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Abstract. We study the arithmetic of degree N − 1 Eisenstein cohomology classes for locally
symmetric spaces associated to GLN over an imaginary quadratic field k. Under natural condi-
tions we evaluate these classes on (N − 1)-cycles associated to degree N extensions F/k as linear
combinations of generalised Dedekind sums. As a consequence we prove a remarkable conjecture
of Sczech and Colmez expressing critical values of L-functions attached to Hecke characters of F
as polynomials in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves with
multiplication by k. We recover in particular the algebraicity of these critical values.
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1. Introduction

The relationship between Eisenstein series, the cohomology of arithmetic groups and special
values of L-functions has been studied extensively.

A classical example is that of weight 2 Eisenstein series associated to a pair (α, β) ∈ (Q/Z)2.
Such a series can be defined as limits of finite sums:

E2,(α,β)(τ) = lim
M→+∞

M∑
m=−M

 lim
N→+∞

N∑′

n=−N

e2iπ(mα+nβ)

(mτ + n)2

 (τ ∈H ).

Here the prime on the sum means that we exclude the term (m,n) = (0, 0). When (α, β) 6= (0, 0), the
holomorphic 1-form E2,(α,β)(τ)dτ on Poincaré’s upper half-plane H is invariant under any subgroup
Γ ⊂ SL2(Z) that fixes (α, β) modulo Z2. This holomorphic form then represents a cohomology class
in H1(Γ,C). A remarkable feature of these classes is that they are rational and even almost integral.

A convenient and compact way to state the precise integrality properties of these cohomology
classes is to consider for each prime integer the ‘p-smoothed Eisenstein series’

E
(p)
2,(α,β)(τ) =

p∑
j=0

E2,(α+j/p,β)(τ)− pE2,(α,β)(τ)

= p(E2,(pα,β)(pτ)− pE2,(α,β)(τ)),
1
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and suppose furthermore that Γ ⊂ Γ0(p). Then E(p)
2,(α,β)(τ) yields a homomorphism Φ

(p)
(α,β) : Γ→ C

by the rule

Φ
(p)
(α,β)(γ) =

∫ γτ0

τ0

E
(p)
2,(α,β)(τ)dτ,

for any base point τ0 ∈H , and it is classical (see e.g. [35, Theorem 13]) that we have:

(1.1) Φ
(p)
(α,β)

(
a b
c d

)
=

 0, if c = 0,

(2π)2 · sign(c) ·
(
Dpα,β

(
pa

|c|

)
− pDα,β

(
a

|c|

))
, otherwise.

Here Dα,β denotes the generalised Dedekind sum

Dα,β

(a
c

)
=

c−1∑
j=0

((
j − β
c

)) ((
a(j − β)

c
− α

))
for c > 0 and (a, c) = 1,

where the symbol ((x)) is defined by

((x)) =

{
x− [x]− 1/2 if x is not an integer,
0 if x is an integer.

These sums define rational numbers and enjoy many beautiful arithmetical properties, see e.g. [28].
On the other hand a formula of Siegel [35] expresses the values at nonpositive integers of the ζ-
functions attached to real quadratic fields as periods of Eisenstein series. The expression (1.1) can
therefore be turned into a very explicit expression for these special values. This implies in particular
that they are essentially integral which is the key input in the construction by Coates and Sinnott
[10] of p-adic L-functions over real quadratic fields.

Using Selberg’s and Langlands’ theory of Eisenstein series Harder has vastly generalised the above
mentioned ‘Eisenstein cohomology classes.’ In [19] he constructed a complement to the cuspidal
cohomology for the group GL2 over number fields. However it is hard to check that these classes are
rational and the automorphic form theory is not well adapted to the study of integrality properties
of these classes.

For the group GLN over a totally real number field, Nori [26] and Sczech [31] have proposed
constructions of Eisenstein cohomology classes that have turned out to be very efficient in practice
to study the fine arithmetical properties of L-functions over totally real number fields, see e.g. [18, 7,
8, 2]. Sczech’s approach more generally gives formulas analogous to (1.1). The goal of this paper is to
prove similar formulas for the group GLN over an imaginary quadratic field k. As a consequence we
prove a remarkable conjecture of Sczech and Colmez [11, Conjecture p. 205] expressing critical values
of L-functions attached to Hecke characters of finite extension of k as polynomials in Kronecker–
Eisenstein series evaluated at torsion points on elliptic curves with multiplication by k.

We now describe in more details our main results.

1.1. An Eisenstein cocycle for imaginary quadratic fields. Fix a positive integer N ≥ 2. Let
k be a quadratic imaginary field with ring of integers O and let p ⊂ O be an ideal of prime norm Np.
Our first main result is the construction of an (N − 1)-cocycle for the level p congruence subgroup

(1.2) Γ0(p) =

{(
a tb
c D

)
∈ SLN (O)

∣∣∣∣ a ∈ O, b ∈ ON−1, c ∈ pN−1, D ∈MN−1(O)

}
of SLN (O) taking values in the space of polynomials in certain classical series called Kronecker–
Eisenstein series.
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Let us recall the definition of Kronecker–Eisenstein series (see [36, II.§12]). We fix once and for
all an embedding σ : k → C. For a fractional ideal I of k and non-negative integers p and q, define

(1.3) Kp,q(z, I, s) = p!
∑
λ∈σ(I)

z + λ
q

(z + λ)p+1|z + λ|2s

where we assume that z ∈ C satisfies z /∈ σ(I). The series converges when Re(s) > 1 + q − p and
has analytic continuation to s ∈ C that is regular at s = 0. It is a classical result due to Damerell
[13] that the values at s = 0 have the following algebraicity property:

(1.4) Kp,q(z0, I, 0) ∈ Ω1+p+q
∞ π−qQ for z0 ∈ k\σ(I).

Here Ω∞ denotes the real period of an elliptic curve with CM by k defined over Q. In fact these
series have almost integral values; we refer to [24] for precise results.

Next we introduce polynomials in the series Kp,q(z, I, s). For fractional ideals I1, . . . ,IN and
multi-indices I = (i1, . . . , iN ) ∈ ZN≥0 and J = (j1, . . . , jN ) ∈ ZN≥0, we set

(1.5) KI,J(z, I1 ⊕ · · · ⊕ IN , s) = Ki1,j1(z1, I1, s) · · ·KiN ,jN (zN , IN , s).

More generally, for an O-lattice Λ ⊂ kN , we pick fractional ideals I1, . . . ,IN such that I1⊕· · ·⊕IN
has finite index in Λ and set

KI,J(z,Λ, s) =
∑

λ∈Λ/I1⊕···⊕IN

KI,J(z + σ(λ), I1 ⊕ · · · ⊕ IN , s)

=
∑
λ∈Λ

∏
1≤k≤N

ik!
zk + σ(λk)

jk

(zk + σ(λk))ik+1|zk + σ(λk)|2s
.

(1.6)

As the last expression shows, KI,J(z,Λ, s) does not depend on the choice of the fractional ideals
Ik. We set

(1.7) KI,J(z,Λ) := KI,J(z,Λ, 0).

Each KI,J(z,Λ) defines a smooth function on an open subset of CN obtained by removing all
Λ-translates of a finite number of hyperplanes. We write

(1.8) F = 〈KI,J(γz,Λ) | γ ∈ SLN (k),Λ ⊂ kN an O − lattice〉

for the C-span of SLN (k)-translates of all functions KI,J(z,Λ).
Next we introduce the p-smoothed series

(1.9) KI,J
p (z,ON ) = KI,J(z, p−1 ⊕ ON−1)−Np ·KI,J(z,ON )

and, for A ∈MN (O), we define the generalised Dedekind sum DI,J
p (z,A) by

(1.10) DI,J
p (z,A) = detA−1KI,J

p (A−1z,A−1ON )

if A is invertible and set DI,J
p (z,A) = 0 otherwise. These sums are natural generalisations of

Dedekind sums for imaginary quadratic fields and N variables.
Our first theorem shows that the series DI,J

p (z,A) can be combined into a homogeneous (N −1)-
cocycle for Γ0(p). In the following statement, for a multi-index I ∈ ZN≥0, we write |I| = i1 + · · ·+ iN .
When I (resp. J) runs over multi-indices with |I| = p (resp. |J | = q), the vectors

eI := ei11 · · · e
in
N ∈ SympCN (resp. eJ := e1

j1 · · · eNjN ∈ SymqCN )

form a basis of SympCN (resp. of SymqCN ).
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Theorem 1.1. Given γ1, . . . , γN ∈ Γ0(p), define

A(γ) = (γ1e1| · · · |γNe1) ∈MN (O).

The map
Φp,q

p : Γ0(p)N → F ⊗ SympCN ⊗ SymqCN

given by
Φp,q

p (z, γ) =
∑

|I|=p,|J |=q

DI,J
p (z,A(γ))⊗A(γ)(eI ⊗ eJ)

is a homogeneous (N − 1)-cocycle. Here the sum runs over all multi-indices I, J ∈ ZN≥0 with |I| = p
and |J | = q.

More concretely, the cocycle property of Φp,q
p means that

(1.11) Φp,q
p (γz, γγ1, . . . , γγN ) = Φp,q

p (z, γ1, . . . , γN )

for any γ, γ1, . . . , γN ∈ Γ0(p), and∑
1≤k≤N+1

(−1)k−1Φp,q
p (z, γ1, . . . , γ̂k, . . . , γN+1) = 0

for any γ1, . . . , γN+1 ∈ Γ0(p) (here as usual the notation γ̂k means that the term γk is to be omitted).
More generally, in the body of the paper we introduce a cocycle Φp,q

p (z, γ,Λ(I)) for the O-lattice
Λ(I) = I−1 ⊕ ON−1 of kN .

1.2. Application to critical values of Hecke L-functions. We refer to [15, Section 1] or [9,
33, 29] for generalities on Hecke characters. Let L/k be a field extension of degree N > 1 and let
n : L → k denote the norm map. We fix an algebraic Hecke character ψk of k of infinity type
(p, q) ∈ Z2 and a Dirichlet character χ of L, and consider the algebraic Hecke character

φ = χ · (ψk ◦ n)

of L. We denote the conductor of φ by f, so that for α ≡ 1 mod f we have

φ((α)) = n(α)pn(α)
q
.

Note that if k is a maximal CM field in L then any algebraic Hecke character φ of L is of the above
form.

The Hecke L-function of φ is

L(φ, s) =
∏

(P,f)=1

(1− φ(P)NP−s)−1 =
∑

(a,f)=1

φ(a)Na−s,

where the sum, resp. the product, runs over integral ideals a, resp. prime ideals P, of OL coprime
to f. The global L-function of φ is Λ(φ, s) = L∞(φ, s)L(φ, s), where

L∞(φ, s) =
∏
v|∞

Γ(φv, s).

Here each φv with v|∞ is of the form

zpzq = (zz)w/2
(z
z

)(p−q)/2
,

with w = p+ q (the weight), and

Γ(φv, s) = 2(2π)−(s−w/2+|p−q|/2)Γ

(
s− w

2
+
|p− q|

2

)
.
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The value L(φ, s0) at an integer s0 ∈ Z is said to be critical if and only if

ords=s0L∞(φ, s) = ords=s0L∞(φ−1, 1− s) = 0.

In our case this is equivalent to
w

2
− |p− q|

2
< s0 < 1 +

w

2
+
|p− q|

2
.

Our second main result is that for critical s0 the value L(φ, s0) can be expressed as an ex-
plicit polynomial in Kronecker–Eisenstein series; answering positively to a conjecture of Sczech and
Colmez [11, Conjecture p. 205]. Note that the complex conjugate ψk has weight (q, p) and that
multiplying φ by an integral power of the norm character shifts s by an integer. Thus we may
assume that p < 0 and q ≥ 0 and consider only the critical value L(φ, 0).

Our result is more conveniently expressed in terms of partial zeta functions, as follows. For
integers p, q and integral ideals a, f of OL, define

(1.12) ζp,qf (a, s) =
∑′

x∈U(f)\1+fa−1

n(x)
q

n(x)p+1|n(x)|2s
, Re(s)� 0.

Here U(f) denotes the group of units of O×L that are congruent to 1 modulo f. (Since uu = 1 for every
u ∈ O×, this is well-defined provided that p+ q+ 1 is divisible by the order of the subgroup n(U(f))
of O×, which we assume.) Choosing integral ideals a1, . . . , ar giving a system of representatives for
the ray class group Cf we can write

L(φ, s) =
∑
j

φ(aj)Na−sj ζ−p−1,q
f (aj , s).

