G-intersection theorems for matchings and other graphs

J Robert Johnson* John Talbot ${ }^{\dagger}$

July 30, 2009

Abstract

If G is a graph with vertex set [n] then $\mathcal{A} \subseteq 2^{[n]}$ is G-intersecting if for all $A, B \in \mathcal{A}$ either $A \cap B \neq \emptyset$ or there exist $a \in A$ and $b \in B$ such that $a \sim_{G} b$.

The question of how large a k-uniform G-intersecting family can be was first considered by Bohman, Frieze, Ruszinkó and Thoma [2] who identified two natural candidates for the extrema depending on the relative sizes of k and n and asked whether there is a sharp phase transition between the two. Our first result shows that there is a sharp transition and characterizes the extremal families when G is a matching. We also give an example demonstrating that other extremal families can occur.

Our second result gives a sufficient condition for the largest G-intersecting family to contain almost all k-sets. In particular we show that if C_{n} is the n-cycle and $k>\alpha n+o(n)$, where $\alpha=0.266 \ldots$ is the smallest positive root of $(1-x)^{3}(1+x)=1 / 2$, then the largest C_{n}-intersecting family has size $(1-o(1))\binom{n}{k}$.

Finally we consider the non-uniform problem and show that in this case the size of the largest G-intersecting family depends on the matching number of G.

1 Introduction

The following generalization of the notion of an intersecting family was introduced by Bohman, Frieze, Ruszinkó and Thoma [2]. If G is a graph with vertex set $[n]$ then $\mathcal{A} \subseteq 2^{[n]}$ is G-intersecting if for all $A, B \in \mathcal{A}$ either $A \cap B \neq \emptyset$ or there exist $a \in A$ and $b \in B$ such that $a \sim_{G} b$.

The question of how large a k-uniform G-intersecting family can be is a natural generalization of the Erdős-Ko-Rado problem, indeed if G is the empty graph it is answered by the classical Erdős-Ko-Rado theorem [5].

[^0]Theorem 1.1 (Erdős-Ko-Rado 1938 [5]). If $\mathcal{A} \subseteq\binom{[n]}{k}$ is intersecting then

$$
|\mathcal{A}| \leq \begin{cases}\binom{n-1}{k-1}, & 1 \leq k \leq n / 2 \\ \binom{n}{k}, & n / 2<k \leq n\end{cases}
$$

Moreover if $k<n / 2$ then equality is attained iff \mathcal{A} consists of all k-sets containing a fixed element of $[n]$. While (trivially) if $k>n / 2$ then equality is attained iff $\mathcal{A}=\binom{[n]}{k}$.

For a graph G with vertex set $[n]$ and $1 \leq k \leq n$ we define

$$
N(G, k)=\max \left\{|\mathcal{A}|: \mathcal{A} \subseteq\binom{[n]}{k} \text { is } G \text {-intersecting }\right\}
$$

Bohman et al. [2] were the first to consider the problem of determining $N(G, k)$. They identified two types of behaviour for the extrema depending on the relative sizes of k and n, mirroring the extremal behaviour of ordinary k-uniform intersecting families (as given by Theorem 1.1).

The augmented neighbourhood of $A \subseteq[n]$, denoted by $\Gamma^{+}(A)$, is the union of A and its neighbourhood in G. So a family $\mathcal{A} \subseteq 2^{[n]}$ is G-intersecting iff for all $A, B \in \mathcal{A}$ we have $A \cap \Gamma^{+}(B) \neq \emptyset$.

An obvious example of a k-uniform G-intersecting family is the collection of all k-sets meeting a fixed clique in G. For instance if $G=C_{n}$ is the n-cycle then

$$
\mathcal{A}=\left\{A \in\binom{[n]}{k}: A \cap\{1,2\} \neq \emptyset\right\},
$$

is C_{n}-intersecting. However \mathcal{A} is not maximal: it can be extended to

$$
\mathcal{B}=\mathcal{A} \cup\left\{B \in\binom{[n]}{k}: 3, n \in B\right\}
$$

More generally if K is a clique in G and $M_{1}, M_{2}, \ldots, M_{r} \subseteq[n] \backslash K$ satisfy

$$
K \subseteq \Gamma^{+}\left(M_{i}\right) \text { for } 1 \leq i \leq r \quad \text { and } \quad M_{i} \cap \Gamma^{+}\left(M_{j}\right) \neq \emptyset, i \neq j
$$

then

$$
\begin{equation*}
\mathcal{A}\left(K ; M_{1}, \ldots, M_{r}\right)=\left\{A \in\binom{[n]}{k}: A \cap K \neq \emptyset \text { or } M_{i} \subseteq A \text { for some } i\right\}, \tag{1}
\end{equation*}
$$

is also G-intersecting. We will call such a family a (G, k)-star with centre

$$
C=K \cup \bigcup_{i=1}^{r} M_{i}
$$

Bohman et al. [2] showed that if G is sparse and $k=O\left(n^{1 / 4}\right)$ then the largest G-intersecting families are of this form. (More recently Bohman and Martin [3] gave an improvement, showing that a similar result also holds for $k=O\left(n^{1 / 2}\right)$.)

