
G-intersection theorems for matchings and other

graphs

J Robert Johnson∗ John Talbot†

July 30, 2009

Abstract

If G is a graph with vertex set [n] then A ⊆ 2[n] is G-intersecting if
for all A,B ∈ A either A ∩ B 6= ∅ or there exist a ∈ A and b ∈ B such
that a ∼G b.

The question of how large a k-uniform G-intersecting family can be
was first considered by Bohman, Frieze, Ruszinkó and Thoma [2] who
identified two natural candidates for the extrema depending on the relative
sizes of k and n and asked whether there is a sharp phase transition
between the two. Our first result shows that there is a sharp transition
and characterizes the extremal families when G is a matching. We also
give an example demonstrating that other extremal families can occur.

Our second result gives a sufficient condition for the largest G-inter-
secting family to contain almost all k-sets. In particular we show that if
Cn is the n-cycle and k > αn + o(n), where α = 0.266 . . . is the smallest
positive root of (1 − x)3(1 + x) = 1/2, then the largest Cn-intersecting
family has size (1− o(1))

`
n
k

´
.

Finally we consider the non-uniform problem and show that in this
case the size of the largest G-intersecting family depends on the matching
number of G.

1 Introduction

The following generalization of the notion of an intersecting family was intro-
duced by Bohman, Frieze, Ruszinkó and Thoma [2]. If G is a graph with vertex
set [n] then A ⊆ 2[n] is G-intersecting if for all A,B ∈ A either A ∩ B 6= ∅ or
there exist a ∈ A and b ∈ B such that a ∼G b.

The question of how large a k-uniform G-intersecting family can be is a
natural generalization of the Erdős–Ko–Rado problem, indeed if G is the empty
graph it is answered by the classical Erdős–Ko–Rado theorem [5].
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Theorem 1.1 (Erdős–Ko–Rado 1938 [5]). If A ⊆
(
[n]
k

)
is intersecting then

|A| ≤
{ (

n−1
k−1

)
, 1 ≤ k ≤ n/2,(

n
k

)
, n/2 < k ≤ n.

Moreover if k < n/2 then equality is attained iff A consists of all k-sets contain-
ing a fixed element of [n]. While (trivially) if k > n/2 then equality is attained
iff A =

(
[n]
k

)
.

For a graph G with vertex set [n] and 1 ≤ k ≤ n we define

N(G, k) = max
{
|A| : A ⊆

(
[n]
k

)
is G-intersecting

}
.

Bohman et al. [2] were the first to consider the problem of determining N(G, k).
They identified two types of behaviour for the extrema depending on the rela-
tive sizes of k and n, mirroring the extremal behaviour of ordinary k-uniform
intersecting families (as given by Theorem 1.1).

The augmented neighbourhood of A ⊆ [n], denoted by Γ+(A), is the union
of A and its neighbourhood in G. So a family A ⊆ 2[n] is G-intersecting iff for
all A,B ∈ A we have A ∩ Γ+(B) 6= ∅.

An obvious example of a k-uniform G-intersecting family is the collection of
all k-sets meeting a fixed clique in G. For instance if G = Cn is the n-cycle then

A =
{
A ∈

(
[n]
k

)
: A ∩ {1, 2} 6= ∅

}
,

is Cn-intersecting. However A is not maximal: it can be extended to

B = A ∪
{
B ∈

(
[n]
k

)
: 3, n ∈ B

}
.

More generally if K is a clique in G and M1,M2, . . . ,Mr ⊆ [n]\K satisfy

K ⊆ Γ+(Mi) for 1 ≤ i ≤ r and Mi ∩ Γ+(Mj) 6= ∅, i 6= j,

then

A(K;M1, . . . ,Mr) =
{
A ∈

(
[n]
k

)
: A ∩K 6= ∅ or Mi ⊆ A for some i

}
, (1)

is also G-intersecting. We will call such a family a (G, k)-star with centre

C = K ∪
r⋃
i=1

Mi.

Bohman et al. [2] showed that if G is sparse and k = O(n1/4) then the largest
G-intersecting families are of this form. (More recently Bohman and Martin [3]
gave an improvement, showing that a similar result also holds for k = O(n1/2).)
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Bohman et al. [2] also showed that if G is sparse with minimum degree δ and
k > cn, where c is a constant satisfying c− (1− c)δ+1 > 0, then

N(G, k) = (1− o(1))
(
n

k

)
.

These two different types of extrema mirror the two cases of the Erdős–Ko–
Rado theorem, however there is a large gap between the values of k for which
they are known to occur. Bohman et al. [2] asked whether there is a sharp phase
transition and whether other types of extrema exist.

Our first result in the next section (Theorem 2.1) shows that there is a sharp
transition and characterizes the extremal families when G is a perfect matching.
We also give an example of a graph demonstrating that other types of extrema
exist.

In the third section we give a sufficient condition for the largest G-intersect-
ing family to contain almost all k-sets (Theorem 3.1). In particular we show
that if Cn is the n-cycle and k > αn+ o(n), where α = 0.266 . . . is the smallest
positive root of (1−x)3(1+x) = 1/2, then the largest Cn-intersecting family has
size (1−o(1))

(
n
k

)
(Corollary 3.2). This improves an earlier bound of k > 0.317n

due to Bohman et al. [2].
In the fourth section we consider the non-uniform problem and show that in

this case the size of the largest G-intersecting family depends on the matching
number of G (Theorem 4.1).