Given two distinct prime ideals P and P̃ of OL coprime to f and a, we define also the ‘smoothed’
partial zeta functions

ζp,qf,P(a, s) = NP−sζp,qf (aP, s)−NP1−sζp,qf (a, s)

ζp,q
f,P,P̃

(a, s) = NP̃−sζp,qf,P(aP̃, s)−NP̃−sζp,qf,P(a, s).
(1.13)

These modified zeta functions appear in an expression for L(φ, s) with modified Euler factors at P
and P̃. Namely, setting

LP(φ ·N, s) = (1− φ(P)NP1−s)−1, LP̃(φ, s) = (1− φ(P̃)NP̃−s)−1,

and using the fact that a1P, . . . , arP is also a system of representatives of Cf, we have

LP(φ ·N, s)−1L(φ, s) =
∑
j

φ(ajP)Na−sj ζ−p−1,q
f,P (aj , s),

LP̃(φ, s)−1LP(φ ·N, s)−1L(φ, s) =
∑
j

φ(ajPP̃)Na−sj ζ−p−1,q

f,P,P̃
(aj , s),

(1.14)

Theorem 1.2 below shows that, for appropriate choices ofP and P̃, the zeta function ζ−p−1,q

f,P,P̃
(aj , s)

can be expressed using the Eisenstein cocycle of Theorem 1.1.
Let u1, . . . uN−1 ∈ U(f) be norm 1 units whose images in U(f)/U(f)tors form a generating set.

We also fix a isomorphism α : L → kN of k-vector spaces and denote the O-lattice α(fa−1) ⊂ kN

by Λ(fa−1).1 Through the isomorphism α the automorphism of L defined by multiplication by
ui corresponds to a matrix Ui that belongs to the intersection Γ(Λ(fa−1)) of AutO(Λ(fa−1)) with
SLN (k). Moreover, given a prime ideal P of OL coprime to f and a and of prime norm p = n(P),
the matrices Ui belong to Γ0(p,Λ(fa−1)).

1In Lemma 4.1 we prove that Λ(fa−1) is of type Λ(I).
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We denote by σ1, . . . , σN the embeddings of L into C that restrict to the fixed embedding σ :
k → C.

Theorem 1.2. Let p, q be non-negative integers, f be an ideal of OL and let a1, . . . , ar be integral
ideals that form a system of representatives of the ray class group Cf. Then there exist v0 ∈ kN and
two prime ideals P and P̃ with p = n(P) prime, such that

det(σi(α(ej)))ζ
p,q

f,P,P̃
(a, 0)

=
1

(p!)N

∑
σ∈SN−1

sgn(σ)
∑

x∈P̃−1f/f
x 6=0

〈ΦpN,qN
p (v0 + α(x), uσ,Λ(fa−1)), (n ◦ α−1)p ⊗ (n ◦ α−1)

q〉

for a ∈ {a1, . . . , ar}. Here the first sum runs over the symmetric group SN−1 of permutations on
N − 1 letters and for σ ∈ SN−1 we set uσ = (1, Uσ(1), Uσ(1)Uσ(2), . . . , Uσ(1) · · ·Uσ(N−1)).

Note that each term of the double sum on the right hand side is a generalised Dedekind sum and
therefore a polynomial in Kronecker–Eisenstein series evaluated at torsion points on elliptic curves
with multiplication by k. From (1.4) we deduce the following corollary. Note that φ(aj) ∈ Q, so
that the algebraicity of L(φ, 0) follows from that of the ζ−p−1,q

f (aj , 0).

Corollary 1.3. Let Ω∞ ∈ R be the real period of an elliptic curve with complex multiplication by
k, defined over Q. Assume that p < 0 and q ≥ 0. Then

L(φ, 0) ∈ ΩN(q−p)
∞ π−NqQ.

Remark. As was pointed out to us by Don Blasius, one can take Ω∞ to be the real period of an
elliptic curve defined over kab — the maximal abelian extension of k. Then

L(φ, 0) ∈ ΩN(q−p)
∞ π−NqkabE,

where E is the CM field generated by the values of φ. This follows from the fact that the ratio of
two arithmetic automorphic functions with Fourier coefficients in Qab, and having the same weight,
takes value in kab when evaluated at a CM point.

In fact, one can be more precise: Blasius [5] proves a reciprocity law for values at CM points of
modular forms which generalizes that of Shimura for functions. According to it, if a value transforms
by a Hecke character, then it is the Deligne period of the motive attached to the Hecke character.
Since Theorem 1.2 expresses the L(φ, 0) as a linear combination of products of values of L-functions
of modular Eisenstein series, the general law of Blasius should apply to show the following: Let
M(φ) be the motive — defined over L, with coefficients in E, and of rank one — attached to φ and
let c+ResL/QM(φ) be the period attached by Deligne [14, §8], we have

L(ResL/QM(φ)) = c+ResL/QM(φ) ∈ (E ⊗ C)×/E×.

This was conjectured by Deligne [14] as part of a much more general picture. We shall provide
details in a forthcoming work.

Relation to other works. In the case N = 2 Theorem 1.1 is proved by Sczech [30] and Ito [22],
in case (p, q) = (0, 0), and Obaisi [27] proved the corresponding Theorem 1.2. In general, partial
results towards both Theorem 1.2 and Corollary 1.3 are obtained by Colmez in [11]; see also [16]
for related works.

Corollary 1.3 is not new. In the case L = k it is due to Damerell [13]. In the case N = 2 it is
due to Ito [22]. In general it is a particular case of a theorem announced by Harder in [20, 21] that
deals with Hecke L-functions associated to extensions L/k with k an arbitrary CM fields. When
L = k is CM this was known before thanks to works of Shimura [34] and Blasius [5]. To the authors’
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knowledge the full details of Harder’s proof have never appeared in print. However the fact that the
(regularised) L-value of the Hecke character divided by the ‘Katz period’ is algebraic has recently
been fully proved by Kings and Sprang [17] using completely different techniques that allow them
to deduce good integrality results. This generalises works of Shimura and Katz in the case of a
CM field to arbitrary extensions of CM fields. In the case where k is a quadratic imaginary field,
integrality results of the same quality could be deduced from Theorem 1.2 and works of Katz [24]
showing that certain regularisation (‘smoothing’) of the expression (1.4) are algebraic integers. We
expect that, in combination with recent work of Andreatta and Iovita [1], the explicit formula of
Theorem 1.2, conjectured by Sczech and Colmez, could be used to p-adically interpolate L-values
of algebraic Hecke characters of F in the non split case.

Note that, quite similarly as in the work of Kings and Sprang, the cohomology class studied in
this paper takes its roots in a certain equivariant cohomology class; we discuss the latter in [4].
The topological origin of this class is enough to give an elementary direct proof of the integrality of
critical values of Hecke L-functions associated to totally real fields, see [26, 2, 3].

To conclude let us mention that it is not clear to us if the formula of Theorem 1.2 can be
generalised to the case where k is an arbitrary CM field.

1.3. Notation and conventions. We write |S| for the cardinality of a set S. Throughout the
paper we fix an integer N ≥ 2 and let

V = CN (column vectors).

We write V = V ⊗C C for the complex conjugate of V and V ∨ for the (C-linear) dual of V ; we
identify V ∨ with the space of length N row vectors using the standard dot product. We write
e1, . . . , eN for the standard basis of V and z1, . . . , zN for the standard coordinates on V and set
∂zi = ∂/∂zi. For a multi-index I = (i1, . . . , iN ) ∈ ZN≥0, we write

eI = ei11 · · · e
iN
N ∈ SymNV

zI = zi11 · · · z
iN
N ∈ SymNV ∨

zI = z1
i1 · · · zNiN ∈ SymNV

∨
.

We denote the transpose of a matrix X by tX and set X∗ = tX. We denote by 1N the identity
matrix of rank N and by diag(t1, . . . , tN ) a diagonal matrix with diagonal entries t1, . . . , tN . Let

G = SLN (C)

K = SU(N)

X = SLN (C)/SU(N).

The Lie algebras of G and K are denoted by g and k respectively.
We write A∗(X) for the space of smooth differential forms on X.
Throughout the paper we fix an imaginary quadratic field k and an embedding σ : k → C. We

write Np for the norm of a prime ideal p. We denote by O the ring of integers of k and define

Vk = kN (column vectors)
Gk = SLN (k)

G = Resk/QSLN,k

The standard simplex (a simplicial set) is denoted by ∆N , and its geometric realization by |∆N |.
We write ∆k ∗∆r for the join of two simplices.
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2. Differential forms on the symmetric space of SLN (C)

Fix an integer N ≥ 2 and let V = CN (column vectors). We identify the points of the symmetric
space

X := G/K

of G = SLN (C) with positive definite hermitian N -by-N matrices h of unit determinant via the
map

gK 7→ h := tg−1 · g−1;

under this identification the action of g ∈ G on X by left multiplication corresponds to the action
g · h := tg−1hg−1. A matrix h ∈ X defines a positive definite hermitian form on CN given by
v 7→ v∗hv. The entries hij (1 ≤ i, j ≤ N) of h define smooth functions hij : X → C.

We write S (V ) for the space of Schwartz functions on V . For p, q ≥ 0, let

(2.1) V p,q = SympV ∨ ⊗ SymqV ;

it is naturally a representation of G. We will identify elements of V p,q with linear functionals on
the tensor product of the complex vector spaces SympV (homogeneous holomorphic polynomials of
degree p on V ∨) and SymqV

∨ (homogeneous anti-holomorphic polynomials of degree q on V ).
The natural action of G on S (V ) defined by (g ·f)(v) = f(g−1v) turns S (V )⊗V p,q into a smooth

G-module. Let A∗(X; S (V )⊗V p,q) be the space of differential forms on X valued in S (V )⊗V p,q.
This space carries an action of G given by

(g, ω(x, Y )) 7→ g · ω(g−1x, g−1Y ), x ∈ X, Y ∈ ∧TxX.
In this section we introduce G-invariant differential forms

ψp,q ∈ AN−1(X; S (V )⊗ V p,q)G(2.2)

valued in this G-module.

2.1. Polynomial forms. Fix a vector v ∈ V . We write (hv)1, . . . , (hv)N (resp. (dhv)1, . . . , (dhv)N )
for the components of the vector hv (resp. dhv):

(hv)i =
∑

1≤j≤N
hijvj ∈ C∞(X).

(dhv)i =
∑

1≤j≤N
dhijvj ∈ A1(X).

(2.3)

Define

(2.4) p(v) = 2(−1)N(N−1)/2
∑
i≥1

(−1)i−1(hv)i(dhv)N ∧ · · · ∧ (̂dhv)i ∧ · · · ∧ (dhv)1 ∈ AN−1(X).

(Here, as usual, the term under the symbol ̂ is to be omitted). Note that, as a function of v, p is
a (holomorphic) polynomial of degree N and so defines a form

p ∈ AN−1(X;C[V ]).

The conjugate polynomial p(v) defines a form in AN−1(X;C[V ]). Since h is hermitian, we have

(hv)i =
∑
j

hijvj =
∑
j

vjhji = (v∗h)i

and so we can write

(2.5) p(v) = 2(−1)N(N−1)/2
∑
i≥1

(−1)i−1(v∗h)i(v
∗dh)N ∧ · · · ∧ ̂(v∗dh)i ∧ · · · ∧ (v∗dh)1.

8



Lemma 2.1. The form p is G-invariant. That is, for g ∈ G we have

g∗p(gv) = p(v), v ∈ V.

Proof. This follows from the fact that given a representation of a group G on an N -dimensional
complex vector space W , and a basis e1, . . . , eN of W with dual basis e∨1 , . . . , e

∨
N ∈W∨, the element

e1 ⊗ e∨1 + · · ·+ eN ⊗ e∨N of W ⊗W∨ is G-invariant.
Namely, consider the C-vector space W ⊂ C∞(X) spanned by (v∗h)1, . . . , (v

∗h)N . For g ∈ G we
have

(gv)∗(g · h) = v∗tg(tg−1hg−1) = v∗hg−1.

This shows that W is naturally a representation of G that is isomorphic to the dual V ∨ of V .
The same statement (with same proof) holds for the C-vector space W̃ ⊂ A1(X) spanned by
(v∗dh)1, . . . , (v

∗dh)N .
Consider the map

W ⊗ ∧N−1W̃ → ∧NW̃ , w ⊗ w̃ = dw ∧ w̃.
Here ∧NW̃ ' C · (v∗dh)N ∧ . . . ∧ (v∗dh)1 is isomorphic to the trivial G-representation via the map
z · (v∗dh)N ∧ . . .∧ (v∗dh)1 7→ z. Thus we obtain a pairing W ⊗∧N−1W̃ → C. A direct check shows
that the basis (−1)N−i(v∗dh)N ∧ · · · ∧ ̂(v∗dh)i ∧ · · · ∧ (v∗dh)1 (1 ≤ i ≤ N) of ∧N−1W̃ is dual to the
basis (v∗h)i (1 ≤ i ≤ N) of W , and the lemma follows. �

Lemma 2.2. Let v 6= 0. Then the form

(v∗hv)−Np(v) ∈ AN−1(X)

is closed.