Bohman et al. [2] also showed that if G is sparse with minimum degree δ and $k>c n$, where c is a constant satisfying $c-(1-c)^{\delta+1}>0$, then

$$
N(G, k)=(1-o(1))\binom{n}{k}
$$

These two different types of extrema mirror the two cases of the Erdős-KoRado theorem, however there is a large gap between the values of k for which they are known to occur. Bohman et al. [2] asked whether there is a sharp phase transition and whether other types of extrema exist.

Our first result in the next section (Theorem 2.1) shows that there is a sharp transition and characterizes the extremal families when G is a perfect matching. We also give an example of a graph demonstrating that other types of extrema exist.

In the third section we give a sufficient condition for the largest G-intersecting family to contain almost all k-sets (Theorem 3.1). In particular we show that if C_{n} is the n-cycle and $k>\alpha n+o(n)$, where $\alpha=0.266 \ldots$ is the smallest positive root of $(1-x)^{3}(1+x)=1 / 2$, then the largest C_{n}-intersecting family has size $(1-o(1))\binom{n}{k}$ (Corollary 3.2). This improves an earlier bound of $k>0.317 n$ due to Bohman et al. [2].

In the fourth section we consider the non-uniform problem and show that in this case the size of the largest G-intersecting family depends on the matching number of G (Theorem 4.1).

We end the paper with some open problems and conjectures.

2 Matchings

Let M_{n} be a matching of order $n=2 t$ with edges e_{1}, \ldots, e_{t}, where $e_{i}=\{2 i-$ $1,2 i\}$. For $A \in\binom{[n]}{k}$ let $I_{A}=\left\{i \in[t]: A \cap e_{i} \neq \emptyset\right\}$ (so I_{A} indexes the edges that A meets). An obvious candidate for the largest M_{n}-intersecting family when k is small is

$$
\mathcal{A}_{\text {pair }}=\left\{A \in\binom{[n]}{k}: 1 \in I_{A}\right\} .
$$

The precise form of the extremal family when k is large will depend on the parity of t. For t odd let

$$
\mathcal{A}_{\mathrm{maj}}=\left\{A \in\binom{[n]}{k}:\left|I_{A}\right|>\frac{t}{2}\right\} .
$$

For t even we can extend $\mathcal{A}_{\text {maj }}$ by adding half of those k-sets meeting exactly $t / 2$ edges. To be precise, for t even let $\mathcal{B} \subseteq\binom{t}{t / 2}$ be an (ordinary) intersecting family of maximum size $\frac{1}{2}\binom{t}{t / 2}$. We define

$$
\mathcal{A}_{\mathrm{maj}}=\left\{A \in\binom{[n]}{k}:\left|I_{A}\right|>\frac{t}{2} \text { or } I_{A} \in \mathcal{B}\right\} .
$$

Note that both $\mathcal{A}_{\text {pair }}$ and $\mathcal{A}_{\text {maj }}$ are M_{n}-intersecting.
The result of Bohman and Martin (Theorem 2 [3]) implies that $\mathcal{A}_{\text {pair }}$ is a k-uniform M_{n}-intersecting family of maximum size for $k=O\left(n^{1 / 2}\right)$ while the result of Bohman et al. (Theorem 7 [2]) implies that $N\left(M_{n}, k\right)=(1-$ $o(1))\binom{n}{k}$ for $k>0.38196 n$. We are able to give the following result describing a sharp threshold for the behaviour of $N\left(M_{n}, k\right)$ and characterizing the extremal families.

Theorem 2.1. Let $n=2 t \geq 1000,1 \leq k \leq n$ and M_{n} be a matching of order n with edges $\{1,2\},\{3,4\}, \ldots,\{n-1, n\}$. If $d=1-2^{-1 / 2}=0.29289 \ldots$ then

$$
N\left(M_{n}, k\right)= \begin{cases}\left|\mathcal{A}_{\text {pair }}\right|=\binom{n}{k}-\binom{n-2}{k}, & k<d n, \\ \left|\mathcal{A}_{\text {maj }}\right|=(1-o(1))\binom{n}{k}, & k>d n\left(1+\epsilon_{n}\right),\end{cases}
$$

where $\epsilon_{n}=30 \sqrt{\frac{\log n}{n}}=o(1)$. Moreover, up to isomorphism, these bounds are only achieved by the families $\mathcal{A}_{\text {pair }}$ and $\mathcal{A}_{\text {maj }}$ described above.

For the remainder of this section we will say that k is small (with respect to n) if $k<d n$ and k is large (with respect to n) if $k>d n\left(1+\epsilon_{n}\right)$.

Proof of Theorem 2.1. Let $\mathcal{A} \subseteq\binom{[n]}{k}$ be a k-uniform M_{n}-intersecting family of maximum size (so $|\mathcal{A}|=N\left(M_{n}, k\right)$). We define

$$
\mathcal{I}(\mathcal{A})=\left\{I_{A} \subseteq[t]: A \in \mathcal{A}\right\}
$$

Note that the sets in $\mathcal{I}(\mathcal{A})$ all have sizes in the range $\lceil k / 2\rceil$ up to k. (Since a k-set cannot meet less than $\lceil k / 2\rceil$ edges or more than k edges.)