We end the paper with some open problems and conjectures.

2 Matchings

Let Mn be a matching of order n = 2t with edges e1, . . . , et, where ei = {2i −
1, 2i}. For A ∈

(
[n]
k

)
let IA = {i ∈ [t] : A∩ ei 6= ∅} (so IA indexes the edges that

A meets). An obvious candidate for the largest Mn-intersecting family when k
is small is

Apair =
{
A ∈

(
[n]
k

)
: 1 ∈ IA

}
.

The precise form of the extremal family when k is large will depend on the
parity of t. For t odd let

Amaj =
{
A ∈

(
[n]
k

)
: |IA| >

t

2

}
.

For t even we can extend Amaj by adding half of those k-sets meeting exactly
t/2 edges. To be precise, for t even let B ⊆

(
t
t/2

)
be an (ordinary) intersecting

family of maximum size 1
2

(
t
t/2

)
. We define

Amaj =
{
A ∈

(
[n]
k

)
: |IA| >

t

2
or IA ∈ B

}
.
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Note that both Apair and Amaj are Mn-intersecting.
The result of Bohman and Martin (Theorem 2 [3]) implies that Apair is

a k-uniform Mn-intersecting family of maximum size for k = O(n1/2) while
the result of Bohman et al. (Theorem 7 [2]) implies that N(Mn, k) = (1 −
o(1))

(
n
k

)
for k > 0.38196n. We are able to give the following result describing a

sharp threshold for the behaviour of N(Mn, k) and characterizing the extremal
families.

Theorem 2.1. Let n = 2t ≥ 1000, 1 ≤ k ≤ n and Mn be a matching of order
n with edges {1, 2}, {3, 4}, . . . , {n− 1, n}. If d = 1− 2−1/2 = 0.29289 . . . then

N(Mn, k) =
{
|Apair| =

(
n
k

)
−
(
n−2
k

)
, k < dn,

|Amaj| = (1− o(1))
(
n
k

)
, k > dn(1 + εn),

where εn = 30
√

logn
n = o(1). Moreover, up to isomorphism, these bounds are

only achieved by the families Apair and Amaj described above.

For the remainder of this section we will say that k is small (with respect to
n) if k < dn and k is large (with respect to n) if k > dn(1 + εn).

Proof of Theorem 2.1. Let A ⊆
(
[n]
k

)
be a k-uniform Mn-intersecting family of

maximum size (so |A| = N(Mn, k)). We define

I(A) = {IA ⊆ [t] : A ∈ A}.

Note that the sets in I(A) all have sizes in the range dk/2e up to k. (Since a
k-set cannot meet less than dk/2e edges or more than k edges.)

For B ⊆ [t] define

Wk(B) =
{
A ∈

(
[n]
k

)
: IA = B

}
.

So Wk(B) is the family of all k-sets meeting precisely those edges indexed by
B. The size of this family depends only on the size of B. For 1 ≤ m ≤ t let
wk(m) = |Wk([m])|. (So wk(m) 6= 0 iff dk/2e ≤ m ≤ k.)

We note a few useful facts whose proofs we defer.

Lemma 2.2. I(A) has the following properties:

(a) I(A) is intersecting.

(b) If B ⊆ [t], dk/2e ≤ |B| ≤ k and I(A)∪{B} is intersecting then B ∈ I(A).

(c) If B ∈ I(A), B ⊂ C ⊆ [t] and |C| ≤ k then C ∈ I(A).

Lemma 2.3. If A ∈ A, B ∈
(
[n]
k

)
and IA = IB then B ∈ A. Hence

A =
⋃̇

B∈I(A)

Wk(B).
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Thus if Am = {A ∈ A : |IA| = m}, Im(A) = {B ∈ I(A) : |B| = m} and
im(A) = |Im(A)| then

|Am| = im(A)wk(m) and |A| =
k∑

m=dk/2e

im(A)wk(m).

Using Lemmas 2.2 and 2.3 the problem of determining N(Mn, k) can be
reduced to a weighted intersection problem for I(A), with the weight of a set
B ∈ I(A) given by wk(|B|).

Lemma 2.4.

wk(m) =
{

22m−k( m
k−m

)
, dk/2e ≤ m ≤ k,

0, otherwise.

Lemma 2.5. There exists m∗ = m∗(k, t) such that {wk(m)}km=dk/2e satisfies

wk(dk/2e) < · · · < wk(m∗) ≥ wk(m∗ + 1) > wk(m∗ + 2) > · · · > wk(k).

That is the sequence is strictly increasing up to a maximum which is attained at
m∗ and possibly also attained at m∗ + 1 and thereafter the sequence is strictly
decreasing.

Lemma 2.6. If k is small then m∗ < t/2. Moreover if dk/2e ≤ m ≤ k and
m < t/2 then wk(m) > wk(t−m).