Proof. An equivalent statement is the equality

(2.6) Nd(v∗hv) ∧ p(v) = (v∗hv)dp(v).

Differentiating (2.5) we obtain

dp(v) = 2(−1)N(N−1)/2d

∑
i≥1

(−1)i−1(v∗dh)i(v
∗dh)N ∧ · · · ∧ ̂(v∗dh)i ∧ · · · ∧ (v∗dh)1


= 2N(−1)(N+2)(N−1)/2(v∗dh)N ∧ · · · ∧ (v∗dh)1.

(2.7)

On the other hand we have d(v∗hv) =
∑
j

(v∗dh)jvj and hence

Nd(v∗hv) ∧ p(v)

= 2N(−1)N(N−1)/2

∑
j

(v∗dh)jvj

 ∧
∑
i≥1

(−1)i−1(v∗h)i(v
∗dh)N ∧ · · · ∧ ̂(v∗dh)i ∧ · · · ∧ (v∗dh)1


= 2N(−1)N(N−1)/2

∑
j

(−1)j−1(v∗dh)jvj(v
∗h)j(v

∗dh)N ∧ · · · ∧ ̂(v∗dh)j ∧ · · · ∧ (v∗dh)1

= 2N(−1)(N+2)(N−1)/2

∑
j

vj(v
∗h)j

 (v∗dh)N ∧ · · · ∧ (v∗dh)1

= (v∗hv)dp(v).

and the assertion follows. �
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2.2. Schwartz forms. We can now define the forms ψp,q mentioned in the introduction to this
section. First we consider the case p = q = 0: for v ∈ V , we define

(2.8) ψ0,0(v) = e−v
∗hvp(v).

Remark. The form ψ0,0 arises naturally as a component of a characteristic form defined by Mathai
and Quillen. More precisely, the vector bundle V = X×V over X with fiber V carries a tautological
metric, and the main result of [25] is the construction of a canonical Thom form U ∈ A2N (X × V )

and an infinitesimal transgression Ũ of U in A2N−1(X) (denoted −iXUt in [25, §7]). A vector v ∈ V
defines a section of V over X, and the form ψ0,0(v) is essentially obtained from Ũ by contracting
with the vector fields ∂z1 , . . . , ∂zN (this gives a form in AN−1(X×V )) and then pulling back by this
section. We refer to [3] for more details on this perspective.

Note that the hermitian form v 7→ v∗hv on V is positive definite and so ψ, as a function of v,
belongs to the Schwartz space S (V ). Also note that, for any g ∈ G, the expression v∗hv is invariant
upon replacing h with g∗h and v with gv, and so Lemma 2.1 implies that ψ0,0 is G-invariant:

(2.9) g∗ψ0,0(gv) = ψ0,0(v), g ∈ G.

Thus ψ0,0 ∈ AN−1(X; S (V ))G.
For arbitrary p, q ≥ 0 we define

ψp,q ∈ AN−1(X; S (V )⊗ V p,q)G

so that its value on P ⊗Q, where P (resp. Q) is a holomorphic polynomial of degree p on V ∨ (resp.
a holomorphic polynomial of degree q on V ), is given by

ψp,q(v, P ⊗Q) = Q(v)P (−∂z1 , . . . ,−∂zN )ψ0,0(v)(2.10)

From now on we often omit the indices p, q and simply write ψ(v, P ⊗ Q). One can give a more
explicit expression for ψ(v, P ⊗Q): the identity

(2.11) − ∂zi
(
e−v

∗hv
)

= (v∗h)ie
−v∗hv

gives

(2.12) P (−∂z1 , . . . ,−∂zN )
(
e−v

∗hv
)

= P ((v∗h)1, . . . , (v
∗h)N )e−v

∗hv;

since if p(v) is an anti-holomorphic polynomial we have ∂zip(v) = 0 for all i, and we conclude that

(2.13) ψ(v, P ⊗Q) = e−v
∗hvp(v, P,Q),

with

(2.14) p(v, P,Q) := Q(v)P (v∗h)p(v).

Note that p(·, P,Q) is an anti-holomorphic polynomial in v of degree N + p + q. This expression
shows that, generalizing the invariance property (2.9), we have

g∗ψ(gv, gP ⊗ gQ) = ψ(v, P ⊗Q).(2.15)

The following is a generalization of Lemma 2.2.

Lemma 2.3. Let v 6= 0. For any P ∈ SympV and Q ∈ SymqV ∨, the form

(v∗hv)−N−pp(v, P,Q) ∈ AN−1(X)

is closed.
10



Proof. Since dQ(v) = 0, it suffices to assume that Q = 1 and that P is monomial, say P = eI for
some multi-index I of degree p. Then P (v∗h) = (v∗h)i11 · · · (v

∗h)iNN and

dP (v∗h) =

∑
j

ij
d(v∗h)j
(v∗h)j

P (v∗h),

and so

dP (v∗h) ∧ p(v)

= 2(−1)N(N−1)/2P (v∗h)

∑
j

ij
d(v∗h)j
(v∗h)j

 ∧
∑
i≥1

(−1)i−1(v∗h)i(v
∗dh)N ∧ · · · ∧ ̂(v∗dh)i ∧ · · · ∧ (v∗dh)1.


= 2(−1)N(N−1)/2P (v∗h)

∑
j

ij(−1)j−1(v∗dh)j ∧ (v∗dh)N ∧ · · · ∧ ̂(v∗dh)j ∧ · · · ∧ (v∗dh)1

= 2(−1)(N+2)(N−1)/2

∑
j

ij

P (v∗h)(v∗dh)N ∧ · · · ∧ (v∗dh)1

= pN−1P (v∗h)dp(v),

where the last equality follows from (2.7). Using (2.6) we compute

d((v∗hv)−N−pP (v∗h)p(v))

= (v∗hv)−N−p−1
[
−(N + p)d(v∗hv) ∧ P (v∗h)p(v) + (v∗hv)dP (v∗h) ∧ p(v) + (v∗hv)P (v∗h)dp(v)

]
= (v∗hv)−N−p

[
−(N + p)N−1 + pN−1 + 1

]
P (v∗h)dp(v)

= 0.

�

2.3. Mellin transform. We define η(v, s) to be the Mellin transform of ψ(v); that is, for holomor-
phic polynomials P and Q define

(2.16) η(v, P ⊗Q, s) =

∫ ∞
0

ψ(tv, P ⊗Q)ts+N+p−q dt

t
.

Then

(2.17) g∗η(gv, gP ⊗ gQ, s) = η(v, P ⊗Q, s), g ∈ G

because ψ is G-invariant. Since p(tv, P,Q) = tN+p+qp(v, P,Q), we have

η(v, P ⊗Q, s) =

∫ ∞
0

e−t
2v∗hvts+2N+2pdt

t
p(v, P,Q)

= 2−1Γ(N + p+ s/2)(v∗hv)−s/2−N−pp(v, P,Q).

(2.18)

Lemma 2.4. We have

dη(v, P ⊗Q, s) = c(s)(v∗hv)−s/2−N−pQ(v)P (v∗h)dp(v),

where c(s) = (−4N)−1sΓ(N + p+ s/2).
11



Proof. By Lemma 2.3 we have d((v∗hv)−N−pp(v, P,Q)) = 0. Using (2.6), we compute

2Γ(N + p+ s/2)−1dη(v, P ⊗Q, s)

= d((v∗hv)−s/2(v∗hv)−N−pp(v, P,Q))

= −2−1s(v∗hv)−1−s/2d(v∗hv) ∧ (v∗hv)−N−pp(v, P,Q)

= −(2N)−1s(v∗hv)−s/2−N−pQ(v)P (v∗h)dp(v).

�

Using Lemma 2.4 we can represent the form dη(v, P ⊗Q, s) as a Mellin transform: we define

φ ∈ AN (X; S (V )⊗ V p,q)G

by

(2.19) φ(v, P ⊗Q) = e−v
∗hvQ(v)P (v∗h)dp(v);

then the above lemma implies that

(2.20) dη(v, P ⊗Q, s) = − s

2N

∫ ∞
0

φ(tv, P ⊗Q)ts+N+p−q dt

t
.

For further reference we note the homogeneity property (which follows from (2.18)):

(2.21) η(zv, P (z·)⊗Q(z−1·), s) = |z|−sz−Nη(v, P ⊗Q, s)

for z ∈ C×.

2.4. Example: the case N = 2. We compute the form ψ0,0(v) when N = 2. We have

ψ0,0(v) = −2e−v
∗hv((hv)1(dhv)2 − (hv)2(dhv)1)

= −2e−v
∗hv(ω11v1

2 + ω12v1v2 + ω22v2
2),

(2.22)

with

ω11 = h11dh21 − h21dh11 = h11dh12 − h12dh11,

ω12 = h11dh22 − h12dh21 + h21dh12 − h22dh11,

ω22 = h21dh22 − h22dh21.

(2.23)

Let us rewrite the expression in classical coordinates. For τ = (z, y) ∈ H3 = C × R>0, write
gτ =

(
y1/2 zy−1/2

0 y−1/2

)
. The map τ 7→ gτK identifies H3 with X = SL2(C)/SU(2). In these coordinates

we have

hτ = tgτ
−1g−1

τ =

(
y−1/2 0

−zy−1/2 y1/2

)(
y−1/2 −zy−1/2

0 y1/2

)
= y−1

(
1 −z
−z y2 + |z|2

)
,

and
v∗hτv = |g−1

τ v|2 = y−1(|v1 − zv2|2 + |yv2|2).

Hence

dhτ = −y−2dy

(
1 −z
−z y2 + |z|2

)
+ y−1d

(
1 −z
−z y2 + |z|2

)
= −hτy−1dy + y−1

(
0 −dz
−dz 2ydy + zdz + zdz

)(2.24)
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and we compute

ω11 = y−2dz,

ω12 = −2(y−1dy + y−2zdz),

ω22 = 2zy−1dy − dz + z2y−2dz.

(2.25)

Writing ψ0,0(v) = ψ(v)ydy + ψ(v)zdz + ψ(v)zdz we obtain

ψ(v)z = 2e−v
∗hτv · v2

2

ψ(v)y = −2e−v
∗hτv(−2y−1v1v2 + 2zy−1v2

2)

= 4y−1e−v
∗hτv(v1 − zv2)v2

ψ(v)z = −2y−2e−v
∗hτv(v1

2 − 2zv1v2 + z2v2
2)

= −2y−2e−v
∗hτv(v1 − zv2)

2
.

(2.26)

The Mellin transform η0,0(v, s) = η(v, s)ydy + η(v, s)zdz + η(v, s)zdz (defined in (2.16) below) is
then given by:

η(v, s)z = Γ(s/2 + 2)ys/2
(yv2)2

(|v1 − zv2|2 + |yv2|2)s/2+2

η(v, s)y = 2Γ(s/2 + 2)ys/2
(v1 − zv2)yv2

(|v1 − zv2|2 + |yv2|2)s/2+2

η(v, s)z = −Γ(s/2 + 2)ys/2
(v1 − zv2)

2

(|v1 − zv2|2 + |yv2|2)s/2+2

(2.27)

Thus we recover the form introduced by Ito in [22].

2.5. Fourier transform. Recall that the Cartan decomposition g = p ⊕ k identifies the tangent
space TeKX at the point eK ∈ X with p. Given Y ∈ ∧N−1p and polynomials P and Q, evaluation
at Y defines a Schwartz function

ψ(Y, P ⊗Q) ∈ S (V )

given explicitly by

ψ(v, Y ;P ⊗Q) = e−v
∗vp(v, Y ;P,Q),

with p(v, Y ;P,Q) = Q(v)P (v∗)p(v, Y ).
We write 〈·, ·〉 for the scalar product on V defined by 〈v, w〉 = 2Re(w∗v) and given a Schwartz

form f ∈ S (V ), we define its Fourier transform Ff ∈ S (V ) by

Ff(v) =

∫
V
f(w)e2πi〈v,w〉dw,

where dw denotes the Lebesgue measure on CN . Since the polynomial p(v, Y ;P,Q) is anti-holomorphic,
it is also harmonic and hence we have

(2.28) Fψ(Y, P ⊗Q) = Cψ(Y, P ⊗Q)

for some constant C satisfying C4 = 1. In particular, Fψ(0, Y ;P ⊗ Q) = ψ(0, Y ;P ⊗ Q) = 0.
Similar statements hold for φ(Y, P ⊗Q) for any Y ∈ ∧Np.
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2.6. Integral on a maximal torus. Let T ⊂ G be the torus of diagonal matrices. The inclusion
of T in G induces an embedding

T/T ∩K → X

identifying T/T ∩ K with the submanifold of X consisting of diagonal hermitian matrices. This
submanifold is diffeomorphic to RN−1

>0 . In fact, the standard coordinates diag(t1, . . . , tN ) 7→ ti
identify the quotient T/T ∩K with

(2.29) C =
{

(t1, . . . , tN ) ∈ RN>0 | t1 · · · tN = 1
}
.