For $B \subseteq[t]$ define

$$
W_{k}(B)=\left\{A \in\binom{[n]}{k}: I_{A}=B\right\} .
$$

So $W_{k}(B)$ is the family of all k-sets meeting precisely those edges indexed by B. The size of this family depends only on the size of B. For $1 \leq m \leq t$ let $w_{k}(m)=\left|W_{k}([m])\right|$. (So $w_{k}(m) \neq 0$ iff $\lceil k / 2\rceil \leq m \leq k$.)

We note a few useful facts whose proofs we defer.
Lemma 2.2. $\mathcal{I}(\mathcal{A})$ has the following properties:
(a) $\mathcal{I}(\mathcal{A})$ is intersecting.
(b) If $B \subseteq[t],\lceil k / 2\rceil \leq|B| \leq k$ and $\mathcal{I}(\mathcal{A}) \cup\{B\}$ is intersecting then $B \in \mathcal{I}(\mathcal{A})$.
(c) If $B \in \mathcal{I}(\mathcal{A}), B \subset C \subseteq[t]$ and $|C| \leq k$ then $C \in \mathcal{I}(\mathcal{A})$.

Lemma 2.3. If $A \in \mathcal{A}, B \in\binom{[n]}{k}$ and $I_{A}=I_{B}$ then $B \in \mathcal{A}$. Hence

$$
\mathcal{A}=\bigcup_{B \in \mathcal{I}(\mathcal{A})} W_{k}(B) .
$$

Thus if $\mathcal{A}_{m}=\left\{A \in \mathcal{A}:\left|I_{A}\right|=m\right\}, \mathcal{I}_{m}(\mathcal{A})=\{B \in \mathcal{I}(\mathcal{A}):|B|=m\}$ and $i_{m}(\mathcal{A})=\left|\mathcal{I}_{m}(\mathcal{A})\right|$ then

$$
\left|\mathcal{A}_{m}\right|=i_{m}(\mathcal{A}) w_{k}(m) \quad \text { and } \quad|\mathcal{A}|=\sum_{m=\lceil k / 2\rceil}^{k} i_{m}(\mathcal{A}) w_{k}(m)
$$

Using Lemmas 2.2 and 2.3 the problem of determining $N\left(M_{n}, k\right)$ can be reduced to a weighted intersection problem for $\mathcal{I}(\mathcal{A})$, with the weight of a set $B \in \mathcal{I}(\mathcal{A})$ given by $w_{k}(|B|)$.

Lemma 2.4.

$$
w_{k}(m)= \begin{cases}2^{2 m-k}\binom{m}{k-m}, & \lceil k / 2\rceil \leq m \leq k \\ 0, & \text { otherwise }\end{cases}
$$

Lemma 2.5. There exists $m^{*}=m^{*}(k, t)$ such that $\left\{w_{k}(m)\right\}_{m=\lceil k / 2\rceil}^{k}$ satisfies

$$
w_{k}(\lceil k / 2\rceil)<\cdots<w_{k}\left(m^{*}\right) \geq w_{k}\left(m^{*}+1\right)>w_{k}\left(m^{*}+2\right)>\cdots>w_{k}(k) .
$$

That is the sequence is strictly increasing up to a maximum which is attained at m^{*} and possibly also attained at $m^{*}+1$ and thereafter the sequence is strictly decreasing.
Lemma 2.6. If k is small then $m^{*}<t / 2$. Moreover if $\lceil k / 2\rceil \leq m \leq k$ and $m<t / 2$ then $w_{k}(m)>w_{k}(t-m)$.
Lemma 2.7. If k is large then $m^{*}>t / 2$ and

$$
\sum_{m<t / 2} w_{k}(m)\binom{t}{m}<\frac{1}{t}\binom{n}{k} .
$$

Lemma 2.8. If $m_{1} \leq m_{2}, \mathcal{B} \subseteq\binom{[t]}{m_{2}}$ and

$$
\partial^{\left(m_{1}\right)}(\mathcal{B})=\left\{C \in\binom{[t]}{m_{1}}: C \subseteq B \text { for some } B \in \mathcal{B}\right\}
$$

then

$$
\frac{\left|\partial^{\left(m_{1}\right)}(\mathcal{B})\right|}{\binom{t}{m_{1}}} \geq \frac{|\mathcal{B}|}{\binom{t}{m_{2}}} .
$$

Returning to the proof of Theorem 2.1 we suppose first that k is small and let $\mathcal{I}(\mathcal{A}), \mathcal{A}_{m}, \mathcal{I}_{m}(\mathcal{A})$ and $i_{m}(\mathcal{A})$ be as defined above. Lemma 2.3 implies that for $m<t / 2$

$$
\begin{equation*}
\left|\mathcal{A}_{m}\right|+\left|\mathcal{A}_{t-m}\right|=i_{m}(\mathcal{A}) w_{k}(m)+i_{t-m}(\mathcal{A}) w_{k}(t-m) \tag{2}
\end{equation*}
$$