Lemma 2.7. If k is large then m∗ > t/2 and∑
m<t/2

wk(m)
(
t

m

)
<

1
t

(
n

k

)
.

Lemma 2.8. If m1 ≤ m2, B ⊆
(

[t]
m2

)
and

∂(m1)(B) =
{
C ∈

(
[t]
m1

)
: C ⊆ B for some B ∈ B

}
then

|∂(m1)(B)|(
t
m1

) ≥ |B|(
t
m2

) .
Returning to the proof of Theorem 2.1 we suppose first that k is small and

let I(A), Am, Im(A) and im(A) be as defined above. Lemma 2.3 implies that
for m < t/2

|Am|+ |At−m| = im(A)wk(m) + it−m(A)wk(t−m). (2)

By Lemma 2.2 (a), im(A) + it−m(A) is the size of an intersecting family in(
[t]
m

)
∪
(

[t]
t−m

)
. Hence Lemma 2.6 and the Erdős–Ko–Rado theorem (Theorem

1.1) imply that

|Am|+ |At−m| ≤
(
t− 1
m− 1

)
wk(m) +

(
t− 1

t−m− 1

)
wk(t−m),
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with strict inequality unless Im(A)∪It−m(A) consists of all sets in
(
[t]
m

)
∪
(

[t]
t−m

)
containing a fixed element of [t] (which is the case for Apair). Finally if t is even
then Theorem 1.1 implies that

|At/2| ≤ wk(t/2)
1
2

(
t

t/2

)
(3)

and again this is achieved by Apair. Hence N(Mn, k) = |A| ≤ |Apair|.
To see that Apair is (up to isomorphism) the unique extremal family note

that for equality to hold Idk/2e(A) must consist of all dk/2e-sets containing a
fixed element i ∈ [t]. Without loss of generality we may suppose that i = 1.
Lemma 2.2 (c) now implies that Apair ⊆ A. Finally k < dn implies that Apair

is a maximal Mn-intersecting family and hence A = Apair. (Indeed it is easy to
check that Apair is a maximal Mn-intersecting family whenever k ≤ n/3.) Note
that this part of Theorem 2.1 holds for all values of n and k < dn (the condition
n ≥ 1000 is only required for the k large case).

Now suppose that k is large, that is k > dn(1 + εn). If k > t = n/2 then
Amaj =

(
[n]
k

)
and the result is trivial, so suppose that k ≤ t. In this case

Lemma 2.7 tells us that the maximum of wk(m) is achieved at m∗ > t/2. By
Lemma 2.5, wk(m) is strictly increasing for m < m∗ so wk(m) > wk(t−m) for
t/2 < m ≤ m∗. By Lemma 2.2 (a), im(A)+it−m(A) is the size of an intersecting
family in

(
[t]
m

)
∪
(

[t]
t−m

)
so, for t/2 < m ≤ m∗, wk(m) > wk(t−m) implies that

|Am|+ |At−m| ≤
(
t

m

)
wk(m), (4)

with strict inequality unless It−m(A) is empty and Im(A) =
(
[t]
m

)
(which is the

case for Amaj).
If t is odd then (4) bounds the number of sets in Am for t−m∗ ≤ m ≤ m∗.

However if t is even then we note that it/2(A) is the size of an intersecting family
in
(
t
t/2

)
and so (3) holds.

If Im(A) = ∅ for m < t−m∗ then (4) and, in the case of t even (3), imply
that |A| ≤ |Amaj|, with strict inequality unless A = Amaj. We suppose now,
for a contradiction, that there exists m < t − m∗ such that Im(A) 6= ∅. Let
m0 < t−m∗ be chosen so that

im0(A)(
t
m0

) = max

{
im(A)(

t
m

) : m < t−m∗
}
.

(So the proportion of m0-sets in I(A) is maximal subject to m0 < t−m∗.) Let
β = im0(A)/

(
t
m0

)
> 0. By Lemma 2.3 we have

∑
m<t−m∗

|Am| ≤ β
∑

m<t−m∗

wk(m)
(
t

m

)
. (5)
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The complements of the sets in Im0(A) are all missing from It−m0(A), so if
B =

(
[t]

t−m0

)
\It−m0(A) then |B| ≥ im0(A) = β

(
t
m0

)
. Recall that

∂(m)(B) =
{
C ∈

(
[t]
m

)
: C ⊆ B for some B ∈ B

}
.

If t/2 < m ≤ t − m0 then Lemma 2.2 (c) implies that ∂(m)(B) ∩ Im(A) = ∅
while Lemma 2.8 implies that

|∂(m)(B)|(
t
m

) ≥ |B|(
t

t−m0

) ≥ β.
Note that m∗ < t−m0 and hence for t/2 < m ≤ m∗,

im(A) ≤
(
t

m

)
− |∂(m)(B)| ≤ (1− β)

(
t

m

)
. (6)

Now if t/2 < m ≤ m∗ then wk(m) > wk(t−m), so (6) implies that

|Am|+ |At−m| ≤
(
t

m

)
((1− β)wk(m) + βwk(t−m)). (7)

If m < t−m∗ then, by the definition of β,

|Am| ≤ β
(
t

m

)
wk(m). (8)

While trivially if m > m∗ then |Am| ≤ wk(m)
(
t
m

)
. Together with (7), (8), and

in the case of t even (3), this implies that

|A| − |Amaj| ≤
∑
m<t/2

β

(
t

m

)
wk(m)−

∑
t/2<m≤m∗

β

(
t

m

)
wk(m).