We use this identification to orient T/T ∩K as follows: forgetting the coordinate tN gives a diffeo-
morphism C ' RN−1

>0 . We orient C, and hence T/T ∩K, by pulling back the standard orientation
of RN−1

>0 (given by the volume form dt1
t1
∧ · · · ∧ dtN−1

tN−1
).

Lemma 2.5. Let v 6= 0. If Re(s) + 2N + 2p > 0, then the form η(v, P ⊗ Q, s) is integrable on
T/T ∩ K. For P = zI and Q = zJ monomial with I = (i1, . . . , iN ) and J = (j1, . . . , jN ) multi-
indices, we have ∫

T/T∩K
η(v, P ⊗Q, s) =

N∏
k=1

Γ
( s

2N
+ 1 + ik

) vk
jk

|vk|s/Nvik+1
k

.

Proof. Since η(v, P⊗Q, s) = Q(v)η(v, P⊗1, s), we may assume thatQ = 1. In the above coordinates
for C we have h = diag(t21, . . . , t

2
N ) and dh = 2diag(t1dt1, . . . , tNdtN ), and so the restriction of

P (v∗h)p(v) to T/T ∩K is given by

N∏
j=1

(t2jvj)
ij · 2(−1)N(N−1)/2

∑
j

(−1)j−1vjt
2
j (vN2tNdtN ) ∧ · · · ∧ ̂(vj2tjdtj) ∧ · · · ∧ (v12t1dt1)

= 2N (−1)N(N−1)/2
N∏
j=1

t
2ij
j vj

ij+1
∑
j

(−1)j−1dtN
tN
∧ · · · ∧ d̂tj

tj
∧ · · · ∧ dt1

t1
(since t1 · · · tN = 1).

For t ∈ C and u > 0, set ui = tiu. This gives u1 · · ·uN = uN and dui
ui

= dti
ti

+ du
u , and hence∑

j

(−1)j−1dtN
tN
∧ . . . ∧ d̂tj

tj
∧ . . . ∧ dt1

t1

 ∧ du
u

=
duN
uN
∧ . . . ∧ du1

u1
.

The map ((t1, . . . , tN ), u) 7→ (u1, . . . , uN ) induces a diffeomorphism C × R>0 ' RN>0. Using this as
change of variables, we compute∫
T/T∩K

η(v, P ⊗ 1, s) =

∫
C

∫ ∞
0

ψ(uv, P ⊗ 1)us+N+pdu

u

= 2N (−1)N(N−1)/2

∫
RN>0

e−
∑
u2j |vj |2

 N∏
j=1

t
2ij
j uij+1vj

ij+1

us+N+pduN
uN
∧ . . . ∧ du1

u1

= 2N
N∏
j=1

vj
ij+1

∫ ∞
0

e−u
2
j |vj |2u

(s+2N)/N+2ij
j

duj
uj

=
N∏
j=1

Γ
( s

2N
+ 1 + ij

) vj
ij+1

|vj |s/N+2+2ij
.

�
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The above lemma shows that the integral of η(v, P ⊗Q, s) on T/T ∩K has meromorphic contin-
uation to s ∈ C that is regular at s = 0. Its value at s = 0 for P = eI and Q = zJ is

(2.30)
∫
T/T∩K

η(v, P ⊗Q, s)

∣∣∣∣∣
s=0

=
N∏
k=1

ik!
vk
jk

vik+1
k

.

It follows easily that for arbitrary P we can write∫
T/T∩K

η(v, P ⊗Q, s) = C(s)Q(v)P (−∂z1 , . . . ,−∂zN )

 N∏
j=1

vj

|vj |s/N+2

 ,

for some meromorphic function C(s) such that C(0) = 1.

3. Eisenstein cocycle

Let k be an imaginary quadratic field with ring of integers O. We fix an integer N ≥ 2 and let
Vk = kN and Gk = SLN (k) (recall that V = CN and G = SLN (C)). We also fix an embedding
σ : k → C, which makes V a k-module and induces inclusions Vk ⊂ V and Gk ⊂ G.

Given a non-zero ideal I of O, define

(3.1) Λ(I) = I−1 ⊕ ON−1.

It is an O-submodule of kN that we regard as a lattice in CN via the embedding kN → CN induced
by σ. We write Γ(Λ(I)) for the intersection of AutO(Λ(I)) with SLN (k); more explicitly

(3.2) Γ(Λ(I)) =

{(
a tb
c D

)
∈ SLN (k)

∣∣∣∣ a ∈ O, D ∈MN−1(O), b ∈ (I−1)N−1, c ∈ IN−1

}
.

Let p ⊂ O be a prime ideal coprime to I. We define a congruence subgroup Γ0(p,Λ(I)) of Γ(Λ(I))
by

(3.3) Γ0(p,Λ(I)) =

{(
a tb
c D

)
∈ Γ(Λ(I))

∣∣∣∣ c ∈ (pI)N−1

}
;

thus Γ0(p,Λ(I)) = Γ(Λ(pI)) ∩ Γ(Λ(I)). When I = O we have Γ(O) = SLN (O) and Γ0(p,Λ(O)) =
Γ0(p) is the standard level p subgroup of SLN (O).

In this section we prove Theorem 1.1. We first define a more general cocycle

(3.4) Φp,q
p (Λ(I)) : Γ0(p,Λ(I))N → F ⊗ V p,q,

where V p,q is given in (2.1) and F is a certain space of functions defined on complements of unions
of affine hyperplanes in V , endowed with a natural action of SLN (k). In the last section we will
show that its cohomology class is non-trivial by computing its value explicitly on the units of degree
N field extensions of k.

3.1. Definition of the cocycle. Let I ⊂ k be a fractional ideal. Then σ(I) ⊂ C is a lattice. Given
a pair of non-negative integers p, q ∈ Z≥0 and z ∈ C, define the Kronecker–Eisenstein series

(3.5) Kp,q(z, I, s) =
p!

2

∑′

a∈σ(I)

z + aq

(z + a)p+1|z + a|s
, z /∈ σ(I,

The sum converges absolutely for Re(s) > 1 + q − p and for z in a compact subset of C. The series
Kp,q(z, a, s) has an analytic continuation to the whole s-plane that is regular at s = 0, see e.g.
[36, 11, 12].
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More generally, for an O-lattice Λ ⊂ kN , let U(Λ) be the open subset of CN obtained by removing
all translates of coordinate hyperplanes by λ ∈ σ(Λ). For I = (i1, . . . , iN ) and J = (j1, . . . , jN ) in
ZN≥0 and z ∈ U(Λ), define

(3.6) KI,J(z,Λ, s) =
∑′

λ∈σ(Λ)

∏
1≤k≤N

ik!
zk + λk

jk

(zk + λk)ik+1|zk + λk|s
.

The function KI,J(z,Λ, s) can be expressed as a homogeneous degree N polynomial of Kronecker–
Eisenstein series: pick non-zero fractional ideals I1, . . . ,IN of k such that Λ ⊇ I1 ⊕ · · · ⊕ IN .
Then

(3.7) KI,J(z,Λ, s) =
∑

λ∈Λ/I1⊕···⊕IN

KI,J(z + σ(λ), I1 ⊕ · · · ⊕ IN , s),

and

(3.8) KI,J(z, I1 ⊕ · · · ⊕ IN , s) =
∏

1≤k≤N
Kik,jk(zk, Ik, s).

Thus KI,J(z,Λ, s) converges absolutely for Re(s) > 1 + max{jk− ik} and has analytic continuation
to all s ∈ C that is regular at s = 0. We set

(3.9) KI,J(z,Λ) = KI,J(z,Λ, 0)

and define
F := span〈KI,J(γ−1z,Λ) | γ ∈ SLN (k),Λ an O-lattice in kN 〉,

which carries a natural action of SLN (k).

Definition 3.1. Let A be a matrix in End(Λ(I)) ∩GLN (k). Then A−1Λ(I) ⊇ Λ(I) and we define
the generalized Dedekind sum

DI,J(z,A,Λ(I)) = detA−1KI,J(A−1z,A−1Λ(I))

= detA−1
∑

λ∈Λ(I)/AΛ(I)

KI,J(A−1(z + σ(λ)),Λ(I)).

Let p be a proper ideal of O coprime to I and Np be its norm. Define

DI,J
p (z,A,Λ(I)) = DI,J(z,A,Λ(pI))−Np ·DI,J(z,A,Λ(I)).

If A ∈ End(Λ(I)) but A is not invertible, set

DI,J(z,A,Λ(I)) = DI,J
p (z,A,Λ(I)) = 0.

For p, q ∈ Z≥0, recall the G-representation V p,q introduced in (2.1). A basis of V p,q is given by
the vectors

(3.10) eI,J := ((te1)i1 · · · (teN )iN )⊗ (e1
j1 · · · eNjN ),

where I, J ∈ ZN≥0 satisfy i1 + . . .+ iN = p and j1 + . . .+ jN = q.
Recall that given a group Γ and a Z[Γ]-moduleM , a map α : ΓN →M is said to be a homogeneous

(N − 1)-cocycle if it is equivariant, that is,

(3.11) α(γγ1, . . . , γγN ) = γα(γ1, . . . , γN ), γ, γ1, . . . , γN ∈ Γ,

and satisfies

(3.12)
∑

1≤i≤N+1

(−1)i−1α(γ1, . . . , γi−1, γi+1, . . . , γN+1) = 0, γ1, . . . , γN+1 ∈ Γ.
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Theorem 3.2. Let I, p ⊆ O be non-zero coprime ideals of O and assume that p 6= O. Given
γ = (γ1, . . . , γN ) ∈ Γ0(p,Λ(I))N , let

A(γ) = (γ1e1| · · · |γNe1) ∈MN (O)

be the matrix formed by the first columns of γ1, . . . , γN . Then A(γ) ∈ End(Λ(I)). For fixed p, q in
Z≥0, define a map

Φp,q
p (Λ(I)) : Γ0(p,Λ(I))N → F ⊗ V p,q

by
Φp,q

p (z, γ,Λ(I)) =
∑
|I|=p
|J |=q

DI,J
p (z,A(γ),Λ(I))⊗A(γ)eI,J .

Then Φp,q
p (Λ(I)) is a homogeneous (N − 1)-cocycle.

Note that the first row of the matrix A(γ) in the statement has entries in O whereas all its other
rows have entries in I. The statement that A(γ) ∈ End(Λ(I)) follows. Note also that

(3.13) A(γγ1, . . . , γγN ) = γA(γ1, . . . , γN ), γ, γ1, . . . , γN ∈ Γ0(p,Λ(I)).

The equivariance property (3.11) of Φp,q
p (Λ(I)) follows from this. Thus it remains to show the

cocycle property (3.12). To prove it we will next define — as an Eisenstein series — a closed
Γ0(p,Λ(I))-invariant differential form

(3.14) Ep(z, ψ
p,q,Λ(I)) ∈ AN−1(X)

and (N − 1)-dimensional submanifolds

(3.15) ∆(γ) ⊂ X, γ ∈ Γ0(p,Λ(I))N ,

such that

(3.16) Φp,q
p (z, γ,Λ(I)) =

∫
∆(γ)

Ep(z, ψ
p,q,Λ(I)).

The cocycle property will follow from the fact that for γ1, . . . , γN+1 ∈ Γ0(p,Λ(I)) we can find a
simplex

(3.17) ∆(γ1, . . . , γN+1) ⊂ X

with boundary

(3.18) ∂∆(γ1, . . . , γN+1) =
∑

1≤i≤N+1

(−1)i−1∆(γ1, . . . , γi−1, γi+1, . . . , γN+1)

and such that Ep(z, ψ
p,q,Λ(I)) decreases rapidly on ∆(γ1, . . . , γN+1) for fixed z.

3.2. Eisenstein series. For v ∈ V , an O-lattice Λ ⊂ Vk and a holomorphic polynomial P (resp.
Q) on V ∨ (resp. on V ), consider the theta series

(3.19) θ(v, P ⊗Q;ψ,Λ) :=
∑
λ∈Λ

ψ(v + λ, P ⊗Q).

