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Abstract

Let ex2(n,K
−

4
) be the maximum number of edges in a 2-colourable

K−
4
-free 3-graph (where K−

4
= {123, 124, 134}). The 2-chromatic Turán

density of K−
4
is π2(K

−

4
) = limn→∞ ex2(n,K

−

4
)/
(

n

3

)

. We improve the
previously best known lower and upper bounds of 0.25682 and 3/10 − ǫ
respectively by showing that

0.2572049 ≤ π2(K
−

4 ) < 0.291.

This implies the following new upper bound for the Turán density of K−
4

π(K−4 ) ≤ 0.32908.

In order to establish these results we use a combination of the proper-
ties of computer generated extremal 3-graphs for small n and an argument
based on “super-saturation”. Our computer results determine the exact
values of ex(n,K−

4
) for n ≤ 19 and ex2(n,K

−

4
) for n ≤ 17, as well as the

sets of extremal 3-graphs for those n.

1 Definitions

A 3-graph F of order n ≥ 1 consists of a vertex set V of size n and a collection
of unordered triples from V called edges. If F and H are 3-graphs then H is
said to be F-free if it contains no isomorphic copy of F . The maximum number
of edges in an F -free 3-graph of order n is denoted by ex(n,F). Determining
ex(n,F) is known as the Turán problem for F . The smallest 3-graph for which
the associated Turán problem is non-trivial is the unique 3-graph of order 4 with
3 edges: K−4 = {123, 124, 134}. Note that a 3-graph H is K

−

4 -free if and only if
no four vertices in H span more than two edges.

Determining ex(n,K−4 ) is a well studied open problem. Since an exact solu-
tion seems very hard to find (unless n is small) we may instead consider the
problem of determining the Turán density

π(K−4 ) = lim
n→∞

ex(n,K−4 )
(

n
3

) .
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This Turán problem can also be viewed as a question concerning double
covering designs. An (n, k, t)-covering design is a family D of k-sets from an
n-set V with the property that every subset of V of size t is contained in at least
one k-set from D. An (n, k, t)-covering design with the property that every t-set
from V is contained in at least two k-sets from D is called a double covering
design.

IfH is a K−4 -free 3-graph then D = {[n]\e | e ∈
(

[n]
3

)

\H} is an (n, n−3, n−4)-

double covering design. Indeed if H is extremal (i.e. |H| = ex(n,K−4 )) then D
is optimal in the sense that no other (n, n− 4, n− 3)-double covering design is
smaller.

It was shown in [Tal07] that the problem of determining π(K−4 ) is related to
the following so-called chromatic Turán problem.

A 3-graph is said to be k-colourable if there is a partition V = A1∪̇A2∪̇ · · · ∪̇Ak
of its vertices so that none of the vertex classes Ai contains an edge. We de-
note the maximum number of edges in a k-colourable K−4 -free 3-graph of order
n by exk(n,K

−

4 ). The corresponding k-chromatic Turán density is πk(K
−

4 ) =
limn→∞ exk(n,K

−

4 )/
(

n
3

)

.

Our main result is the following improvement in lower and upper bounds for
the 2-chromatic Turán density π2(K

−

4 ).

Theorem 1 The 2-chromatic Turán density π2(K
−

4 ) satisfies

0.2571912 ≤ π2(K
−

4 ) < 0.291.

The lower bound follows from a construction, given in Section 3, while the upper
bound follows from a combination of a computational result, giving ex2(16,K

−

4 ),
and the “super-saturation” method.

An immediate corollary of this result is the following improved upper bound
for the Turán density of K−4 .

Corollary 2 The Turán density of K−4 satisfies

π(K−4 ) < 0.32908.

This result follows simply from Theorem 1 using the calculations in [Tal07].

2 Extremal 3-graphs for the 2-chromatic and

general Turán problems

For small n it is possible to find the complete set of extremal K−4 -free 3-graphs
computationally, and thereby the value of ex(n,K−4 ) as well. Earlier this had
been done by a direct combinatorial search method for n ≤ 12 in [LvRSW06],
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and we will here extend this to all n ≤ 19 and give an improved bound for
ex(20,K−4 ).