Now Lemma 2.7 implies that

|A| − |Amaj| < β

1
t

(
n

k

)
−

∑
t/2<m≤m∗

(
t

m

)
wk(m)

 .

So we will have|A| < |Amaj| (and the proof will be complete) if we show that∑
t/2<m≤m∗

(
t

m

)
wk(m) ≥ 1

t

(
n

k

)
. (9)

Let m1 satisfy

wk(m1)
(
t

m1

)
= max

{
wk(m)

(
t

m

)
: dk/2e ≤ m ≤ k

}
.
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Recall that
k∑

m=dk/2e

(
t

m

)
wk(m) =

(
n

k

)
and k ≤ t. Hence (

t

m1

)
wk(m1) ≥ 1

k
2 + 1

(
n

k

)
≥ 2
t+ 2

(
n

k

)
. (10)

Since m∗ > t/2, both wk(m) and
(
t
m

)
are increasing in m for m ≤ t/2 and

decreasing in m for m > m∗ so m1 ∈ {dt/2e, . . . ,m∗}. If m1 6= t/2 then
t/2 < m1 ≤ m∗ and so (10) implies that (9) holds. Otherwise t is even and
m1 = t/2. In which case (10) and wk(t/2 + 1) > wk(t/2) imply that(

t

t/2 + 1

)
wk(t/2 + 1) >

t

t+ 2

(
t

t/2

)
wk(t/2) ≥ 2t

(t+ 2)2

(
n

k

)
.

This implies that (9) holds so long as 2t2 ≥ (t+ 2)2, which is true for t ≥ 5.

Proof of Lemma 2.2. If A,B ∈ I(A) then there exist C,D ∈ A such that A =
IC and B = ID. Since A is Mn-intersecting so C and D must meet a common
edge ei. Hence i ∈ A ∩B and so I(A) is intersecting.

If Lemma 2.2 (b) does not hold then there is B ⊆ [t], with dk/2e ≤ |B| ≤ k
such that I(A) ∪ {B} is intersecting but B 6∈ I(A). Now dk/2e ≤ |B| ≤ k
implies that Wk(B) 6= ∅ and so B = A∪Wk(B) is a k-uniform Mn-intersecting
family satisfying |B| > |A|, contradicting the maximality of |A|.

Finally (b) implies (c) since if B ⊂ C and B ∈ I(A) then I(A)∪{C} is also
intersecting.

Proof of Lemma 2.3. If A ∈ A, B ∈
(
[n]
k

)
and IA = IB then A ∪ {B} is Mn-

intersecting. So, by the maximality of |A|, B ∈ A. Hence

A =
⋃

B∈I(A)

Wk(B).

Moreover this is a disjoint union since if B,C ∈ I(A) and B 6= C then Wk(B)∩
Wk(C) = ∅. The final part follows directly from the definitions.

Proof of Lemma 2.4. If m < dk/2e or m > k then no k-set meets m edges and
hence wk(m) = 0, so suppose that dk/2e ≤ m ≤ k. Consider A ∈

(
[n]
k

)
meeting

the first m edges of Mn (that is A ∈Wk([m])). For such a set let ai denote the
number of edges it meets in exactly i elements, where i = 1, 2. Since a1+a2 = m
and a1 + 2a2 = k we have a1 = 2m − k and a2 = k −m. Thus such a set is
uniquely determined by choosing k−m of the m edges from which to take both
vertices and then choosing one of the two possible vertices from each of the
remaining 2m− k edges.
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Proof of Lemma 2.5. We show first that if dk/2e ≤ m ≤ k then

wk(m)2 > wk(m+ 1)wk(m− 1). (11)

First note that this holds for m = dk/2e or m = k since in this case the RHS of
(11) is zero while the LHS is positive. So suppose that dk/2e < m < k. Now

wk(m)2

wk(m+ 1)wk(m− 1)
=

m(k −m+ 1)(2m− k + 2)(2m− k + 1)
(m+ 1)(k −m)(2m− k)(2m− k − 1)

>
m(k −m+ 1)

(m+ 1)(k −m)
> 1.

Hence if ym = wk(m)/wk(m+ 1) then {ym}km=dk/2e is strictly increasing. This
implies the result.

Proof of Lemma 2.6. Let k be small. We will assume that t = 2s is even, the
proof for t odd is essentially identical. By Lemma 2.5 if wk(s− 1) > wk(s) then
m∗ < s. Recall that since k is small we have k ≤ dn − 1, where d = 1 − 2−1/2

and n = 2t = 4s. Now

wk(s− 1)
wk(s)

=
(2s− k)(2s− k − 1)

4s(k − s+ 1)

>
(2s− k − 1)2

4s(k − s+ 1)
≥ 1.