By Lemma 2.2 (a), $i_{m}(\mathcal{A})+i_{t-m}(\mathcal{A})$ is the size of an intersecting family in $\binom{[t]}{m} \cup\binom{[t]}{t-m}$. Hence Lemma 2.6 and the Erdős-Ko-Rado theorem (Theorem 1.1) imply that

$$
\left|\mathcal{A}_{m}\right|+\left|\mathcal{A}_{t-m}\right| \leq\binom{ t-1}{m-1} w_{k}(m)+\binom{t-1}{t-m-1} w_{k}(t-m)
$$

with strict inequality unless $\mathcal{I}_{m}(\mathcal{A}) \cup \mathcal{I}_{t-m}(\mathcal{A})$ consists of all sets in $\binom{[t]}{m} \cup\binom{[t]}{t-m}$ containing a fixed element of $[t]$ (which is the case for $\mathcal{A}_{\text {pair }}$). Finally if t is even then Theorem 1.1 implies that

$$
\begin{equation*}
\left|\mathcal{A}_{t / 2}\right| \leq w_{k}(t / 2) \frac{1}{2}\binom{t}{t / 2} \tag{3}
\end{equation*}
$$

and again this is achieved by $\mathcal{A}_{\text {pair }}$. Hence $N\left(M_{n}, k\right)=|\mathcal{A}| \leq\left|\mathcal{A}_{\text {pair }}\right|$.
To see that $\mathcal{A}_{\text {pair }}$ is (up to isomorphism) the unique extremal family note that for equality to hold $\mathcal{I}_{\lceil k / 2\rceil}(\mathcal{A})$ must consist of all $\lceil k / 2\rceil$-sets containing a fixed element $i \in[t]$. Without loss of generality we may suppose that $i=1$. Lemma 2.2 (c) now implies that $\mathcal{A}_{\text {pair }} \subseteq \mathcal{A}$. Finally $k<d n$ implies that $\mathcal{A}_{\text {pair }}$ is a maximal M_{n}-intersecting family and hence $\mathcal{A}=\mathcal{A}_{\text {pair }}$. (Indeed it is easy to check that $\mathcal{A}_{\text {pair }}$ is a maximal M_{n}-intersecting family whenever $k \leq n / 3$.) Note that this part of Theorem 2.1 holds for all values of n and $k<d n$ (the condition $n \geq 1000$ is only required for the k large case).

Now suppose that k is large, that is $k>d n\left(1+\epsilon_{n}\right)$. If $k>t=n / 2$ then $\mathcal{A}_{\text {maj }}=\binom{[n]}{k}$ and the result is trivial, so suppose that $k \leq t$. In this case Lemma 2.7 tells us that the maximum of $w_{k}(m)$ is achieved at $m^{*}>t / 2$. By Lemma 2.5, $w_{k}(m)$ is strictly increasing for $m<m^{*}$ so $w_{k}(m)>w_{k}(t-m)$ for $t / 2<m \leq m^{*}$. By Lemma $2.2(\mathrm{a}), i_{m}(\mathcal{A})+i_{t-m}(\mathcal{A})$ is the size of an intersecting family in $\binom{[t]}{m} \cup\binom{[t]}{t-m}$ so, for $t / 2<m \leq m^{*}, w_{k}(m)>w_{k}(t-m)$ implies that

$$
\begin{equation*}
\left|\mathcal{A}_{m}\right|+\left|\mathcal{A}_{t-m}\right| \leq\binom{ t}{m} w_{k}(m) \tag{4}
\end{equation*}
$$

with strict inequality unless $\mathcal{I}_{t-m}(\mathcal{A})$ is empty and $\mathcal{I}_{m}(\mathcal{A})=\binom{[t]}{m}$ (which is the case for $\mathcal{A}_{\text {maj }}$).

If t is odd then (4) bounds the number of sets in \mathcal{A}_{m} for $t-m^{*} \leq m \leq m^{*}$. However if t is even then we note that $i_{t / 2}(\mathcal{A})$ is the size of an intersecting family in $\binom{t}{t / 2}$ and so (3) holds.

If $\mathcal{I}_{m}(\mathcal{A})=\emptyset$ for $m<t-m^{*}$ then (4) and, in the case of t even (3), imply that $|\mathcal{A}| \leq\left|\mathcal{A}_{\text {maj }}\right|$, with strict inequality unless $\mathcal{A}=\mathcal{A}_{\text {maj }}$. We suppose now, for a contradiction, that there exists $m<t-m^{*}$ such that $\mathcal{I}_{m}(\mathcal{A}) \neq \emptyset$. Let $m_{0}<t-m^{*}$ be chosen so that

$$
\frac{i_{m_{0}}(\mathcal{A})}{\binom{t}{m_{0}}}=\max \left\{\frac{i_{m}(\mathcal{A})}{\binom{t}{m}}: m<t-m^{*}\right\} .
$$