The basic idea underlying our computation is the following simple lemma,
established by considering the average degree of the 3-graph.

Lemma 3 If G1 is an K
−

4 -free 3-graph on n vertices and m edges then there
exists an K−4 -free 3-graph G2 on n − 1 vertices and at least m −

⌊

3m
n

⌋

edges,
such that G2 = G1 \ v, for some v ∈ V (G1).

This lemma tells us that the size of an extremal 3-graph on n + 1 vertices can
be bounded in terms of ex(n,K−4 ). Furthermore, if we have found all K

−

4 -free
3-graphs on n vertices with e edges, where m− ⌊3m/n⌋ ≤ e ≤ m, then we can
construct all K−4 -free 3-graphs on n+ 1 vertices and m edges as follows:

1. Let S be the set of all K−4 -free 3-graphs on n vertices with e edges , where
m−

⌊

3m
n

⌋

≤ e ≤ m.

2. Given a 3-graph G ∈ S let UG be the set of all K
−

4 -free 3-graphs which
can be constructed from G by adding a new vertex v to V (G) and a set
of m− |E(G)| edges containing v.

3. Let U = ∪GUG and let S
′ be the set of non-isomorphic 3-graphs in U .

4. S′ is the set of all K−4 -free 3-graphs on n vertices and m edges.

That this simple procedure works follows directly from Lemma 3. If step 2
wer done by a brute force search this procedure would be too slow for large n.
Instead we formulated the extension step as an integer programming problem
which was then solved using the integer programming solver included in GNU’s
glpk-package [Mak]. Finally the isomorphism reduction in step 3 was done using
Brendan McKay’s Nauty [McK81]. The same procedure was used for creating
the 2-chromatic extremal graphs, with the simple modification that the 3-graphs
created in step 3 were required to be 2-chromatic and only 2-chromatic 3-graphs
needed to be included in S.

The computational results are given in Figures 1 and 2. There are several
interesting facts to note.

Let us recall that in [FF84] Frankl and Füredi gave a recursive construction
by taking blow ups of the unique extremal K−4 -free 3-graph on 6 vertices. This
provided a sequence of K−4 -free 3-graphs with asymptotic density

2
7 . From

Figure 1 we see that for each n ≥ 11 the unique extremal K−4 -free 3-graph of
order n is this blow-up. An inspection of the 3-graphs with one edge less than
the extremal one shows that for n ≥ 12 all of these 3-graphs can be obtained
by deleting an edge from the extremal 3-graph, except for a single additional
3-graph at n = 15. Similarly most, but not all, 3-graphs with two or three edges
less than the extremal one can be obtained by deleting edges from the extremal
3-graph.
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Mubayi [Mub03] had previously conjectured that the K−4 -free construction
of Frankl and Füredi [FF84] was optimal for infinitely many values of n. Mo-
tivated by our computational results we give the following strengthening of this
conjecture.

Conjecture 4 For n ≥ 11 the unique K−4 -free 3-graph of size ex(n,K
−

4 ) is the
3-graph constructed by the blow-up construction of [FF84].

n size opt opt−1 opt−2 opt−3
6 10 1 1 7 18
7 15 1 8 70 374
8 22 5 75 1308 15511
9 32 6 171 4426 91667
10 44 43 1343 41291 1139106
11 60 1 15 1058 53235
12 80 1 1 9 74
13 101 1 3 34 438
14 126 1 5 75 1062
15 156 1 5 54 758
16 190 1 6 79 1145
17 230 1 3 36 499
18 276 1 2 11 116
19 322 1 5
20 <377

Figure 1: Extremal and near-extremal K−4 -free 3-graphs..

The columns of Figure 1 are as follows: number of vertices; number of edges
in the extremal K−4 -free 3-graphs; number of non-isomorphic extremal K

−

4 -free
3-graphs; number of non-isomorphic K−4 -free 3-graphs with respectively 1, 2 and
3 edges less than the extremal K−4 -free 3-graphs.