Hence m∗ < s = t/2.
We now prove by induction on a ≥ 1 that if dk/2e ≤ s − a ≤ k then

wk(s − a) > wk(s + a). (Note that we may suppose that s + a ≤ k since
otherwise wk(s + a) = 0.) For a = 1 this follows from m∗ ≤ s − 1 and Lemma
2.5 so suppose that a ≥ 2 and the result holds for a− 1. It is sufficient to show
that

wk(s− a)
wk(s+ a)

≥ wk(s− (a− 1))
wk(s+ a− 1)

, (12)

since the RHS of (12) is strictly greater than 1 by our inductive hypothesis. We
consider

γ =
wk(s− a)wk(s+ a− 1)
wk(s+ a)wk(s− (a− 1))

.

We wish to show that γ ≥ 1. Now

γ =
(2s− 2a− k + 2)(2s− 2a− k + 1)(2s+ 2a− k)(2s+ 2a− k − 1)

16(s− a+ 1)(s+ a)(k − s+ a)(k − s− a+ 1)

>
(2s− k + 2a− 1)2(2s− k − 2a− 1)2

16((s2 − a2)((k − s+ 1)2 − a2)
(13)
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Since (13) is decreasing in k and k < dn (since k is small) we may suppose that
k = dn− 1 = 4ds− 1. Rearranging we now need to check that

(s− 2ds+ a)2(s− 2ds− a)2 − (s2 − a2)((4ds− s)2 − a2) ≥ 0. (14)

Differentiating (14) with respect to a we see that it is increasing in a, for a > 0
(the partial derivative is 16ad2s2). Hence it is sufficient to check that (14) holds
for a = 0, which it does with equality.

For the proof of Lemma 2.7 we will require Azuma’s inequality.

Lemma 2.9 (Azuma [1]). If Y0, . . . , Yt is a martingale and |Yi− Yi−1| ≤ ci for
1 ≤ i ≤ t then for any λ > 0

P(Yt ≥ Y0 + λ) ≤ exp

(
−λ2

2
∑t
i=1 c

2
i

)
.

Proof of Lemma 2.7. Let k be large. We will assume that t = 2s is even, the
proof for t odd is essentially identical. By Lemma 2.5 if wk(s) < wk(s+ 1) then
m∗ > s. Since k is large we have k ≥ dn+ 4d = 4d(s+ 1), where d = 1− 2−1/2

and n = 2t = 4s. Now

wk(s)
wk(s+ 1)

=
(2s− k + 2)(2s− k + 1)

4(s+ 1)(k − s)

<
(2s− k + 2)2

4(s+ 1)(k − s− 1)
≤ 1.

Hence m∗ > s = t/2.
We now need to show that∑

m<t/2

wk(m)
(
t

m

)
<

1
t

(
n

k

)
. (15)

If A ∈
(
[n]
k

)
is chosen uniformly at random and

IA = {i ∈ [t] : A ∩ ei 6= ∅},

then

P(|IA| < t/2) =
∑
m<t/2

wk(m)
(
t
m

)(
n
k

) .

So it is sufficient to prove that

P(|IA| < t/2) <
1
t
. (16)

For j ∈ [n] let

Xj(A) =
{

1, j ∈ A,
0, otherwise.
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Recall that Mn has edges e1, . . . , et, with ei = {2i− 1, 2i}. For i ∈ [t] let Fi be
the σ-algebra generated by X1, X2, . . . , X2i and define Yi = E(|[t]\IA| | Fi). If
Y0 = E(|[t]\IA|) then Y0, Y1, . . . , Yt is a martingale and

E(|[t]\IA|) =
t∑
i=1

P(A ∩ ei = ∅) =
t
(
n−2
k

)(
n
k

) .

The values of X2i−1 and X2i can change the expected number of edges which
A meets among ei+1, . . . , et by at most two, as well as determining whether or
not i ∈ IA. Hence

|Yi − Yi−1| ≤ 3.

Azuma’s inequality then implies that

P(Yt > t

(
n−2
k

)(
n
k

) +
√

18t log t) <
1
t
.

Now |IA| = t− Yt so the proof will be complete if we show that (for k large)

t
(
n−2
k

)(
n
k

) +
√

18t log t ≤ t

2
.

This will hold if

(2t− k)2 ≤ 2t2 − 4t2
√

18 log t
t

.

A routine calculation now shows that this holds for k > dn

(
1 + 30

√
logn
n

)
and

n = 2t ≥ 1000.

Proof of Lemma 2.8. This is a simple exercise in double counting. Each set
B ∈ B contains

(
m2
m1

)
subsets of size m1, while each set C ∈ ∂(m1)(B) is contained

in
(
t−m1
m2−m1

)
supersets of size m2 (and thus in at most this number of sets in B).

Hence

|∂(m1)(B)|
(
t−m1

m2 −m1

)
≥ |B|

(
m2

m1

)
,

which implies the result.

In fact the same value d = 1−2−1/2 is a threshold for a slightly more general
class of graphs.

Theorem 2.10. If Gn is the graph of order n with wn pairwise disjoint edges
and n − 2wn isolated vertices, where wn → ∞ as n → ∞, then there exists
δn = o(1) such that

N(Gn, k) =
{ (

n
k

)
−
(
n−2
k

)
, k < dn,

(1− o(1))
(
n
k

)
, k > dn(1 + δn).

