1 Partial differentiation and the chain rule

In this section we review and discuss certain notations and relations involving partial derivatives.

The more general case can be illustrated by considering a function f(z,y, z) of three variables
xz, y and z. If y and z are held constant and only x is allowed to vary, the partial derivative of f
with respect to = is denoted by % and defined by

g_ . f(a:+A;v,y,z)—f(x,y,z)

or AlgchEO Az (1)
Similarly we define

g_ . f(fﬁ,y—l—Ay,Z)—f(:E,y,Z)

By~ A, Ay @)

af_ . f(x,y,z—i—Az)—f(x,y,z)

9: ~ A, Az ®)

These formulae are direct generalisations of the well known definition of the derivative of a
function f(x) of one variable x

df .. flz+ Az) — f(x)
dr = AT A @
Example
Let f(x,y,2) = 22yz + ye?, then
g = 2xyz
ar Y
g‘; = 2?2+ e
g“z = 2%y + ye*

1.1 The chain rule

We present the chain for the function f(z,y,z). We consider 3 cases.
(1) If 2, y and z are all functions of a single variable ¢, then f can be considered as a function

of t and p 9
dt  Oxdt Oydt Ozdt
Example
Let f(x,y,2) =2%yz, v =¢',y=tand z =1 + .
Method 1: Substitute the expressions for x, y and z into f. This yields

f=ett(1+1) (6)
and differentiate (6). This gives
% =22t + 1) + 2e¥t(1 + 1) (7)
Method 2: Use the chain rule (5). This gives
% = (2zyz)e’ + 2%z + 2%y (8)



Subsituting the expressions for z, y and z into (8) gives (7).
(2) More generally if z, y and z are all functions of two (or more variables), say s and ¢, then
we can consider f as a function of s and ¢ and

of 9fox ofdy  0f o

ot~ dx ot Oy ot 0z ot )

In writing (9) we consider the variables ¢ and s as ’associated’ in the sense that in % we assume

that s is held constant. Similarly the variables x, y and z are associated in the sense that in % we

assume that y and z are held constant. Alternatively (and this is more elegant and safer) we can
define

and write OF  0f0 afo of o
or _gdror  drjoy  oro=
ot 0w ot oyot ozt (11)
Example

Let f(x,y,2) = xyz, x = st, y = s+, z = t. We consider f as a function of s and ¢ and we
want to calculate %.
Method 1: Substitute the expressions for x, y and z into f. This gives

F(s,t) = s*t? + st® (12)

Diffirentiating 12 with respect to t gives

dF

Method 2: Use the chain rule (9) or (10). Here we use (9). This gives

af 8fox dfoy 0f0z

_0fox  0fdy O0f0z _ 14
ot oz ot Toyor Tosor  YETTET (14)

Subsituting the expressions for z, y and z into (14) gives (13).
(3) We know suppose that y and z are functions of z. Then f(z,y,z) can be considered as a
function of x and we have

df _of  ofdy  ofdz

4 Y et 15
de Or Oydx Ozdr (15)
Example
Let f(x,y,2) = xyz, y = x and z = 22
Method 1: Substitute the expressions for y and z into f. This gives
and if
— = 42® 17
oy = (17)

Method 2: Use the chain rule 15. This gives

df _of  Ofdy  0fdz 2
dx—ax—i-aydx—kazdx—yz—i-wz—i-%y (18)

Substituting the expressions for y and z into (18) gives (17).



1.2 Higher order derivatives

Consider the function f(z,y,z). We define the second order partial derivatives by the formulae

o0 f 0 of

922~ 0roa 19)
o0 f 0 Jf

- 2= 2

0xdy  Ox Oy (20)
rf _ 00f (21)
Oydx Oy Ox

0’f 0 of

a7 = ay oy .

It is not always true that

0% f _ o0 f (23)
oxdy  Oyor

However (23) holds if all the partial derivatives of f up to second order are continuous. This
condition is usually satisfied in applications and in particular in all the examples considered in this
course.

The following alternative notation for partial derivatives is often convenient and more econom-

ical.
of
fac - %
of
fy= o
0 f
fmz - @
0’ f
o=
o0 f
Jay = 0yox
0% f
Jye = 0xdy
Example
Let f(x,y) = 23 cosy. Then
of 4 2
Pl 3z“cosy
% = 3 siny
Ay
82
922 = 6x cosy
& = —z3cos
oy 4



0% f

= —32%sin
Dyox Y
0% f
= —3z%sin
0xdy Y
0%f _ O9*f . . .
We note that in accordance with our previous remark.