For the 2-chromatic K−4 -free 3-graph we do not see the same type of stability
as in the general problem. As Figure 2 shows the number of 3-graphs with size
close to ex2(n,K

−

4 ) is much larger than for the general case and for most values
of n the extremal 3-graph is not unique. Furthermore we note that the 3-graph
used in the next section to give our lower bound for ex2(n,K

−

4 ), via the blow-up
construction, has n = 14 vertices and only 114 edges, i.e. it is not the extremal
3-graph for that number of vertices.
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n size opt opt−1 opt−2 opt−3
7 14 3 36 307 1059
8 21 4 171 3470 39570
9 30 9 428 15182 359640
10 42 2 64 3549 146437
11 56 3 90 4113 182144
12 73 1 64 2424 108531
13 93 1 68 2734 110537
14 116 7 262 10901
15 144 1 5 229
16 174 7
17 209-210

Figure 2: 2-colourable extremal and near-extremal K−4 -free 3-graphs.

3 A new lower bound for the 2-chromatic Turán

problem

Our lower bound is obtained by using the standard blow-up construction, see
for example [FF89], starting with the 3-graph given at the end of this sec-
tion. This is a 2-colourable 3-graph of order 14 with 114 edges and Lagrangian
0.042867489. . . . This value of the Lagrangian is given by the following, approx-
imate, vector of weights for the vertices

W = (0.153354, 0.155487, 0.0296491, 0.109346, 0.105072, 0.0142802, 0.0140061,

0.0296513, 0.0368664, 0.141559, 0.0363688, 0.036865, 0.101128, 0.0363672) (1)

We note that the vertices {1, 2, 4, 5, 10} have much larger weights than the other
vertices, and form an induced copy of the unique 2-colourable K−4 -free 3-graph
on nine edges and six vertices.

Blowing this 3-graph up according to the vector W gives a sequence of 3-
graphs with asymptotic density 0.2572049 . . ., implying that π2 ≥ 0.2572.

{{11, 13, 14}, {11, 12, 14}, {10, 11, 14}, {9, 12, 14}, {9, 12, 13},

{9, 11, 13}, {9, 10, 14}, {9, 10, 13}, {8, 12, 14}, {8, 12, 13}, {8,

11, 13}, {8, 10, 14}, {8, 10, 13}, {7, 11, 14}, {7, 9, 12}, {7, 9,

11}, {7, 9, 10}, {7, 8, 12}, {7, 8, 11}, {7, 8, 10}, {6, 11, 14}, {6,

9, 14}, {6, 9, 13}, {6, 8, 14}, {6, 8, 13}, {6, 7, 13}, {6, 7, 12},

{6, 7, 10}, {5, 11, 12}, {5, 10, 12}, {5, 9, 14}, {5, 9, 13}, {5, 8,

11}, {5, 8, 10}, {5, 8, 9}, {5, 7, 9}, {5, 6, 12}, {5, 6, 8}, {4, 11,

14}, {4, 9, 12}, {4, 9, 11}, {4, 9, 10}, {4, 8, 14}, {4, 8, 13}, {4,

8, 9}, {4, 7, 8}, {4, 6, 9}, {4, 6, 7}, {4, 5, 11}, {4, 5, 10}, {4, 5,

6}, {3, 11, 12}, {3, 10, 12}, {3, 9, 14}, {3, 9, 13}, {3, 8, 14}, {3,

8, 13}, {3, 7, 9}, {3, 7, 8}, {3, 6, 12}, {3, 5, 8}, {3, 4, 11}, {3,

4, 10}, {3, 4, 6}, {2, 12, 14}, {2, 12, 13}, {2, 11, 13}, {2, 10, 14},
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{2, 10, 13}, {2, 7, 12}, {2, 7, 11}, {2, 7, 10}, {2, 6, 14}, {2, 6,