11



Proof. For k < dn note that Gn is a subgraph of Mn and so N(Gn, k) ≤
N(Mn, k). Moreover Apair is a (Gn, k)-star of size

(
n
k

)
−
(
n−2
k

)
.

For k > dn(1+δn) a similar proof to that already given for Theorem 2.1 can
be used (for more details see Corollary 3.3 in the next section).

Bohman et al. [2] asked whether other types of extremal G-intersecting fam-
ilies can occur (apart from families which are either (G, k)-stars or consist of
almost all of

(
[n]
k

)
). We show that they can by giving a simple example of a

graph for which (for appropriate values of k) the extremal family must be of a
third type.

Let Hn be the graph with vertex set [n] and edges {1, 2}, {3, 4}, {5, 6}. The
following family is Hn-intersecting

A2 =
{
A ∈

(
[n]
k

)
: A meets at least two of the three edges of Hn

}
.

Note that

|A2| =
(
n

k

)
− 3
(
n− 4
k

)
+ 2
(
n− 6
k

)
.

Let ε > 0 be small, n ≥ n0(ε) be large and 1 − 2−1/2 + ε < k/n < 1/2 − ε.
Since k/n > 1 − 2−1/2 + ε it is straightforward to check that A2 is larger
than the largest (Hn, k)-star. (The largest (Hn, k)-star consists of all k-sets
meeting a fixed edge of Hn and so has size

(
n
k

)
−
(
n−2
k

)
.) Moreover N(Hn, k) 6=

(1 − o(1))
(
n
k

)
, since k/n < 1/2 − ε implies (by the Erdős–Ko–Rado theorem)

that any Hn-intersecting family contains at most
(
n−7
k−1

)
of the sets in

(
[n]\[6]
k

)
,

so N(Hn, k) ≤
(
n
k

)
−
(
n−7
k

)
.

Hence if B is a k-uniform Hn-intersecting family of maximum size then B
does not contain almost all k-sets and B is not an (Hn, k)-star. We do not know
what form B can take, only that it must be of some new third type, however
A2 is an obvious candidate extremal family.

3 General k-uniform problem: k large

The conclusion of Theorem 2.1 for k large can be extended to give an analogous
result in a more general setting. The exact formulation of this generalization
(Theorem 3.1) is rather ugly however we give two natural corollaries (Corollaries
3.2 and 3.3). Recall the definition (1) of a (G, k)-star with centre C from the
introduction.

Theorem 3.1 has the following intuitive interpretation: if a largest (G, k)-star
contains slightly more than half of all k-sets and there are lots of “independent”
(G, k)-stars of this size then the “majority family”, consisting of all k-sets be-
longing to more than half of these (G, k)-stars, contains almost all k-sets. (Idea
of proof: a random k-set belongs to any particular largest (G, k)-star with prob-
ability 1/2 + ε so with high probability it belongs to a majority of them.)
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Theorem 3.1. Let {Gn}∞n=1 be a sequence of graphs of order n and 1 ≤ k ≤ n.
If the following three conditions hold for all n sufficiently large then N(Gn, k) =
(1− o(1))

(
n
k

)
.

(i) There exist isomorphic (Gn, k)-stars: A∗1, A∗2, . . . ,A∗wn
with pairwise dis-

joint centres C1, C2, . . . , Cwn such that wn →∞ as n→∞.

(ii) The common size of the centres of the A∗i is γn.

(iii) Each of the A∗i has size Sn satisfying

Sn ≥

(
1
2

+ (γn + 1)
√

logwn
wn

)(
n

k

)
.

Let Cpn denote the pth power of the n-cycle. (That is the graph with vertex
set [n] and i ∼Cp

n
j iff 1 ≤ dist(i, j) ≤ p, where distance is measured around the

cycle.)

Corollary 3.2. Let p ≥ 1 be a constant and let αp be the smallest positive root
of

(1− x)2p+1(1 + px) = 1/2.

There exists εp,n = o(n) such that if k ≥ αpn + εp,n then N(Cpn, k) = (1 −
o(1))

(
n
k

)
. In particular N(Cn, k) = (1− o(1))

(
n
k

)
for k > 0.266n.

Corollary 3.3. If r ≥ 1 is a constant and the number of pairwise disjoint r-
cliques in Gn is unbounded as n → ∞ then there exists εr,n = o(n) such that
N(Gn, k) = (1− o(1))

(
n
k

)
, for k > (1− 2−1/r)n+ εr,n.

We note that both Corollaries 3.2 and 3.3 could be extended to the case of
p, r non-constant but for simplicity we omit these extensions.

Proof of Theorem 3.1. Suppose that {Gn}∞n=1, A∗1, A∗2, . . . ,A∗wn
, and C1, C2,

. . . , Cwn
satisfy conditions (i)–(iii). For A ∈

(
[n]
k

)
let

λ(A) = #{i ∈ [wn] : A ∈ A∗i }

and define

Amaj = {A ∈
(

[n]
k

)
: λ(A) > wn/2}.