Oydxr ~— Oxdy

2 Taylor series

In previous courses you encountered Taylor series for a function of one variable . For example the
Taylor series of a function F(t) about ¢ = 0 is
2

F(t) = F(0) + F'(0)t + F"(0)5; + Ry (24)

where 5

t
Ry = F"(r)5; (25)

for some 7 between 0 and t. Here we only wrote the first 3 terms. We refer to (24) as a three term
Taylor series. Similarly the two term Taylor series of F'(t) is

F(t) = F(0) + F'(0)t + Ry (26)
where
/! t2
Ry =F (T)E (27)

for some 7 between 0 and ¢.

In this section we generalise (24) and (26) to a function of several variables. We present the
details for a function f(x,y) of two variables. The idea is to apply (24) and (26) with the particular
choice

F(t) = f(z + ht,y + kt) (28)

and then to set t = 1.
We first note that (28) implies

F(0) = f(z,y) (29)

Next applying the chain rule to (28) we obtain sucessively

F'(t) = hfu(x + ht,y + kt) + kfy(z + ht,y + kt) (30)

0 0
F'(t) = h%[hfx(xntht, y+kt)+k:fy($+ht,y+kt)]+ka—y[hfx(m+ht,y+kt)+kfy(x+ht, y+kt) =

B2 frw(x + ht,y + kt) 4+ 20k fry (x4 ht,y + kt) + k2 fyy (x + ht,y + kt) (31)
F"(t) = h%[fﬂfm(gg + ht,y + kt) + 2hk fuy (x + ht,y + kt) + k2 fy, (x + ht,y + kt)]+
kaay[hzfm(x + ht,y + kt) + 2hk fr (x + ht,y + kt) + k2 fy(x + ht,y + kt)] =
12 frae + BW%K fauy + BRE® fayy + K2 fyyy (32)



Substituting (28)-(32) into (24) gives

2
f(z+ht,y+kt) = f(w,y)+[hfx(w,y)+kfy(w,y)}t+[h2fm(x,y)+2h/-cfmy(:r,y)+/€2fyy]%+R3 (33)
where 3
]l
for some 7 between 0 and ¢.
Similarly substituting (28)-(32) into (26) we obtain

R3 [hgfa::v:c + 3h2kfma:y + 3kh2fmyy + kgfyyy](a:-i-ﬂ'h,y-i-‘rk) (34)

fx+hty +kt) = f(z,y) + [hfe(z, y) + Efy(z,y)]t + R (%)
where )
Ry = (10" faw + 20k fay + B fu) @srhiyri) %

for some 7 between 0 and t.
Our final formulae are obtained by setting ¢ = 1 in (33)-(36). This yields the three term Taylor
series

1
R3 = g[hsfa:a:x + 3h2kfxa:y + 3kh2f:cyy + ksfyyy](x+7h,y+7-k) (38)
and the two term Taylor series
[+ hy+ k) = f(z,y) + [1fo(z,y) + kfy(2,9)] + Re (39)
1
Ry = §[h2fcca: + thfxy + k2fyy](:v+7h,y+rk) (40)

In (38) and (40), 7 is some value between 0 and 1. Formulae (37) and (39) can also be rewritten
in the more familiar way

f(z,y) = f(wo,90) + (x — w0) f(w0,50) + (¥ — yo) fy (0, yo)+

%[(w — 20)* fax (20, 90) + 2(x — 20) (¥ — Y0) fay (0. ¥0) + (¥ — Y0)* fyy (0, %0)] + R3 (41)

f(z,y) = f(x0,y0) + (v — 20) fz(20,y0) + (¥ — o) fy(w0, yo) + +R2 (42)

The Taylor formulae (37), (39), (41) and (42) have many applications. One of them is the
investigation of the maxima and the minima of functions of several variables (see next section).
Another is illustrated in the next example

Example

Consider the function f(z,y) = 23y*. Clearly f(1,1) = 1. We wish to use this information and
the Taylor formulae (41) and (42) to find an approximate value for f(1.03,1.05). Setting xo = 1,
yo =1, x =1.03 and y = 1.05 in (42) and (41) give f(1.03,1.05) ~ 1.29 and f(1.03,1.05) ~ 1.3255
respectively. On the other hand the exact value of f(1.03,1.05) is 1.3282 (to 4 decimal places). As
expected (41) give a better approximation than (42).

In the previous calculation the accuracy of the approximation given by (42) is poor. Is it possible
to improve it? The answer is yes. We just need to choose values of x and y closer to g = 1 and
yo = 1. For example the exact value of f(1.003,1.005) is 1.02936 (to 5 decimal places). Formula
(42) predicts the approximate value 1.029.