The series converges rapidly as ψ(v, P ⊗Q) is rapidly decreasing. By (2.15), we obtain a differential
form θ(v, P ⊗Q;ψ,Λ) ∈ AN−1(X) satisfying

(3.20) γ∗θ(γv, γP ⊗ γQ;ψ,Λ) = θ(v, P ⊗Q;ψ,Λ), γ ∈ Γ(Λ) := AutO(Λ) ∩ SLN (k).
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The Mellin transform of θ(v, P ⊗Q;ψ,Λ) is the Eisenstein series

E(v, P ⊗Q;ψ,Λ, s) :=

∫ +∞

0
θ(tv, P ⊗Q;ψ, tΛ)ts+N+p−q dt

t

=
∑
λ∈Λ

η(v + λ, P ⊗Q, s),
(3.21)

where η(v, s) is given by (2.18). Here the sum converges when Re(s) � 0 but can be analytically
continued to the whole s-plane in a standard way using Poisson summation. To do this, consider
the scalar product 〈·, ·〉 on CN given by

(3.22) 〈v, w〉 = 2Re(v · w∗)
and define

Λ∨ =
{
w ∈ CN | 〈v, w〉 ∈ Z ∀v ∈ Λ

}
.(3.23)

Given g ∈ G and a tangent vector Y ∈ p = TeKX we can define a vector g∗Y ∈ TgKX. The
invariance property (2.15) can be rewritten as

ψ(gv, g∗Y ; gP ⊗ gQ) = ψ(v, Y ;P ⊗Q).

By (2.28), ψ(·, Y ;P ⊗ Q) ∈ S (V ) is an eigenvector for the Fourier transform and so Poisson
sumation gives

∑
λ∈Λ

ψ(t(v + λ), g∗Y ;P ⊗Q) =
∑
λ∈Λ

ψ(tg−1(v + λ), Y ; g−1(P ⊗Q))

= C Vol(CN/Λ)−1t−2N
∑
λ∈Λ∨

e2πi〈v,λ〉ψ(t−1g∗λ, Y ; g−1(P ⊗Q)).

(3.24)

Using this we can write

(3.25) E(v, g∗Y ;P ⊗Q;ψ,Λ, s)

=

∫ ∞
0

θ(tv, g∗Y ;P ⊗Q;ψ, tΛ)ts+N+p−q dt

t

=

∫ ∞
1

θ(tv, g∗Y ;P ⊗Q;ψ, tΛ)ts+N+p−q dt

t
+ C Vol(CN/Λ)−1

·
∑
λ∈Λ∨

e2πi〈v,λ〉
∫ ∞

1
ψ(tg∗λ, Y ; g−1(P ⊗Q))t−s+N+q−pdt

t
.

The last expression converges for all s ∈ C and gives the desired analytic continuation (with no
poles since ψ(0) = Fψ(0) = 0) of E(v, P ⊗Q;ψ,Λ, s). We set

(3.26) E(v, P ⊗Q;ψ,Λ) = E(v, P ⊗Q;ψ,Λ, 0) ∈ AN−1(X).

Proposition 3.3. For fixed v ∈ CN and polynomials P and Q, the form E(v, P ⊗Q;ψ,Λ) is closed.

Proof. For t > 0 define the theta series

θ(tv, P ⊗Q;φ, tΛ) =
∑
λ∈Λ

φ(t(v + λ), P ⊗Q),

where φ is given in (2.19). The same argument used above shows that

E(v, P ⊗Q;φ,Λ, s) :=

∫ ∞
0

θ(tv, P ⊗Q;φ, tΛ)ts+N+p−q dt

t
, Re(s)� 0,
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admits analytic continuation to s ∈ C (with no poles). The relation

(3.27) dE(v, P ⊗Q;ψ,Λ, s) = − s

2N
E(v, P ⊗Q;φ,Λ, s),

which follows from (2.20), proves the claim. �

Thus we may regard E(·, P ⊗Q;ψ,Λ) as a closed differential (N − 1)-form on X valued on the
space of smooth functions C∞(V ), and by (2.17) we have the equivariance property

(3.28) γ∗E(γv, γP ⊗ γQ;ψ,Λ) = E(v, P ⊗Q;ψ,Λ), γ ∈ Γ(Λ).

For Λ = Λ(I) defined in (3.1), we set

(3.29) Ep(v, P ⊗Q;ψ,Λ(I)) = E(v, P ⊗Q;ψ,Λ(pI))−Np · E(v, P ⊗Q;ψ,Λ(I))

and again we regard Ep(·, P ⊗ Q;ψ,Λ(I)) as a closed differential (N − 1)-form on X valued in
C∞(V ), equivariant under Γ0(p,Λ(I))(= Γ(Λ(pI)) ∩ Γ(Λ(I))).

3.3. Behaviour on Siegel sets. Fix two coprime ideals p and I of O with p of prime norm. Recall
that proper rational parabolics of Gk = SLN (k) are in bijection with proper flags

(3.30) W• : 0 (W0 ( · · · (Wr ( kN , r ≥ 0.

Before stating our next result we recall the definition of Siegel sets. For a strictly increasing
sequence J = {j1 < · · · < jr} of integers in {1, . . . , N − 1}, let Wjk = 〈e1, . . . , ejk〉 and PJ be the
standard parabolic of SLN (k) stabilizing the flag

WJ : 0 (Wj1 ( · · · (Wjr ( V.

We can write PJ = NMA, where (setting jr+1 = N − jr)

N = NJ =




1j1 ∗ · · · ∗
0 1j2 · · · ∗

0 0
. . . ∗

0 0 0 1jr+1




M = MJ =



A1 0 · · · 0
0 A2 · · · 0

0 0
. . . 0

0 0 0 Ar+1


∣∣∣∣∣∣∣∣∣ Ak ∈ GLjk(C), | det(Ak)| = 1


A = AJ =

a(t1, . . . , tr+1) :=


t11j1 0 · · · 0

0 t21j2 · · · 0

0 0
. . . 0

0 0 0 tr+11jr+1


∣∣∣∣∣∣∣∣∣ tk > 0, det a(t1, . . . , tr+1) = 1

 .

(3.31)

An element g ∈ G can be written as

g = nmak, n ∈ N, m ∈M, a ∈ A, k ∈ SU(N).

In this decomposition n and a are uniquely determined by g and m and k are determined up to an
element of M ∩ SU(N).

For t ∈ R>0, let
At = {a(t1, . . . , tr+1) ∈ A | tk/tk+1 ≥ t for all k}.

The Siegel set determined by t > 0 and a relatively compact set ω ⊂ NM is

S(t, ω) := ωAt · SU(N) ⊂ SLN (C);
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we refer to its image in X also as a Siegel set.
More generally, suppose that W• is a proper flag of kN . A Siegel set for the cusp defined by W•

is a set of the form
S(g, t, ω) := g−1ωAtg · SU(N)

where g ∈ SLN (k) is such that g−1W• is a standard flag (i.e. of the form WJ for some J).
We say that W• defines a good cusp if γe1 ∈W0 for some γ ∈ Γ0(p,Λ(I)).

Proposition 3.4. Suppose that W• defines a good cusp. If v ∈ kN satisfies (v + Λ(pI)) ∩Wr = ∅,
then Ep(v, P ⊗Q;ψ,Λ(I)) is rapidly decreasing on every Siegel set for the cusp defined by W•.

For the proof it will be convenient to work with adeles. Given a finite Schwartz function φf ∈
S (Vk(Af )) and t > 0, let

(3.32) θ(v, t, P ⊗Q;φf ⊗ ψ) =
∑
λ∈kN

φf (λ)ψ(t(v + λ), P ⊗Q)

and

E(v, P ⊗Q;φf ⊗ ψ, s) =

∫ ∞
0

θ(v, t, P ⊗Q;φf ⊗ ψ)ts+N+p−q dt

t

=
∑
λ∈kN

φf (λ)η(v + λ, P ⊗Q, s).
(3.33)

Using Poisson summation as in Section 3.2, for Y ∈ ∧N−1p we may write

(3.34) θ(v, g∗Y, t, P ⊗Q;φf ⊗ ψ)

= C Vol(CN/Λ(I))−1t−2N
∑
λ∈Vk

φ̂f (λ)e2πi〈v,λ〉ψ(t−1g∗λ, Y ; g−1(P ⊗Q))

and

(3.35) E(v, g∗Y, P ⊗Q;φf ⊗ ψ, s)

=
∑
v∈Vk

φf (λ)

∫ ∞
1

ψ(tg−1(v + λ), Y ; g−1(P ⊗Q))ts+N+p−q dt

t

+ C Vol(CN/Λ(I))−1
∑
λ∈Vk

φ̂f (λ)e2πi〈v,λ〉
∫ ∞

1
ψ(tg∗λ, Y ; g−1(P ⊗Q))t−s+N+q−pdt

t
,

showing that E(v, P ⊗Q;φf ⊗ ψ, s) admits analytic continuation to s ∈ C that is regular at s = 0.
Note that we can write

(3.36) Ep(v, P ⊗Q;ψ,Λ(I)) = E(v, P ⊗Q;φf (p, I)⊗ ψ, s)|s=0

where φf (p, I) ∈ S (Vk(Af )) is given by

(3.37) φf (λ; p, I) =


0, if λ /∈ Λ(pI)⊗O Ô,

1, if λ ∈ Λ(pI)⊗O Ô and λ1 /∈ I−1 ⊗O Ô

1−N(p), if λ ∈ Λ(pI)⊗O Ô and λ1 ∈ I−1 ⊗O Ô.

Proof of Proposition 3.4. Fix Y ∈ ∧N−1p, polynomials P and Q and a vector v ∈ kN and define
φ̃f ∈ S (Vk(Af )) by φ̃f (λ) = φf (λ− v; p, I). For g = (gf , g∞) ∈ SLN (Af ) and t > 0, define

θ(g, t) =
∑
λ∈kN

φ̃f (g−1
f λ)ψ(tg−1

∞ λ, Y ;P ⊗Q)

20



and

E(g, s) =

∫ ∞
0

θ(g, t)ts+N+p−q dt

t

=
∑
λ∈kN

φ̃f (g−1
f λ)η(tg−1

∞ λ, Y ;P ⊗Q, s).

It suffices to show that E((gf = 1, g∞), s) is rapidly decreasing on every Siegel set of W•; since
E(g, s) is an automorphic form, we can check this by showing that the constant term

E(g, s)N =

∫
N(Q)\N(A)

E(ng, s)dn

vanishes (here N denotes the unipotent radical of the parabolic P corresponding to W•). By
transitivity of constant terms, we may assume that P is maximal, i.e. that the flag W• consists of
just one proper subspace W0 of kN . Note that under our assumptions on v we have φ̃f (λ) = 0 for
λ ∈W0. For λ ∈ kN −W0, the orbit of λ under N(Q) is λ+W0 (with trivial stabilizer). It follows
that we can write

E((gf = 1, g∞)s)N =

∫
N(Q)\N(A)

 ∑
λ∈kN−W0

φ̃f (n−1
f λ)

∫ ∞
0

ψ(tg−1
∞ n−1

∞ λ, Y ;P ⊗Q)ts+N+p−q dt

t

 dn

=
∑

λ∈kN/W0

λ 6=0

∫
N(Q)\N(A)

 ∑
n′∈N(Q)

φ̃f ((n′nf )−1λ)η(tg−1
∞ (n′n∞)−1λ, Y ;P ⊗Q, s)

 dn

=
∑

λ∈kN/W0

λ 6=0

∫
N(Af )

φ̃f (n−1
f λ)dnf

∫
N(R)

η(tg−1
∞ n−1

∞ λ, Y ;P ⊗Q, s)dn∞.

Let γ ∈ Γ0(p,Λ(I)) such that l := 〈γe1〉 ⊆W0. Since the Schwartz function φp(I) satisfies

(3.38)
∫
kp

φp(w + xe1; I)dx = 0, w ∈ Vk(kp),

using that φp(I) is invariant under Γ0(p,Λ(I)), we compute∫
N(Af )

φ̃f (n−1
f λ)dnp =

∫
W0(Af )

φ̃f (λ+ w)dw

=

∫
W0(Af )

φf (−v + λ+ w)dw

=

∫
W0(Af )/l(Af )

∫
Af
φf (−v + λ+ w′ + xγe1)dxdw′

= 0,

showing that indeed the constant term is zero. �

3.4. Tits compactification and modular symbols. First recall that the Tits building ∆Q(G)
is a simplicial set whose non-degenerate simplices are in bijection with (proper) rational parabolic
subgroups P of G, or equivalently with proper k-rational flags

W• : 0 (W0 ( · · · (Wr ( kN , r ≥ 0.
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The stabilizer P(W•) of this flag is a rational parabolic of G that defines an r-simplex in ∆Q(G).
Its i-th face is the simplex corresponding to the flag obtained from W• by deleting Wi (degenerate
simplices correspond to proper flags where we allow Wi = Wi+1 for any i).

For a parabolic subgroup P, denote by NP its unipotent radical and write LP = P/NP for its
Levi quotient, SP for the maximal Q-split torus in the center of LP and AP = SP(R)0 for the
identity component of the real points of SP. Writing X(LP)Q for the group of rational characters
of LP, we define MP = ∩α∈X(LP)Q kerα2. Then we have the direct product decomposition

LP(R) = MP(R)AP.

The simplex in ∆Q(G) corresponding to P admits a natural geometric realization. To define it,
let aP and nP be the Lie algebras of AP and NP respectively, and let Φ+(P,AP) be the set of roots
for the adjoint action of aP on nP. These roots define a positive chamber

a+
P =

{
H ∈ aP | α(H) > 0, α ∈ Φ+(P,AP)

}
.