(So the proportion of m_{0}-sets in $\mathcal{I}(\mathcal{A})$ is maximal subject to $m_{0}<t-m^{*}$.) Let $\beta=i_{m_{0}}(\mathcal{A}) /\binom{t}{m_{0}}>0$. By Lemma 2.3 we have

$$
\begin{equation*}
\sum_{m<t-m^{*}}\left|\mathcal{A}_{m}\right| \leq \beta \sum_{m<t-m^{*}} w_{k}(m)\binom{t}{m} . \tag{5}
\end{equation*}
$$

The complements of the sets in $\mathcal{I}_{m_{0}}(\mathcal{A})$ are all missing from $\mathcal{I}_{t-m_{0}}(\mathcal{A})$, so if $\mathcal{B}=\binom{[t]}{t-m_{0}} \backslash \mathcal{I}_{t-m_{0}}(\mathcal{A})$ then $|\mathcal{B}| \geq i_{m_{0}}(\mathcal{A})=\beta\binom{t}{m_{0}}$. Recall that

$$
\partial^{(m)}(\mathcal{B})=\left\{C \in\binom{[t]}{m}: C \subseteq B \text { for some } B \in \mathcal{B}\right\} .
$$

If $t / 2<m \leq t-m_{0}$ then Lemma 2.2 (c) implies that $\partial^{(m)}(\mathcal{B}) \cap \mathcal{I}_{m}(\mathcal{A})=\emptyset$ while Lemma 2.8 implies that

$$
\frac{\left|\partial^{(m)}(\mathcal{B})\right|}{\binom{t}{m}} \geq \frac{|\mathcal{B}|}{\binom{t}{t-m_{0}}} \geq \beta
$$

Note that $m^{*}<t-m_{0}$ and hence for $t / 2<m \leq m^{*}$,

$$
\begin{equation*}
i_{m}(\mathcal{A}) \leq\binom{ t}{m}-\left|\partial^{(m)}(\mathcal{B})\right| \leq(1-\beta)\binom{t}{m} \tag{6}
\end{equation*}
$$

Now if $t / 2<m \leq m^{*}$ then $w_{k}(m)>w_{k}(t-m)$, so (6) implies that

$$
\begin{equation*}
\left|\mathcal{A}_{m}\right|+\left|\mathcal{A}_{t-m}\right| \leq\binom{ t}{m}\left((1-\beta) w_{k}(m)+\beta w_{k}(t-m)\right) . \tag{7}
\end{equation*}
$$

If $m<t-m^{*}$ then, by the definition of β,

$$
\begin{equation*}
\left|\mathcal{A}_{m}\right| \leq \beta\binom{t}{m} w_{k}(m) \tag{8}
\end{equation*}
$$

While trivially if $m>m^{*}$ then $\left|\mathcal{A}_{m}\right| \leq w_{k}(m)\binom{t}{m}$. Together with (7), (8), and in the case of t even (3), this implies that

$$
|\mathcal{A}|-\left|\mathcal{A}_{\mathrm{maj}}\right| \leq \sum_{m<t / 2} \beta\binom{t}{m} w_{k}(m)-\sum_{t / 2<m \leq m^{*}} \beta\binom{t}{m} w_{k}(m) .
$$

Now Lemma 2.7 implies that

$$
|\mathcal{A}|-\left|\mathcal{A}_{\mathrm{maj}}\right|<\beta\left(\frac{1}{t}\binom{n}{k}-\sum_{t / 2<m \leq m^{*}}\binom{t}{m} w_{k}(m)\right) .
$$

So we will have $|\mathcal{A}|<\left|\mathcal{A}_{\text {maj }}\right|$ (and the proof will be complete) if we show that

$$
\begin{equation*}
\sum_{t / 2<m \leq m^{*}}\binom{t}{m} w_{k}(m) \geq \frac{1}{t}\binom{n}{k} \tag{9}
\end{equation*}
$$

Let m_{1} satisfy

$$
w_{k}\left(m_{1}\right)\binom{t}{m_{1}}=\max \left\{w_{k}(m)\binom{t}{m}:\lceil k / 2\rceil \leq m \leq k\right\} .
$$

Recall that

$$
\sum_{m=\lceil k / 2\rceil}^{k}\binom{t}{m} w_{k}(m)=\binom{n}{k}
$$

and $k \leq t$. Hence

$$
\begin{equation*}
\binom{t}{m_{1}} w_{k}\left(m_{1}\right) \geq \frac{1}{\frac{k}{2}+1}\binom{n}{k} \geq \frac{2}{t+2}\binom{n}{k} . \tag{10}
\end{equation*}
$$

Since $m^{*}>t / 2$, both $w_{k}(m)$ and $\binom{t}{m}$ are increasing in m for $m \leq t / 2$ and decreasing in m for $m>m^{*}$ so $m_{1} \in\left\{\lceil t / 2\rceil, \ldots, m^{*}\right\}$. If $m_{1} \neq t / 2$ then $t / 2<m_{1} \leq m^{*}$ and so (10) implies that (9) holds. Otherwise t is even and $m_{1}=t / 2$. In which case (10) and $w_{k}(t / 2+1)>w_{k}(t / 2)$ imply that

$$
\binom{t}{t / 2+1} w_{k}(t / 2+1)>\frac{t}{t+2}\binom{t}{t / 2} w_{k}(t / 2) \geq \frac{2 t}{(t+2)^{2}}\binom{n}{k} .
$$

This implies that (9) holds so long as $2 t^{2} \geq(t+2)^{2}$, which is true for $t \geq 5$.