13}, {2, 5, 11}, {2, 5, 10}, {2, 5, 9}, {2, 5, 6}, {2, 4, 14}, {2, 4,

13}, {2, 4, 9}, {2, 4, 7}, {2, 3, 11}, {2, 3, 10}, {2, 3, 9}, {2, 3,

8}, {2, 3, 6}, {1, 11, 13}, {1, 11, 12}, {1, 10, 14}, {1, 10, 13}, {1,

10, 12}, {1, 9, 12}, {1, 8, 12}, {1, 7, 11}, {1, 7, 10}, {1, 6, 14},

{1, 6, 13}, {1, 6, 12}, {1, 5, 14}, {1, 5, 13}, {1, 5, 8}, {1, 5, 7},

{1, 4, 11}, {1, 4, 10}, {1, 4, 8}, {1, 4, 6}, {1, 3, 14}, {1, 3, 13},

{1, 3, 7}, {1, 2, 12}, {1, 2, 5}, {1, 2, 4}, {1, 2, 3}}.

4 A new upper bound for the 2-chromatic Turán

problem

For η > 0 let n ≥ n0(η) be sufficiently large that ex2(n,K
−

4 ) ≤ (π2+ η)
(

n
3

)

. Let

H be a K−4 -free 2-colourable 3-graph of order n with m = ex2(n,K
−

4 ) edges,
so m ≤ π′2

(

n
3

)

(where π′2 = π2 + η). To complete the proof of Theorem 1 it is
sufficient to show that π′2 < 0.291.

Let V (H) = A∪̇B be a 2-colouring of H and suppose that |A| = αn, for
some 1/2 ≤ α ≤ 1 (that is we take A to be the larger of the two vertex classes).
Let βm be the number of edges of H that meet A in two vertices, so 0 ≤ β ≤ 1.

For C ⊆ V let e(C) denote the number of edges of H contained in C. For
0 ≤ i ≤ 4 let qi = #{C ∈ V

(4) : e(C) = i} and write q1 = µmn.

Lemma 5 If α, β, µ and π′2 are as above and α =
1+ǫ
2 , β =

1+δ
2 then

π′2 ≤
3(1− µ)(1− ǫ2)2

(10− 6ǫ2 − 8ǫδ + 2δ2 + 2ǫ2δ2)
+O(n−1).

Proof: Counting edges in 4-sets we have

m(n− 3) = q1 + 2q2.

Denoting the degree of a pair of vertices by

dxy = #{z ∈ V : xyz ∈ H}.

and using the fact that
∑

xy∈V (2)

(

dxy
2

)

= q2

we obtain
mn = q1 +

∑

xy∈V (2)

d2xy.

Hence by considering pairs of vertices from A(2), B(2) and A×B, and using the
convexity of x2 we have

(1− µ)mn ≥
(βm)2
(

αn
2

) +
((1− β)m)2
(

(1−α)n
2

)
+

4m2

α(1− α)n2
.
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Let α = (1 + ǫ)/2 and β = (1 + δ)/2, so 0 ≤ ǫ ≤ 1 and −1 ≤ δ ≤ 1. Using
m = π′2

(

n
3

)

and rearranging we obtain

π′2 ≤
3(1− µ)(1− ǫ2)2

(10− 6ǫ2 − 8ǫδ + 2δ2 + 2ǫ2δ2)
+O(n−1). 2

A similar argument also establishes the following simpler upper bound.

Lemma 6 If α and π′2 are as above and α =
1+ǫ
2 then

π′2 ≤
3

4
1−ǫ4 +

6
1−ǫ2

.

We now require a result of Frankl and Füredi characterising 3-graphs in
which any 4-set spans exactly 0 or 2 edges. In order to describe their result we
need two constructions.

Let S be the following 3-graph of order 6 with 10 edges

S = {123, 124, 345, 346, 156, 256, 135, 146, 236, 246}.

Let |V | = n and suppose that V is partitioned as V = V1 ∪ · · · ∪ V6. For such
a partition we define GS to be the “blow-up” of S. So GS has vertex set V and
edge set

GS = {vi1vi2vi3 : 1 ≤ i1 < i2 < i3 ≤ 6, i1i2i3 ∈ S and vij ∈ Vij}.