Clearly Amaj is Gn-intersecting since if A,B ∈ Amaj then there exists i ∈ [wn]
such that A,B ∈ A∗i and A∗i is Gn-intersecting (since it is a (Gn, k)-star). We
will adapt the proof method of Theorem 2.1 to show that |Amaj| = (1−o(1))

(
n
k

)
.

Let A ∈
(
[n]
k

)
be chosen uniformly at random. For j ∈ [n] let

Xj(A) =
{

1, j ∈ A,
0, otherwise.

13



Since the centres C1, C2, . . . , Cwn
are pairwise disjoint and have common size γn

we may suppose that for i ∈ [wn] we have Ci = [(i− 1)γn + 1, iγn]. For i ∈ [wn]
let Fi be the σ-algebra generated by X1(A), X2(A), . . . , Xiγn

(A). (That is we
condition on how Ameets the centres ofA∗1, A∗2, . . . , A∗i .) Let Y0 = E(wn−λ(A))
and for i ∈ [wn] define Yi = E(wn − λ(A)|Fi). Now Y0, Y1, . . . , Ywn is a
martingale and, since each centre has size γn, we have

|Yi − Yi−1| ≤ γn + 1,

for i ∈ [wn]. Moreover

Y0 = wn

(
1− Sn(

n
k

)) ≤ wn
2
− (γn + 1)

√
wn logwn.

Applying Azuma’s inequality (Lemma 2.9) we obtain

Pr(A 6∈ Amaj) = Pr(Ywn
≥ wn/2)

≤ Pr(Ywn
≥ Y0 + (γn + 1)

√
wn logwn)

≤ 1
√
wn

= o(1).

The result now follows.

Proof of Corollary 3.2. A largest (Cpn, k)-star, C∗, is given by taking a largest
clique K (of order p+1) and all

(
p+1
2

)
pairs of vertices {i, j} ∈

(
[n]\K

2

)
satisfying

i 6∼Cp
n
j and K ⊆ Γ+({i, j}). Hence

|C∗| =
(
n

k

)
−
(
n− 2p− 1

k

)
− p
(
n− 2p− 2
k − 1

)
.

Note that the centre of C∗ has size 3p+1. Moreover the number of (Cpn, k)-stars
of maximum size with pairwise disjoint centres is at least bn/(3p+ 1)c → ∞ as
n→∞. (So conditions (i) and (ii) of Theorem 3.1 hold.)

Writing c = k/n we have

|C∗| ≥
(

1− (1− c)2p+1(1 + cp) +O

(
1
n

))(
n

k

)
.

Hence, for a suitable choice of εp,n (which can clearly be taken to satisfy εp,n =
o(n)), if k ≥ αpn + εp,n then condition (iii) of Theorem 3.1 also holds and the
result follows.

Proof of Corollary 3.3. This is almost identical to the proof of Corollary 3.2 so
we give only a sketch. Let K1, K2, . . . ,Kwn

be pairwise disjoint r-cliques in Gn,
with wn →∞ as n→∞. If

A∗i =
{
A ∈

(
[n]
k

)
: A ∩Ki 6= ∅

}
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then |A∗i | =
(
n
k

)
−
(
n−r
k

)
. Conditions (i) and (ii) of Theorem 3.1 hold with

γn = r. Moreover there exists εr,n = o(n) such that if k > (1 − 2−1/r)n + εr,n
then condition (iii) also holds. The result now follows.

4 Non-uniform G-intersecting families

The question of how large a non-uniform intersecting family A ⊆ 2[n] can be is
rather easy: A cannot contain both a set and its complement and so |A| ≤ 2n−1,
moreover this bound can attained in numerous different ways.

The non-uniform G-intersection problem is also easier to solve than the k-
uniform version. For a graph G of order n let

N(G) = max{|A| : A ⊆ 2[n] is G-intersecting}.

The size of the extremal family depends on the matching number, m(G), the
size of a largest matching in G.

Theorem 4.1. If {Gn}∞n=1 is a sequence of non-empty graphs of order n with
m(Gn) non-decreasing then either m(Gn) → ∞ as n → ∞, in which case
N(Gn) = (1 − o(1))2n, or there exists m ≥ 1 such that m(Gn) = m for all
n ≥ n0 and

1− e−m/8 ≤ P(Bin(m, 3/4) > m/2) ≤ N(Gn)
2n

≤ 1− 2−(2m+1). (17)

In the latter case both bounds are attainable.

Lemma 4.2. Let G be a graph of order n with a matching of size m ≥ 1 then

N(G)
2n

≥ P(Bin(m, 3/4) > m/2) ≥ 1− e−m/8.

Proof. Take a matching M of size m and define

Mmaj = {A ∈ 2[n] : A meets > m/2 of the edges in M}. (18)

Note that Mmaj is G-intersecting.
If we select a set A ∈ 2[n] uniformly at random by choosing each i ∈ [n]

independently with probability 1/2 then A meets any edge e ∈M independently
with probability 3/4. Hence if X ∼ Bin(m, 3/4) then

P(A ∈Mmaj) = P(X > m/2).