Proof of Lemma 2.2. If $A, B \in \mathcal{I}(\mathcal{A})$ then there exist $C, D \in \mathcal{A}$ such that $A=$ I_{C} and $B=I_{D}$. Since \mathcal{A} is M_{n}-intersecting so C and D must meet a common edge e_{i}. Hence $i \in A \cap B$ and so $\mathcal{I}(\mathcal{A})$ is intersecting.

If Lemma 2.2 (b) does not hold then there is $B \subseteq[t]$, with $\lceil k / 2\rceil \leq|B| \leq k$ such that $\mathcal{I}(\mathcal{A}) \cup\{B\}$ is intersecting but $B \notin \mathcal{I}(\mathcal{A})$. Now $\lceil k / 2\rceil \leq|B| \leq k$ implies that $W_{k}(B) \neq \emptyset$ and so $\mathcal{B}=\mathcal{A} \cup W_{k}(B)$ is a k-uniform M_{n}-intersecting family satisfying $|\mathcal{B}|>|\mathcal{A}|$, contradicting the maximality of $|\mathcal{A}|$.

Finally (b) implies (c) since if $B \subset C$ and $B \in \mathcal{I}(\mathcal{A})$ then $\mathcal{I}(\mathcal{A}) \cup\{C\}$ is also intersecting.

Proof of Lemma 2.3. If $A \in \mathcal{A}, B \in\binom{[n]}{k}$ and $I_{A}=I_{B}$ then $\mathcal{A} \cup\{B\}$ is $M_{n^{-}}$ intersecting. So, by the maximality of $|\mathcal{A}|, B \in \mathcal{A}$. Hence

$$
\mathcal{A}=\bigcup_{B \in \mathcal{I}(\mathcal{A})} W_{k}(B) .
$$

Moreover this is a disjoint union since if $B, C \in \mathcal{I}(\mathcal{A})$ and $B \neq C$ then $W_{k}(B) \cap$ $W_{k}(C)=\emptyset$. The final part follows directly from the definitions.

Proof of Lemma 2.4. If $m<\lceil k / 2\rceil$ or $m>k$ then no k-set meets m edges and hence $w_{k}(m)=0$, so suppose that $\lceil k / 2\rceil \leq m \leq k$. Consider $A \in\binom{[n]}{k}$ meeting the first m edges of M_{n} (that is $\left.A \in W_{k}([m])\right)$. For such a set let a_{i} denote the number of edges it meets in exactly i elements, where $i=1,2$. Since $a_{1}+a_{2}=m$ and $a_{1}+2 a_{2}=k$ we have $a_{1}=2 m-k$ and $a_{2}=k-m$. Thus such a set is uniquely determined by choosing $k-m$ of the m edges from which to take both vertices and then choosing one of the two possible vertices from each of the remaining $2 m-k$ edges.

Proof of Lemma 2.5. We show first that if $\lceil k / 2\rceil \leq m \leq k$ then

$$
\begin{equation*}
w_{k}(m)^{2}>w_{k}(m+1) w_{k}(m-1) \tag{11}
\end{equation*}
$$

First note that this holds for $m=\lceil k / 2\rceil$ or $m=k$ since in this case the RHS of (11) is zero while the LHS is positive. So suppose that $\lceil k / 2\rceil<m<k$. Now

$$
\begin{aligned}
\frac{w_{k}(m)^{2}}{w_{k}(m+1) w_{k}(m-1)} & =\frac{m(k-m+1)(2 m-k+2)(2 m-k+1)}{(m+1)(k-m)(2 m-k)(2 m-k-1)} \\
& >\frac{m(k-m+1)}{(m+1)(k-m)} \\
& >1
\end{aligned}
$$

Hence if $y_{m}=w_{k}(m) / w_{k}(m+1)$ then $\left\{y_{m}\right\}_{m=\lceil k / 2\rceil}^{k}$ is strictly increasing. This implies the result.

Proof of Lemma 2.6. Let k be small. We will assume that $t=2 s$ is even, the proof for t odd is essentially identical. By Lemma 2.5 if $w_{k}(s-1)>w_{k}(s)$ then $m^{*}<s$. Recall that since k is small we have $k \leq d n-1$, where $d=1-2^{-1 / 2}$ and $n=2 t=4 s$. Now

$$
\begin{aligned}
\frac{w_{k}(s-1)}{w_{k}(s)} & =\frac{(2 s-k)(2 s-k-1)}{4 s(k-s+1)} \\
& >\frac{(2 s-k-1)^{2}}{4 s(k-s+1)} \\
& \geq 1
\end{aligned}
$$