Let P be an arrangement of n points on the unit circle with the property that no
line joining two points passes through the origin. We define GP to be the 3-graph
with vertex set P and an edge for each triple uvw such that the corresponding
triangle contains the origin.

Theorem 7 (Frankl and Füredi [FF84]) If G is a 3-graph of order n in
which every four points span exactly 0 or 2 edges then G is isomorphic to either
GS or GP (for some vertex partition V = V1 ∪ · · · ∪ V6 or arrangement of points
P respectively).

Corollary 8 If G2 is a 2-colourable 3-graph of order n in which every four
points span exactly 0 or 2 edges then G2 is isomorphic to GP for some arrange-
ment of points on the unit circle P. Furthermore if n = 2k then

e(G2) ≤ 2

(

k + 1

3

)

.

Proof: The fact that G2 is isomorphic to GP follows trivially from Theorem 7
since GS is not 2-colourable (as S is not 2-colourable).
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The bound on the number of edges in G2 is given in the original paper [FF84].
They show that to maximize the number of edges in GP (for a fixed number of
points n) we may form P by taking a regular (2j+1)-gon and placing di points
at each of its vertices, in such a way that d1, . . . , d2j+1 are as equal as possible.
This is then maximized by taking j to be as large as possible (subject to the
condition 2j + 1 ≤ n). Thus for n = 2k the maximum number of edges in a
3-graph GP of order n is given by taking a (2k − 1)-gon and placing a single
point at each of its vertices except one, at which two points are placed. The
number of edges this gives equals the bound 2

(

k+1
3

)

. 2
We say that a 2-colourable 3-graph G is balanced if there is a partition

V (G) = U ∪̇W with |U | = |W | and none of the edges of G lie in U or W . For a
3-graph G and an even integer n we define exB(n,G) to be the maximum number
of edges in a balanced G-free 3-graph.

We now require the following computational result.

Lemma 9 If G is a 2-colourable K−4 -free 3-graph of order 16 then G contains
at most 174 edges. Moreover if G is balanced then it contains at most 173 edges,
i.e. ex2(16,K

−

4 ) = 174 and exB(16, k) = 173.

Proof: By computation. 2
We will say that a set D ⊂ V (H) is good if it contains a 4-set which itself

contains exactly one edge, otherwise we say that D is bad. For k ≥ 1 let

Ck = {C ∈ V
(2k) : |C ∩A| = |C ∩B| = k}.

Corollary 8 implies that if C ∈ Ck is bad then e(C) ≤ 2
(

k+1
3

)

.

Note that |Ck| =
(

αn
k

)(

(1−α)n
k

)

. Let λ be the proportion of sets in Ck which
are good. Let γk be defined by

γk =
exB(2k,K

−

4 )

2
(

k+1
3

) .

Lemma 10 With the above notation we have

π′2 ≤
(k + 1)(1− ǫ2)2(1 + λ(γk − 1))

4k(1− ǫδ)
+O(n−1).

Proof: We simply count the number of edges in sets from Ck, yielding

βm

(

αn− 2

k − 2

)(

(1− α)n− 1

k − 1

)

+ (1− β)m

(

αn− 1

k − 1

)(

(1− α)n− 2

k − 2

)

≤ 2

(

k + 1

3

)

((1− λ) + γkλ)

(

αn

k

)(

(1− α)n

k

)

.

Using m = π′2
(

n
3

)

, α = (1+ǫ)/2, β = (1+δ)/2 and rearranging gives the desired
inequality. 2
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The next lemma will allow us to estimate q1 from our knowledge of the
number of good sets in Ck.

Lemma 11 Let G be a K−4 -free 3-graph with vertex set V . For A ⊆ V we define

g(A) = #{C ∈ A(4) | and C is good}.

If A ⊆ V and g(A) > 0 then g(A) ≥ |A| − 3.