Hoeffding’s inequality [6] implies that this is at least 1 − e−m/8 and the result
follows.
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Proof of Theorem 4.1. Since m(Gn) is increasing either m(Gn)→∞ as n→∞
or there exists m ≥ 1 such that m(Gn) = m for all n ≥ n0. In the former case
Lemma 4.2 implies that N(Gn) = (1 − o(1))2n, so suppose that m(Gn) = m
for all n ≥ n0. Lemma 4.2 now implies that the lower bound in (17) holds. For
the upper bound consider a maximal matching in Gn, this contains at most 2m
vertices. Let W ⊆ [n] be the other vertices of Gn. Since W is the complement
of a maximal matching it is an independent set and so if A,B ⊆ 2W are Gn-
intersecting then A∩B 6= ∅. Hence if A ⊆ 2[n] is Gn-intersecting then it contains
at most half of the sets from 2W . The fact that |W | ≥ n− 2m yields the upper
bound in (17).

Note that if Gn is the union of a clique of order 2m + 1 and n − 2m − 1
isolated vertices then the upper bound in (17) is sharp. (The family of all sets
meeting the clique is Gn-intersecting and of the correct size.)

To see that the lower bound in (17) is also attainable requires slightly more
work. We claim that if Gn is the union of a matching M on m edges and
n− 2m isolated vertices then the family Mmaj defined in (18) is a largest Gn-
intersecting family. (We will assume for simplicity that m is odd, if m is even a
similar argument will work.)

Let A ⊆ 2[n] be a Gn-intersecting family of maximum size. Let E = {e1,
e2, . . ., em} be the m edges of the matching and let V = {v1, v2, . . . , vn−2m} be
the n− 2m isolated vertices. For A ⊆ E and B ⊆ V let

S(A,B) = {C ∈ 2[n] : A = {e ∈ E : C ∩ e 6= ∅} and B = {v ∈ V : v ∈ C}}.

So S(A,B) contains those sets which meet precisely those edges in A and contain
precisely those isolated vertices in B.

First note that if A ⊆ E and B ⊆ V then |S(A,B)| = 3|A|. Secondly if
A ⊆ E and B ⊆ V then at most one of A∩S(A,B) and A∩S(E\A, V \B) can
be non-empty (otherwise A is not Gn-intersecting). Moreover the maximality
of A implies that if A∩S(A,B) 6= ∅ then S(A,B) ⊆ A. Finally note that if for
each A ⊆ E and B ⊆ V we take the larger of S(A,B) and S(E\A, V \B) then
the resulting family is at least as large as A. However this family is Mmaj.

5 Open problems and conjectures

An analogue of Theorem 2.1 should surely hold when Gr,n = K1∪̇K2∪̇ · · · ∪̇Kt

is the disjoint union of r-cliques, where r > 2 is a constant and n = rt. Indeed
by Corollary 3.3 we have N(Gr,n, k) = (1 − o(1))

(
n
k

)
for k > drn(1 + o(1))

(where dr = 1− 2−1/r). Moreover if k < drn(1− o(1)) then we can prove that
N(Gr,n, k) = (1 + o(1))

((
n
k

)
−
(
n−r
k

))
. However an exact version should hold so

we make the following conjecture.

Conjecture 5.1. If r > 2 is a constant, Gr,n is a disjoint union of r-cliques
and dr = 1− 2−1/r then there exists δr,n = o(1) such that

N(Gr,n, k) =
{ (

n
k

)
−
(
n−r
k

)
, k < drn(1− δr,n),

(1− o(1))
(
n
k

)
, k > drn(1 + δr,n).
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Moreover the extremal families are unique up to isomorphism.

Since there is a small range of values of k for which Theorem 2.1 fails to
determine N(Mn, k) we ask the following obvious question.

Question 5.2. Is N(Mn, k) = max{|Apair|, |Amaj|} for all values of k and n?

Bohman et al. [2] made the following conjecture concerning the cycle.

Conjecture 5.3 (Bohman et al. [2]). There is a constant c such that for any
fixed ε > 0

N(Cn, k) =
{ (

n
k

)
−
(
n−2
k

)
+
(
n−4
k−2

)
, k < (c− ε)n,

(1− o(1))
(
n
k

)
, k > (c+ ε)n.

Given our result for cycles (Corollary 3.2) we make the following conjecture.

Conjecture 5.4. Conjecture 5.3 is true with c = 0.266 . . ., the smallest positive
root of (1− x)3(1 + x) = 1/2.

Given our example showing that there exist graphs and values of k for which
the extremal k-uniform G-intersecting families are neither (G, k)-stars nor al-
most all of

(
[n]
k

)
we pose the following question.

Question 5.5. Is it true that for any graph G and 1 ≤ k ≤ n, there exist
(G, k)-stars A∗1, . . . ,A∗t such that N(G, k) = |Amaj|? Where for t odd

Amaj =
{
A ∈

(
[n]
k

)
: A belongs to > t/2 of the A∗i

}
and for t even we extend this family to include as many k-sets as possible that
belong to exactly t/2 of the A∗i .

We note that a result of Erdős, Frankl and Katona [4] implies that a positive
answer to this question would yield a positive answer to Question 5.2.
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