Writing 〈·, ·〉 for the Killing form on g, we define an open simplex

a+
P(∞) =

{
H ∈ a+

P | 〈H,H〉 = 1
}
⊂ a+

P

and a closed simplex

a+
P(∞) =

{
H ∈ aP | α(H) ≥ 0, 〈H,H〉 = 1, α ∈ Φ+(P,AP)

}
in aP. Note that for P maximal the Lie algebra aP is one-dimensional and so a+

P(∞) is just a point.
Moreover, if Q is another rational parabolic, then a+

Q(∞) is a face of a+
P(∞) if and only if P ⊆ Q.

It follows that a+
P(∞) gives a geometric realization of the simplex in ∆Q(G) corresponding to P,

and so the Tits building ∆Q(G) admits the geometric realization

(3.39) ∆Q(G) ∼
∐
P

a+
P(∞)/ ∼,

where the union runs over all proper rational parabolics P of G and ∼ is the equivalence relation
induced by the identification of a+

Q(∞) with a face of a+
P(∞) whenever P ⊆ Q. As a set we may

write
∆Q(G) =

∐
P

a+
P(∞)

as a disjoint union of open simplexes a+
P(∞).

3.4.1. Tits compactification. Here we follow [23] and [6, §III.12]. The Tits compactification QX
T

has boundary ∆Q(G): as a set we have

QX
T

= X ∪
∐
P

a+
P(∞).

The topology on QX
T can be described in terms of convergent sequences (for a full description

see [6]). Note that we have fixed x0 ∈ X corresponding to the maximal compact subgroup K =
SU(N) ⊂ G = G(R) and hence a unique Cartan involution θ of G that fixes K and extends to
G (namely, θ(g) = tg−1). There is a unique section i0 : LP → P of the quotient map P →
LP with image invariant under θ. We write P = P(R), NP = NP(R), AP(x0) = i0(AP) and
MP(x0) = i0(MP(R)) and obtain the Langlands decomposition (explicitly given by (3.31) for
standard parabolics)

P = NPAP(x0)MP(x0).

Writing XP = MP(x0)/(K ∩MP(x0)), this induces a diffeomorphism

(3.40) NP ×AP(x0)×XP → X, (n, a,mK) 7→ namK.
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The topology on QX
T is characterized by the following properties:

(1) The subspace topology on the boundary ∆Q(G) is the quotient topology given by (3.39).
(2) Let x ∈ X. A sequence xn ∈ QX

T , n ≥ 1, converges to x if and only if xn ∈ X for n � 0
and xn converges to x in the usual topology of X.

(3) Let H∞ ∈ a+
P(∞) and let (xj)j≥1 be a sequence in X. Write xj = nj exp(Hj)mj for unique

nj ∈ NP, Hj ∈ aP and mj ∈ XP according to the horospherical decomposition (3.40). Then
xj → H∞ if and only if xj is unbounded and
(i) Hj/||Hj || → H∞ in aP,
(ii) d(njmjx0, x0)/||Hj || → 0,
where d denotes the Riemannian distance on X.

With this topology, QX
T is a Hausdorff space on which G(Q) acts continuously.

Given points x ∈ X and x′ ∈ QX
T , we denote by [x, x′] the unique oriented geodesic segment

starting at x and ending at x′. More explicitly, if x′ ∈ X, we define [x, x′] to be the image of

(3.41) s(x, x′) : [0, 1]→ QX
T

; t 7→ s(t;x, x′),

the constant speed parametrization by the unit interval of the unique oriented geodesic segment
with s(0;x, x′) = x and s(1;x, x′) = x′. If x′ belongs to the boundary of QX

T , then there exists a
unique parabolic subgroup P such that x′ corresponds to H∞ ∈ a+

P(∞). In the coordinates given
by (3.40), we have x = n exp(H)m, and we define [x, x′] to be the image of

(3.42) s(x, x′) : [0, 1]→ QX
T

; (t, s) 7→ s(t;x, x′)

{
n exp(H +

t

1− t
H∞)m, if t < 1,

x′, if t = 1.

Given subsets S ⊂ X and S′ ⊂ QX
T , the cone C(S, S′) (also known as the join S ∗S′) is the subset

of QX
T defined as

C(S, S′) =
⋃
x∈S
x′∈S′

[x, x′].

If S = {x}, we say that C(S, S′) is the cone on S′ with vertex x. When S′ is given by a simplicial
map ∆r → ∆Q(G) into the Tits boundary, the cone on S′ with vertex x is naturally the image of
an (r + 1)-simplex |∆r+1| → QX

T (oriented so that the boundary orientation agrees with that of
S′). More generally, if S is given by a simplicial map |∆k| → X and S′ is given by a simplicial map
∆r → ∆Q(G), then the cone C(S, S′) is the image of a map

(3.43) |∆k| × |∆r| × [0, 1]→Q X
T

that factors trough the join

(3.44) |∆k+r+1| ' |∆k ∗∆r| →Q X
T
.

3.4.2. Modular symbols. For k ≥ 0, let ∆′k be the first barycentric subdivision of the standard k-
simplex. Its vertices are in bijection with the non-empty subsets of {0, . . . , k}, and a set of vertices
{v0, . . . , vr} forms an r-simplex if and only if they are linearly ordered, i.e. v0 ⊆ · · · ⊆ vr. Denote
this simplex by ∆v0,...,vr .

For a collection γ = (γ0, . . . , γk−1) of k ≤ N elements of Γ0(p,Λ(I)), let us define a continuous
map

∆(γ) : ∆′k−1 → QX
T
.
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Assume first that 〈γ0e1, . . . , γk−1e1〉 6= kN . For each chain v0 ⊆ · · · ⊆ vr defining an r-simplex in
∆k−1, the flag

(3.45) 0 ( 〈γie1 | i ∈ v0〉 ⊆ 〈γie1 | i ∈ v1〉 ⊆ · · · ⊆ 〈γie1 | i ∈ vr〉 ( kN

is a proper flag of length r. We define ∆(γ)(∆v0,...,vr) to be the corresponding (possibly degenerate)
r-simplex in ∆Q(G); we give this simplex the orientation induced by ∆(γ) by the standard orien-
tation on ∆′k−1. This assignment preserves faces and degeneracies and so defines a simplicial map
∆(γ).

Next assume that k = N and the vectors γ0e1, . . . , γN−1e1 are linearly independent. Define

(3.46) A(γ) = (γ0e1| · · · |γN−1e1) ∈MN (O) ∩GLN (k)

to be the matrix formed by the first columns of γ0, . . . , γN−1. Fix an N -th root (detA(γ))−1/N of
detA(γ)−1 and let a(γ) = (detA(γ))−1/NA(γ); the matrix a(γ) has determinant one and defines a
point

(3.47) x0(γ) = a(γ)K ∈ X

(independent of the choice of N -th root above). Suppose that v0 ( · · · ( vr is a chain defining a
non-degenerate r-simplex in ∆N−1. If vr 6= {0, . . . , N − 1}, then we define ∆(γ)(∆v0,...,vr) to be the
r-simplex of ∆Q(G) corresponding to the flag (3.45). If vr = {0, . . . , N − 1}, then we define

(3.48) ∆(γ)(∆v0,...,vr) = cone on ∆(γ)(∆v0,...,vr−1) with vertex x0(γ).

These assignments are compatible with face maps and therefore give rise to a well-defined continuous
map ∆(γ) : ∆′N−1 → QX

T . By induction on k one shows that

(3.49) ∆(γ′γ0, . . . , γ
′γk−1) = γ′∆(γ0, . . . , γk−1), for γ′ ∈ Γ0(p,Λ(I)).

Note that when the vectors γie1 are linearly dependent, the image of the map ∆(γ) is contained

in the boundary of QX
T . When they are linearly independent, the intersection

(3.50) ∆◦(γ) := X ∩ Im(∆(γ))

of the image of ∆(γ) with the interior X of QX
T is a submanifold of dimension N − 1, namely

(3.51) ∆◦(γ) = {a(γ)diag(t1, . . . , tN )K | ti ∈ R>0} ⊂ G/K = X.

(To see this, we may assume that γie1 = ei, so that a(γ) is the identity matrix 1N . Consider first
a non-degenerate simplex ∆v0,...,vr in ∆′N−1 with vk = {1, . . . , |vk|}. If |vr| < N , then the r-simplex
∆(1N )(∆v0,...,vr) in the Tits compactification of X corresponds to the standard proper flag

0 ( 〈ei | i ≤ |v0|〉 ( · · · ( 〈ei | i ≤ |vr|〉 6= Vk,

and the subgroup AP of the corresponding parabolic P is

AP =

a(t0, . . . , tr+1) :=


t0 · 1|v0|

t1 · 1|v1|−|v0|
. . .

tr+11N−|vr|


∣∣∣∣∣∣∣∣∣ ti > 0, det a(t0, . . . , tr+1) = 1

 .

If |vr| = N , then the cone of ∆(1N )(∆v0,...,vr−1) with vertex x0 is

{a(t0, . . . , tr+1)K | a(t0, . . . , tr+1) ∈ AP, t0 ≥ · · · ≥ tr+1}.

The statement follows since any r-simplex ∆(1N )(∆v0,...,vr) can be obtained as a translate of a
simplex corresponding to a standard flag as above by a Weyl group element.)
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The coordinates a(γ)diag(t1, . . . , tN )K 7→ ti identify ∆◦(γ) with the manifold C defined in (2.29).
This isomorphism is orientation preserving.2 For convenience we define ∆◦(γ) = ∅ if A(γ) is not
invertible.

Note that (3.51) implies that ∆◦(γ) admits a finite cover by Siegel sets; one may take this cover
to consist of one Siegel set for every parabolic P stabilizing a flag consisting of subspaces of the
form 〈γie1 | i ∈ I〉 for I ( {0, . . . , N − 1}.

3.5. Evaluation on modular symbols and the cocycle property. We can now relate the
Eisenstein series Ep(v, P ⊗Q;ψ,Λ(I)) and the Eisenstein cocycle.

Proposition 3.5. Assume that v does not lie in any Λ(pI)-translate of a proper subspace of V of
the form 〈γie1 | i ∈ I〉 for I ⊆ {0, . . . , N − 1}. Then Φp,q

p (·, γ,Λ(I)) is defined at v and

Φp,q
p (v, γ,Λ(I))(P ⊗Q) =

∫
∆◦(γ)

Ep(v, P ⊗Q;ψp,q,Λ(I)).

Proof. Consider the matrix A(γ) = (γ0e1| . . . |γN−1e1). If A(γ) is not invertible, then both sides
are zero by definition. Now assume that A(γ) is invertible and take A(γ)−1P and A(γ)−1Q to be
monomial, say A(γ)−1P (z) = zI = zi11 · · · z

iN
N and A(γ)−1Q(z) = zJ = z1

j1 · · · zNjN ; it suffices to
show that with this choice of P and Q we have∫

∆◦(γ)
E(v, P ⊗Q;ψp,q,Λ(I)) = DI,J(v,A(γ),Λ(I)).

We compute∫
∆◦(γ)

E(v, P ⊗Q;ψp,q,Λ(I), s)

=
∑

λ∈Λ(I)

∫
∆◦(γ)

ηp,q(v + λ, P ⊗Q, s)

=
∑

λ∈Λ(I)

∫
T/T∩K

a(γ)∗ηp,q(v + λ, P ⊗Q, s)

=
∑

λ∈Λ(I)

∫
T/T∩K

ηp,q(a(γ)−1(v + λ), a(γ)−1(P ⊗Q), s)

= | detA(γ)|−s/N detA(γ)−1
∑

λ∈Λ(I)

∫
T/T∩K

ηp,q(A(γ)−1(v + λ), A(γ)−1(P ⊗Q), s),

where the last equality follows from the homogeneity property (2.21). The desired identity follows
by analytic continuation from Lemma 2.5. �

We can now use Proposition 3.5 to prove that Φp,q
p (Λ(I)) is indeed an (N − 1)-cocycle, i.e. that

it satisfies property (3.12).
Given N + 1 elements γ0, . . . , γN ∈ Γ0(p,Λ(I)), write Sj for ∆(γ0e1, . . . , γ̂je1, . . . , γNe1) and fix

x ∈ X such that
x /∈

⋃
0≤j≤N

Sj .