Proof: We use induction on |A| = k. If k ≤ 4 the result holds trivially. The
result also holds for k = 5 (we simply check that any K−4 -free 3-graph on 5
vertices containing at least one good 4-set in fact contains at least two good
4-sets). So suppose the result holds for k − 1 and let A ∈ V (k), k ≥ 6 and
g(A) > 0.

Since g(A) > 0 there is at least one set B ∈ A(k−1) such that g(B) > 0 and
hence our inductive hypothesis implies that g(A) ≥ g(B) ≥ |B|−3 = k−4 ≥ 2.
Counting good 4-sets in (k − 1)-subsets of A we have

∑

B∈A(k−1)

g(B) = g(A)(k − 4). (2)

If we show that g(B) = 0 for at most three distinct sets B ∈ A(k−1) then our
inductive hypothesis implies that the LHS of (2) is at least (k−3)(k−4) and so
g(A) ≥ k − 3 as required. So we need to show that g(B) = 0 for at most three
distinct sets B ∈ A(k−1).

If B ∈ A(k−1) satisfies g(B) = 0 then every good 4-set in A must contain
A\B. Thus if B1, B2, B3, B4 are distinct sets in A

(k−1), each satisfying g(Bi) =
0, then setting A\Bi = {ai} we know that every good 4-set in A contains
{a1, a2, a3, a4} and hence g(A) ≤ 1. But this is impossible since g(A) ≥ 2. The
result then follows by induction on k. 2
Our next lemma gives the desired lower bound on q1 in terms of λ, ǫ and k.

Lemma 12 If q1 = #{D ∈ V
(4) : e(D) = 1} and λ, ǫ, k are as above then

q1 ≥

{

λ(2k−3)(1−ǫ2)2n4

16k2(k−1)2 +O(n3), 0 ≤ ǫ ≤ 1
2k−3 ,

λ(2k−3)(1−ǫ2)(1−ǫ)2n4

16k2(k−1)(k−2) +O(n3), 1
2k−3 ≤ ǫ ≤ 1.

Proof: Recall that the number of good sets in Ck is λ|Ck|, moreover each such
good set contains (by Lemma 11) at least 2k − 3 good 4-sets. Counting good
4-sets in members of Ck we have

(2k − 3)λ

(

αn

k

)(

(1− α)n

k

)

≤ q1max

{(

αn− 2

k − 2

)(

(1− α)n− 2

k − 2

)

,

(

αn− 1

k − 1

)(

(1− α)n− 3

k − 3

)}

.
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The bound then follows by rearranging. 2
We can now complete the proof of Theorem 1 by showing that π′2 ≤ 0.291.

First note that if ǫ ≥ 1/4 then Lemma 6 implies that π′2 ≤ 0.28803. Hence
we may assume that 0 ≤ ǫ < 1/4.

Let k = 8, so by Lemma 9 we have γk = 173/168. Now Lemmas 5, 10 and
12 imply that

π′2 ≤ min

{

3(1− ǫ2)2(168 + 5λ)

1792(1− ǫδ)
,
3ζ +

√

9ζ2 − 12ζν

2

}

, (3)

where

ζ =
(1− ǫ2)2

10− 6ǫ2 − 8ǫδ + 2δ + 2ǫ2δ2

and

ν =

{

39λ(1−ǫ2)2

25088 , 0 ≤ ǫ ≤ 1
13 ,

39λ(1−ǫ2)(1−ǫ)2

21504 , 1
13 ≤ ǫ ≤ 1.

Let

B = {(ǫ, δ, λ) ∈ R3 : 0 ≤ ǫ ≤ 1/4,−1 ≤ δ ≤ 1, 0 ≤ λ ≤ 1}.

We must now give an upper bound for the maximum of (3) over B. We do
this numerically by first computing the value of (3) at all 4 × 1012 points in
the regular 3-dimensional lattice with side length 0.00005 in B. This yields the
maximum 0.290433. A routine argument bounding the partial derivatives of (3)
then implies that π′2 ≤ 0.291 as required.
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