Hence $m^{*}<s=t / 2$.
We now prove by induction on $a \geq 1$ that if $\lceil k / 2\rceil \leq s-a \leq k$ then $w_{k}(s-a)>w_{k}(s+a)$. (Note that we may suppose that $s+a \leq k$ since otherwise $w_{k}(s+a)=0$.) For $a=1$ this follows from $m^{*} \leq s-1$ and Lemma 2.5 so suppose that $a \geq 2$ and the result holds for $a-1$. It is sufficient to show that

$$
\begin{equation*}
\frac{w_{k}(s-a)}{w_{k}(s+a)} \geq \frac{w_{k}(s-(a-1))}{w_{k}(s+a-1)} \tag{12}
\end{equation*}
$$

since the RHS of (12) is strictly greater than 1 by our inductive hypothesis. We consider

$$
\gamma=\frac{w_{k}(s-a) w_{k}(s+a-1)}{w_{k}(s+a) w_{k}(s-(a-1))} .
$$

We wish to show that $\gamma \geq 1$. Now

$$
\begin{align*}
\gamma & =\frac{(2 s-2 a-k+2)(2 s-2 a-k+1)(2 s+2 a-k)(2 s+2 a-k-1)}{16(s-a+1)(s+a)(k-s+a)(k-s-a+1)} \\
& >\frac{(2 s-k+2 a-1)^{2}(2 s-k-2 a-1)^{2}}{16\left(\left(s^{2}-a^{2}\right)\left((k-s+1)^{2}-a^{2}\right)\right.} \tag{13}
\end{align*}
$$

Since (13) is decreasing in k and $k<d n$ (since k is small) we may suppose that $k=d n-1=4 d s-1$. Rearranging we now need to check that

$$
\begin{equation*}
(s-2 d s+a)^{2}(s-2 d s-a)^{2}-\left(s^{2}-a^{2}\right)\left((4 d s-s)^{2}-a^{2}\right) \geq 0 . \tag{14}
\end{equation*}
$$

Differentiating (14) with respect to a we see that it is increasing in a, for $a>0$ (the partial derivative is $16 a d^{2} s^{2}$). Hence it is sufficient to check that (14) holds for $a=0$, which it does with equality.

For the proof of Lemma 2.7 we will require Azuma's inequality.
Lemma 2.9 (Azuma [1]). If Y_{0}, \ldots, Y_{t} is a martingale and $\left|Y_{i}-Y_{i-1}\right| \leq c_{i}$ for $1 \leq i \leq t$ then for any $\lambda>0$

$$
\mathbb{P}\left(Y_{t} \geq Y_{0}+\lambda\right) \leq \exp \left(\frac{-\lambda^{2}}{2 \sum_{i=1}^{t} c_{i}^{2}}\right)
$$

Proof of Lemma 2.7. Let k be large. We will assume that $t=2 s$ is even, the proof for t odd is essentially identical. By Lemma 2.5 if $w_{k}(s)<w_{k}(s+1)$ then $m^{*}>s$. Since k is large we have $k \geq d n+4 d=4 d(s+1)$, where $d=1-2^{-1 / 2}$ and $n=2 t=4 s$. Now

$$
\begin{aligned}
\frac{w_{k}(s)}{w_{k}(s+1)} & =\frac{(2 s-k+2)(2 s-k+1)}{4(s+1)(k-s)} \\
& <\frac{(2 s-k+2)^{2}}{4(s+1)(k-s-1)} \\
& \leq 1
\end{aligned}
$$

Hence $m^{*}>s=t / 2$.
We now need to show that

$$
\begin{equation*}
\sum_{m<t / 2} w_{k}(m)\binom{t}{m}<\frac{1}{t}\binom{n}{k} \tag{15}
\end{equation*}
$$

If $A \in\binom{[n]}{k}$ is chosen uniformly at random and

$$
I_{A}=\left\{i \in[t]: A \cap e_{i} \neq \emptyset\right\}
$$

then

$$
\mathbb{P}\left(\left|I_{A}\right|<t / 2\right)=\sum_{m<t / 2} \frac{w_{k}(m)\binom{t}{m}}{\binom{n}{k}}
$$

So it is sufficient to prove that

$$
\begin{equation*}
\mathbb{P}\left(\left|I_{A}\right|<t / 2\right)<\frac{1}{t} \tag{16}
\end{equation*}
$$

For $j \in[n]$ let

$$
X_{j}(A)= \begin{cases}1, & j \in A \\ 0, & \text { otherwise }\end{cases}
$$

Recall that M_{n} has edges e_{1}, \ldots, e_{t}, with $e_{i}=\{2 i-1,2 i\}$. For $i \in[t]$ let \mathcal{F}_{i} be the σ-algebra generated by $X_{1}, X_{2}, \ldots, X_{2 i}$ and define $Y_{i}=\mathbb{E}\left(\left|[t] \backslash I_{A}\right| \mid \mathcal{F}_{i}\right)$. If $Y_{0}=\mathbb{E}\left(\left|[t] \backslash I_{A}\right|\right)$ then $Y_{0}, Y_{1}, \ldots, Y_{t}$ is a martingale and

$$
\mathbb{E}\left(\left|[t] \backslash I_{A}\right|\right)=\sum_{i=1}^{t} \mathbb{P}\left(A \cap e_{i}=\emptyset\right)=\frac{t\binom{n-2}{k}}{\binom{n}{k}}
$$