2Recall that we have defined the orientation of ∆◦(γ) to be induced by the boundary and that the orientation on
C is fixed in §2.6.
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For each j with 0 ≤ j ≤ N , we next define an N -simplex Cj : ∆N → QX
T . Assume first that

〈γ0e1, . . . , γ̂je1, . . . , γNe1〉 6= kN . Then Sj is an (oriented) (N − 1)-simplex in the boundary of

QX
T , and we denote by (−1)jSj the same simplex with opposite orientation if j is odd. Note that∑

j

(−1)jSj is a cycle, i.e.
∑

(−1)j∂Sj = 0. We define Cj to be the cone on (−1)jSj with vertex x

(cf. §3.4.1); its boundary is ∂Cj = (−1)jSj − (−1)jC(x, ∂Sj).
Now assume that 〈γ0e1, . . . , γ̂je1, . . . , γNe1〉 = kN . Then the intersection S◦j of Sj with X is

non-empty, and in (3.47) we have defined a barycenter xj := x0(γ0e1, . . . , γ̂je1, . . . , γNe1) ∈ S◦j such
that Sj is the cone on ∂Sj with vertex xj . We define Cj to be the cone C([x, xj ], ∂Sj), where
[x, xj ] denotes the oriented geodesic segment from x to xj . More explicitly, let s : [0, 1] → [x, xj ]
be the constant speed parametrization of the geodesic segment joining s(0) = x to s(1) = xj . For
each simplex ∆(γ0e1, . . . , γ̂je1, . . . , γNe1)(∆v0,...,vr) contained in ∂Sj , let P be the corresponding
parabolic; writing s(t) = n(t) exp(Ht)m(t) we obtain a map

(3.52) [0, 1]× a+
P → X, (t,H ′) 7→ n(t) exp(Ht +H ′)m(t),

whose closure is C([x, xj ],∆(γ0e1, . . . , γ̂je1, . . . , γNe1)(∆v0,...,vr)). Since ∂Sj has empty boundary,
the boundary of Cj is the union of Sj (= the cone on S◦j with vertex xj) and the cone C(x, ∂Sj);
we orient Cj so that the induced orientation on Sj is that given by (3.48), so that ∂Cj = (−1)jSj −
(−1)jC(x, ∂Sj).

It follows that the sum ∆(γ0, . . . , γN ) =
∑
j

Cj has boundary
∑
j

(−1)jSj . The cocycle property

(3.12) follows immediately from Stokes’ theorem and the following lemma.

Lemma 3.6. Assume that v does not lie in any Λ(pI)-translate of a proper subspace of V of the
form 〈γie1 | i ∈ I〉 for I ⊆ {0, . . . , N}. Then the Eisenstein series Ep(v, P ⊗Q;ψp,q,Λ(I)) is rapidly
decreasing on ∆(γ0, . . . , γN ).

Proof. By Proposition 3.4, it suffices to show that each Cj can be covered by finitely many Siegel
sets of good cusps, which is obvious from the explicit description (3.52). �

4. Eisenstein cocycle and critical values of Hecke L-series

4.1. Units of extensions of k. Let L be a field extension of k of degree N ≥ 2. We denote its
ring of integers by OL and write σ1, . . . , σN for the complex embeddings of L in C extending σ. We
obtain an embedding

σ ∈ HomO(L,CN ), σ(l) = (σ1(l), . . . , σN (l)).

Let n : L× → k× be the norm map and L1 be the kernel of n. We fix ideals a, P and f of OL that are
pairwise coprime and such that p := n(P) is prime. We let U(f) = O×L ∩(1+f) and U(f)1 = U(f)∩L1.
We denote by U(f)1

tors the torsion subgroup of U(f)1 and fix units u1, . . . , uN−1 ∈ U(f) that generate
a subgroup U(f)′ := 〈u1, . . . , uN−1〉 of U(f)1 that is free abelian of rank N − 1 and maps bijectively
to U(f)1/U(f)1

tors via the quotient map.

Lemma 4.1. Let I be a fractional ideal of O coprime to p and isomorphic to (detO(fa−1))−1. There
exists a k-isomorphism α : L

∼−→ kN making the diagram

fa−1 Λ(I)

f(aP)−1 Λ(pI)

α
∼

α
∼

commute.
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Proof. Fix an isomorphism α̃ : fa−1 ∼−→ Λ(I). Then the O-lattices Λ1 = Λ(pI) and Λ2 = α̃(f(aP)−1)
contain Λ(I) and Λi/Λ(I) ' O/p for i = 1, 2. For each finite place v of k and i = 1, 2 we obtain an
Ov-lattice Λi,v = Λ⊗O Ov in kNv , and we have Λ1,v = Λ2,v for all v 6= p. Pick gp ∈ SLN (Λ(I)p) such
that gpΛ2,p = Λ1,p and let

Up = SLN (Λ(I)p) ∩ SLN (Λ2,p).

Then Up is an open compact subgroup of SLN (kp) and U = gpUp×
∏
v 6=p

SLN (Λ(I)v) is an open subset

of SLN (Ak,f ). Since SLN (k) is dense in SLN (Ak,f ), we may find g ∈ SLN (k)∩U . Then g stabilizes
Λ(I) and gΛ2 = Λ1 (since gΛ2,v = Λ1,v for every finite place v), and so α := g◦ α̃ makes the diagram
in the statement commute.

�

From now on we fix an isomorphism α as in the above lemma. These choices define:
• a vector

(4.1) v0 = α(1) ∈ kN ;

• a k-basis αj = α−1(ej) (j = 1, . . . , N) of L and a matrix

aα = (σi(αj))
−1 det(σi(αj))

1/N ∈ SLN (C)

(here det(σi(αj))
1/N denotes a fixed N -th root of det(σi(αj)));

• an inclusion

(4.2) ια : L× → GLN (k)

sending l ∈ L× to the map x 7→ α(lα−1(x)), that can be described using aα:

(4.3) ια(l) = aαdiag(σ(l))a−1
α .

Define
Γ := Γ0(p,Λ(I)) ∩ Γ1(v0,Λ(I)).

Since multiplication by u ∈ U(f)1 induces an O-linear automorphism of fa−1 and f(aP)−1

of determinant 1 that preserves 1 + fa−1, the restriction of ια to U(f)1 defines an inclusion

(4.4) ια : U(f)1 → Γ.

• Write (L⊗k,σC)1 for the elements of (L⊗k,σC)× of norm 1 and (L⊗k,σC)1
c for the maximal

compact subgroup of (L ⊗k,σ C)1. The map u 7→ ια(u)aα(= aαdiag(σ(u))) induces an
embedding

(4.5) ια : (L⊗k,σ C)1/(L⊗k,σ C)1
c → X

and hence a basepoint xα = aαSU(N) ∈ X and a map

(4.6) ια : X(f) := U(f)1\(L⊗k,σ C)1/(L⊗k,σ C)1
c → Γ\X.

By Kronecker’s theorem (“algebraic integers all of whose conjugates are of norm one are roots
of unity”), the kernel of the action of U(f)1 on (L ⊗k,σ C)1/(L ⊗k,σ C)1

c equals the torsion
subgroup U(f)1

tors of U(f)1, and the action of U(f)′ = 〈u1, . . . , uN−1〉 ' U(f)1/U(f)1
tors on

(L⊗k,σC)1/(L⊗k,σC)1
c is free. We fix the orientation on (L⊗k,σC)1/(L⊗k,σC)1

c associated
to the canonical orientation of CN and write

[X(f)] ∈ HN−1(X(f),Z) ' HN−1(〈u1, . . . , uN−1〉,Z)
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for the fundamental class of the (compact, oriented) (N − 1)-manifold X(f). We write
cor : H∗(〈u1, . . . , uN−1〉,Q)→ H∗(U(f)1,Q) and res : H∗(U(f)1,Q)→ H∗(〈u1, . . . , uN−1〉,Q)
for the corestriction and restriction maps respectively and set

Zf = [U(f) : U(f)′]−1cor[X(f)] ∈ HN−1(U(f)1,Q).

• The embeddings σ1, . . . , σN : L→ C give a basis for (L⊗k,σC)∨; we denote by ∂
∂σ1

, . . . , ∂
∂σN

the dual basis of (L⊗k,σC)∨∨ ' L⊗k,σC. Writing αC = α⊗1 for the extension of α : L→ kN

to an isomorphism L⊗k,σ C→ V , we define polynomials

Pα = αC

(
∂

∂σ1

)
· · ·αC

(
∂

∂σN

)
∈ SymNV,

Qα = n ◦ α−1
C ∈ SymNV

∨
.

(4.7)

Note that these polynomials satisfy

(4.8) a−1
α Pα = det(σi(αj))

−1(e1 · · · eN ), a−1
α Qα = det(σi(αj)) · z1 · · · zN .

For non-negative integers p, q, we define

P p,qα = p!−N · P pα ⊗Qα
q ∈ (V pN,qN )∨.

Then P p,qα is invariant under ια(U(f)1). We define

Zp,qf = Zf ⊗ P p,qα ∈ HN−1(U(f)1, (V pN,qN )∨).

Let res(Ep(v0;ψpN,qN ,Λ(I))) ∈ HN−1(U(f)1, V pN,qN ) be the cohomology class defined by the
restriction of the closed form Ep(v0;ψpN,qN ,Λ(I)) and define

〈Ep(v0;ψpN,qN ,Λ(I)), Zp,qf 〉 = res(Ep(v0;ψpN,qN ,Λ(I)) ∩ Zp,qf

= [U(f) : U(f)′]−1

∫
X(f)

ι∗αEp(v0, P
p,q
α ;ψpN,qN ,Λ(I), s)

∣∣∣∣∣
s=0

.
(4.9)

4.2. Partial zeta functions. Given integers p, q ≥ 0, define the partial zeta function

(4.10) ζp,qf (a, s) =
∑′

x∈U(f)\1+fa−1

n(x)
q

n(x)p+1|n(x)|2s
, Re(s)� 0.

(Since uu = 1 for every u ∈ O×, this is well-defined provided that p + q + 1 is divisible by the
order of the subgroup n(U(f)) of O×, which we assume.) Define also the ‘P-smoothed’ partial zeta
function

(4.11) ζp,qf,P(a, s) = NP−sζp,qf (aP, s)−NP1−sζp,qf (a, s).

These partial zeta functions admit meromorphic continuation to s ∈ C that is regular at s = 0.

Proposition 4.2.

〈Ep(v0;ψpN,qN ,Λ(I)), Zp,qf 〉 = det(σi(αj))ζ
p,q
f,P(a, 0).
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Proof. For s in the range of convergence of the Eisenstein series, we compute

(4.12)
∫
X(f)

ι∗αE(v0, P
p,q
α ;ψpN,qN ,Λ(I), s)

=

∫
U(f)′\(L⊗k,σC)1/(L⊗k,σC)1c

ι∗α

 ∑
v∈v0+Λ(I)

ηpN,qN (v, s;P p,qα )


=

∫
U(f)′\(L⊗k,σC)1/(L⊗k,σC)1c

ι∗α

 ∑
x∈1+fa−1

ηpN,qN (α(x), s;P p,qα )


=

∫
U(f)′\(L⊗k,σC)1/(L⊗k,σC)1c

ι∗α

 ∑
x∈U(f)′\1+fa−1

∑
u∈U(f)′

ηpN,qN (α(ux), s;P p,qα )


=

∑
x∈U(f)′\1+fa−1

∫
(L⊗k,σC)1/(L⊗k,σC)1c

ι∗αη
pN,qN (α(x), s;P p,qα ).

Writing T for the torus of diagonal matrices in G, note that the image of ια is identified with the
translate aα(T/T∩K) ⊂ X. Since (a−1

α v)i = det(σi(αj))
−1/Nσi(α

−1(v)), using (4.8) and Lemma 2.5
and writing ∆ = det(σi(αj))

−1/N we compute∫
(L⊗k,σC)1/(L⊗k,σC)1c

ι∗αη
pN,qN (α(x), s;P p,qα )

=

∫
T/T∩K

ηpN,qN (a−1
α α(x), s; a−1

α (P p,qα ))

= p!−N
∫
T/T∩K

ηpN,qN (∆σ(x), s; ∆pN (e1 · · · eN )p ⊗∆
−qN

z1 · · · zNq)

= p!−N∆pN∆
−qN

∫
T/T∩K

ηpN,qN (∆σ(x), s; (e1 · · · eN )p ⊗ z1 · · · zNq)

= ∆pN∆
−qN

p!−NΓ(
s

2N
+ 1 + p)N

N∏
k=1

(∆σk(x))q

|∆σk(x)|s/N (∆σk(x))p+1

= |∆|−s∆−Np!−NΓ(
s

2N
+ 1 + p)N

n(x)q

|n(x)|s/Nn(x)p+1

and the statement follows. �

4.3. Moving cycles to the Tits boundary. We now give a fundamental domain D for the action
of 〈u1, . . . , uN−1〉 on X and a decomposition of D into (N − 1)-simplices indexed by the symmetric
group SN−1.

