−2π

yu
Im(z)2

(b(v+v′+w)−a(v′)Re(z))2

.

(5.26)

Again the leading term of the inner sum as t → 0 can be determined using
Poisson summation: writing v0 for a generator of WZ

0 , we have∑
w∈µ0+WZ

0

e
−2π

yu
Im(z)2

(b(v+v′+w)−a(v′)Re(z))2

=
Im(z)

|b(v0)|
√
2yu

+ o(Im(z)/
√
yu)

=
− log |t|

|b(v0)|2π
√
2yu

+ o((− log |t|)/√yu).
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To compute b(v0), pick ṽ0 ∈ VQ such that N2ṽ0 = v0; then

Q(ṽ0, v0) =
disc(GrW4,0Q)

r2(VZ, N)
.

On the other hand, since v0 = b(v0)N
2e2,2, we have ṽ0 ≡ b(v0)e

2,2 mod W2,R
and hence Q(ṽ0, v0) = b(v0)

2. Using the notation

rL(m)µ = {v ∈ µ+ L | Q(v, v) = 2m}

for the representation numbers of a definite lattice L, this shows that

Θ̃Ṽnilp(uy)
′
m,µ ∼

(
r2(VZ, N)

2disc(GrW4,0Q)

)1/2

×

( ∑
a+b=m

rY Z
2,prim

(a)ν · r⟨vn⟩(b)Nλ
e4πyub

4π
√
yu

)
· (− log |t|2),

as t → 0. As remarked in (4.49), the quotient map W2 → GrW2 V induces

isometries Y Z
2,prim ≃ (GrW2,primVZ, Q) and ⟨vn⟩ ≃ (GrW4 VZ,−Q4). The state-

ment in case III follows. □
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