4.3.1. Simplices. Let us first define the relevant simplices. For k ≥ 0, x ∈ X and γ = (γ0, . . . , γk) ∈
Γ0(p,Λ(I))k+1, we define a continuous map

∆̃(γ, x) : ∆k → X

inductively on k as follows:
- For k = 0 we have ∆k = {∗} and we set ∆̃(γ0, x)(∗) = γ0x.
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- Assume that k ≥ 1 and that we have defined ∆̃(γ0, . . . , γk−1, x) for every collection of ele-
ments γ0, . . . , γk−1 ∈ Γ0(p,Λ(I))k. We define ∆̃(γ0, . . . , γk, x) to be the cone on ∆̃(γ0, . . . , γk−1, x)
with vertex γkx (we orient this cone by declaring that its vertices γ0x, . . . , γkx are in in-
creasing order).

By induction on k one shows that

(4.13) ∆̃(γ′γ0, . . . , γ
′γk−1, x) = γ′∆̃(γ0, . . . , γk−1, x), for γ′ ∈ Γ0(p,Λ(I)).

4.3.2. Fundamental domain. Consider now the fundamental domain D for the action of 〈u1, . . . , uN−1〉
defined as follows: for t ∈ [0, 1]N−1, let

σ(u)(t) = (σ1(u1)t1 · · ·σ1(uN−1)tN−1 , . . . , σN (u1)t1 · · ·σN (uN−1)tN−1) ∈ (C×)N−1

and let

D = {aασ(u)(t)K | t ∈ [0, 1]N−1} ⊂ X.

There is a standard decomposition of [0, 1]N−1 into (N − 1)-simplices:

[0, 1]N−1 =
⋃

σ∈SN−1

{t1, . . . , tN−1 ∈ [0, 1] | tσ(1) ≤ · · · ≤ tσ(N−1)}.

This induces a corresponding simplicial decomposition of D : writing Ui = ια(ui) ∈ Γ0(p,Λ(I)) and

(4.14) uσ = (1, Uσ(1), Uσ(1)Uσ(2), . . . , Uσ(1) · · ·Uσ(N−1)),

we have

(4.15) D =
∑

σ∈SN−1

sgn(σ)∆̃(uσ, xα).

4.3.3. Deforming ∆̃(γ, x). Let k ≥ 0, x ∈ X and γ ∈ Γ0(p,Λ(I))k+1 with k < N . In this paragraph
we define a homotopy between the simplices ∆̃(γ, x) and ∆(γ); that is, a map

H(γ, x) : |∆k| × [0, 1]→ QX
T

such that

H(γ, x)||∆k|×{0} = ∆̃(γ, x)

H(γ, x)||∆k|×{1} = ∆(γ)
(4.16)

Since the cones in X depend on the order of the vertices we try to define this homotopy with a bit
of care.

Moreover, we will show that H can be covered by a finite number of Siegel sets attached to good
cusps (recall that we say that a cusp corresponding to a rational flag W• is good if we can find
γ ∈ Γ0(p,Λ(I)) such that γe1 ∈W0) and has the equivariance property

(4.17) H(γ′γ0, . . . , γ
′γk, x) = γ′H(γ0, . . . , γk, x), for γ′ ∈ Γ0(p,Λ(I)).

To define H we use a decomposition of |∆k| × [0, 1] defined inductively as follows. For k = 0
we take the decomposition of {∗} × [0, 1] ' [0, 1] with 0-simplices {0} and {1} and the 1-simplex
(0, 1). The decomposition of |∆k| × [0, 1] is defined inductively on k by joining every simplex of
(∆k−1 × {0}) ∪ (∂∆k × [0, 1]) with the barycenter of ∆k × {1}, as in the following figure.
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More precisely, we define, inductively on k, a subset Sk of ∆k ×∆′k satisfying

(4.18) |∆k × [0, 1]| =
◦⊔

(s,s′)∈Sk

C(|s| × {0}, |s′| × {1}),

(here the symbol
◦⊔

denotes an almost disjoint union: the cones indexed by different pairs in Sk
have disjoint interiors). We define Sk as follows:

- For k = 0 we have ∆0 = {∗} and we set S0 = ∆0 ×∆0.
- Let k > 0 and assume that Sk−1 has been defined. Let x0 be the barycenter of ∆k. To
describe which pairs (s, s′) belong to Sk, recall that every simplex s′ ∈ ∆′k either i) is the
0-simplex {x0}, or ii) lies on a face of ∂∆k, or iii) is the cone C({x0}, s′′) with vertex x0 for
a unique simplex s′′ of ∆′k contained in the boundary ∂∆k. In case i) we declare that for
every s ∈ ∆k we have (s, {x0}) ∈ Sk. In case ii), the vertex s′ lies on a face ∆k−1 ⊂ ∂∆k.
We declare that (s, s′) ∈ Sk if and only if s belongs to the same face of ∂∆k as s′ and
(s, s′) ∈ Sk−1. In case iii), we declare that (s, s′) ∈ Sk with s′ = C({x0}, s′′) if and only
if s and s′′ belong to the same face of ∂∆k and (s, s′′) ∈ Sk−1. Property (4.18) follows by
induction on k.

With this decomposition of |∆k × [0, 1]| in hand, we can now define H by induction on k. For
k = 0 we recall the definition of s(x, x′) : [0, 1] → QX

T (see (3.41) and (3.42)). Writing 〈γ0e1〉 for
the point of the boundary of QX

T corresponding to the flag given by the line 〈γ0e1〉, we set

H(γ0, x) = s(γ0x, 〈γ0e1〉).

Note that the image of H(γ0, x) is the cone C({γ0x}, {〈γ0e1〉}).
Next assume that k ≥ 1 and that we have defined H(γ0, . . . , γk−1, x) for every collection of

elements γ0, . . . , γk−1 ∈ Γ0(p,Λ(I))k. Let γ = (γ0, . . . , γk) ∈ Γ0(p,Λ(I))k+1. Assume first that
〈γ0e1, . . . , γke1〉 6= kN . Then ∆(γ) corresponds to a simplex in ∆Q(G). We define H(γ, x) using
the decomposition (4.18) by taking the restriction of H(γ, x) to C(|s| × {0}, |s′| × {1}) to be the
simplicial map (3.44) whose image is the cone C(∆̃(γ, x)(s),∆(γ)(s′)).

Now assume that 〈γ0e1, . . . , γke1〉 = kN (and hence that k + 1 = N). Given (s, s′) ∈ SN−1, we
define the restriction of H(γ, x) to C(|s| × {0}, |s′| × {1}) to be the simplicial map (3.44) whose
image is the cone defined as follows:

- If s′ is the barycenter x0 of ∆N−1, take the cone to be C(∆̃(γ, x)(s), {x0(γ)}) (recall that
x0(γ) ∈ X denotes the barycenter of the modular symbol ∆(γ));
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- If s′ belongs to the boundary ∂∆N−1, then s and s′ belong to the same face of ∂∆N−1, and
the restriction of H(γ, x) to C(|s| × {0}, |s′| × {1}) has already been defined to be the map
whose image is the cone C(∆̃(γ, x)(s),∆(γ)(s′));

- In the remaining case we have s′ = C({x0}, s′′) for a unique simplex s′′ ∈ ∂∆N−1. In this case
we form the cone C ′ := C(∆̃(γ)(s), {x0(γ)}) ⊂ X and take the cone to be C(C ′,∆(γ)(s′′)).

By induction on k one shows that H(γ, x) is well-defined and continuous3 and satisfies (4.16)
and (4.17). Note that the image of H(γ, x) is given by a finite union of cones of the form C(S, S′),

where S is a compact subset of X and S′ is a simplex in the boundary of QX
T corresponding to a

good cusp; it follows that the image of H(γ, x) can be covered by finitely many Siegel sets attached
to these cusps.

4.4. Smoothing and evaluation. We can use the above results to express values of partial zeta
functions as polynomials in Kronecker–Eisenstein series, by using the fact that the Eisenstein series
Ep(v0;ψ,Λ(I)) is closed and moving the simplices in (4.15) to the Tits boundary. In order to
guarantee that the Eisenstein series is rapidly decreasing, we will use the following Lemma due to
Colmez–Schneps [12, Lemma 5].

Lemma 4.3. Let {φi}i∈I be a finite collection of non-zero k-linear forms on L. Let P̃ be a prime
ideal of OL and let p̃ = P̃ ∩ O. Assume that the residue field OL/P̃ has degree one over O/p̃ and
denote by vp̃ the valuation defined by p̃. There exists a constant C = C(I) such that if NP̃ > C and
l ∈ L satisfies vP̃(l) < 0 and vP′(l) ≥ 0 for every other prime divisor P′ of p̃OL, then φi(l) 6= 0 for
every i ∈ I.

In particular, if NP̃ > C, a is a fractional ideal of L coprime to p̃OL and l ∈ aP̃
−1 − a, then the

forms φi are all non-vanishing on the coset l + a.

Proof. We can write φi(l) = trL/k(lil) for unique li ∈ L×. Take C so that NP̃ > C implies that
p̃ = P̃ ∩ O is unramified in L and for every prime divisor P′ of p̃OL we have vP′(li) = 0 for all
i. For i ∈ I and l as in the statement, we have vP̃(lil) < 0 and vP′(lil) ≥ 0 for every other prime
divisor P′ of p̃OL. This implies ([32, II §3, Cor. 2]) that trL/k(lil) is not a p̃-integer, and hence is
not zero. �

For a prime ideal P̃ of OL coprime to f, a and P, define the ‘(P, P̃)-smoothed’ zeta function

ζp,q
f,P,P̃

(a, s) = NP̃−sζp,qf,P(aP̃, s)−NP̃−sζp,qf,P(a, s).

The following theorem implies Theorem 1.2 of the introduction.

Theorem 4.4. There exists a constant C such that if P̃ is a prime ideal of OL such that the residue
field OL/P̃ has degree one over O/p̃ and NP̃ > C, then

det(σi(αj))ζ
p,q

f,P,P̃
(a, 0) = [U(f) : U(f)′]−1

∑
σ∈SN−1

sgn(σ)
∑

x∈P̃−1f/f
x 6=0

ΦpN,qN
p (v0 + α(x), uσ,Λ(I))(P p,qα ).

Proof. First let us define a collection {φi}i∈I as in Lemma 4.3. Writing uσ,j (0 ≤ j < N) for the
components of the N -tuple uσ in (4.14), we consider the finite set {Wi}i∈I of all proper subspaces
Wi of Vk of the form 〈uσ,je1 | j ∈ J〉, for all σ ∈ SN−1 and all J ⊆ {0, . . . , N − 1}. For each
subspace Wi we choose a non-zero linear form φi on L such that Wi ⊆ ker(φi ◦ α−1). Let C(I) be
the constant provided by Lemma 4.3.

3This latter statement can be deduced from the following general principle: let X and Y two topological spaces,
(Fi)i∈I a finite cover of X by closed sets, and fi : Fi → Y continuous maps. If fi and fj coincides on Fi ∩ Fj for all
i, j, then there exists a (unique) continuous map f : X → Y that is equal to fi on Fi for each i.
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Now take C > C(I) such that any prime ideal P̃ with NP̃ > C is coprime to a, f and P; then
Lemma 4.3 and Proposition 3.4 show that, for any l ∈ P̃−1f − f, the Eisenstein series Ep(v0 +

α(l), P pN,qNα ;ψp,q,Λ(I)) is rapidly decreasing on every Siegel set of every cusp corresponding to a
flag W• given by a chain of subpaces Wi with i ∈ I; in particular, for such l we have∫

∂H(uσ ,xα)
Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I)) = 0.

Since ∑
l∈P̃−1f/f
l 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I))

is invariant under U(f)1, the equivariance property (4.17) shows that

0 =
∑

σ∈SN−1

sgn(σ)

∫
∂H(uσ ,xα)

∑
l∈P̃−1f/f
l 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I))

=
∑

σ∈SN−1

sgn(σ)

∫
∆◦(uσ)

∑
x∈P̃−1f/f
x 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I))

−
∑

σ∈SN−1

sgn(σ)

∫
∆̃(uσ ,xα)

∑
x∈P̃−1f/f
x 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I)).

(4.19)

The proof of Proposition 4.2 shows that

[U(f) : U(f)′]−1

∫
X(f)

∑
x∈P̃−1f/f
x 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I)) = det(σi(αj))ζ
p,q

f,P,P̃
(a, 0).

We compute∫
X(f)

∑
x∈P̃−1f/f
x 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I))

=
∑

σ∈SN−1

sgn(σ)

∫
∆̃(uσ ,xα)

∑
x∈P̃−1f/f
x 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I)) (by (4.15))

=
∑

σ∈SN−1

sgn(σ)

∫
∆◦(uσ)

∑
x∈P̃−1f/f
x 6=0

Ep(v0 + α(l), P p,qα ;ψpN,qN ,Λ(I)) (by (4.19))

=
∑

σ∈SN−1

sgn(σ)
∑

x∈P̃−1f/f
x 6=0

ΦpN,qN
p (v0 + α(l), uσ,Λ(I))(P p,qα ) (by Prop. 3.5).
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