The values of $X_{2 i-1}$ and $X_{2 i}$ can change the expected number of edges which A meets among e_{i+1}, \ldots, e_{t} by at most two, as well as determining whether or not $i \in I_{A}$. Hence

$$
\left|Y_{i}-Y_{i-1}\right| \leq 3
$$

Azuma's inequality then implies that

$$
\mathbb{P}\left(Y_{t}>t \frac{\binom{n-2}{k}}{\binom{n}{k}}+\sqrt{18 t \log t}\right)<\frac{1}{t}
$$

Now $\left|I_{A}\right|=t-Y_{t}$ so the proof will be complete if we show that (for k large)

$$
\frac{t\binom{n-2}{k}}{\binom{n}{k}}+\sqrt{18 t \log t} \leq \frac{t}{2}
$$

This will hold if

$$
(2 t-k)^{2} \leq 2 t^{2}-4 t^{2} \sqrt{\frac{18 \log t}{t}}
$$

A routine calculation now shows that this holds for $k>d n\left(1+30 \sqrt{\frac{\log n}{n}}\right)$ and $n=2 t \geq 1000$.

Proof of Lemma 2.8. This is a simple exercise in double counting. Each set $B \in \mathcal{B}$ contains $\binom{m_{2}}{m_{1}}$ subsets of size m_{1}, while each set $C \in \partial^{\left(m_{1}\right)}(\mathcal{B})$ is contained in $\binom{t-m_{1}}{m_{2}-m_{1}}$ supersets of size m_{2} (and thus in at most this number of sets in \mathcal{B}). Hence

$$
\left|\partial^{\left(m_{1}\right)}(\mathcal{B})\right|\binom{t-m_{1}}{m_{2}-m_{1}} \geq|\mathcal{B}|\binom{m_{2}}{m_{1}},
$$

which implies the result.

In fact the same value $d=1-2^{-1 / 2}$ is a threshold for a slightly more general class of graphs.

Theorem 2.10. If G_{n} is the graph of order n with w_{n} pairwise disjoint edges and $n-2 w_{n}$ isolated vertices, where $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then there exists $\delta_{n}=o(1)$ such that

$$
N\left(G_{n}, k\right)= \begin{cases}\binom{n}{k}-\binom{n-2}{k}, & k<d n \\ (1-o(1))\binom{n}{k}, & k>d n\left(1+\delta_{n}\right)\end{cases}
$$

Proof. For $k<d n$ note that G_{n} is a subgraph of M_{n} and so $N\left(G_{n}, k\right) \leq$ $N\left(M_{n}, k\right)$. Moreover $\mathcal{A}_{\text {pair }}$ is a $\left(G_{n}, k\right)$-star of size $\binom{n}{k}-\binom{n-2}{k}$.

For $k>d n\left(1+\delta_{n}\right)$ a similar proof to that already given for Theorem 2.1 can be used (for more details see Corollary 3.3 in the next section).

Bohman et al. [2] asked whether other types of extremal G-intersecting families can occur (apart from families which are either (G, k)-stars or consist of almost all of $\binom{[n]}{k}$). We show that they can by giving a simple example of a graph for which (for appropriate values of k) the extremal family must be of a third type.

Let H_{n} be the graph with vertex set $[n]$ and edges $\{1,2\},\{3,4\},\{5,6\}$. The following family is H_{n}-intersecting

$$
\mathcal{A}_{2}=\left\{A \in\binom{[n]}{k}: A \text { meets at least two of the three edges of } H_{n}\right\}
$$

Note that

$$
\left|\mathcal{A}_{2}\right|=\binom{n}{k}-3\binom{n-4}{k}+2\binom{n-6}{k}
$$

Let $\epsilon>0$ be small, $n \geq n_{0}(\epsilon)$ be large and $1-2^{-1 / 2}+\epsilon<k / n<1 / 2-\epsilon$. Since $k / n>1-2^{-1 / 2}+\epsilon$ it is straightforward to check that \mathcal{A}_{2} is larger than the largest $\left(H_{n}, k\right)$-star. (The largest $\left(H_{n}, k\right)$-star consists of all k-sets meeting a fixed edge of H_{n} and so has size $\binom{n}{k}-\binom{n-2}{k}$.) Moreover $N\left(H_{n}, k\right) \neq$ $(1-o(1))\binom{n}{k}$, since $k / n<1 / 2-\epsilon$ implies (by the Erdős-Ko-Rado theorem) that any H_{n}-intersecting family contains at most $\binom{n-7}{k-1}$ of the sets in $\binom{[n] \backslash[6]}{k}$, so $N\left(H_{n}, k\right) \leq\binom{ n}{k}-\binom{n-7}{k}$.

Hence if \mathcal{B} is a k-uniform H_{n}-intersecting family of maximum size then \mathcal{B} does not contain almost all k-sets and \mathcal{B} is not an $\left(H_{n}, k\right)$-star. We do not know what form \mathcal{B} can take, only that it must be of some new third type, however \mathcal{A}_{2} is an obvious candidate extremal family.

3 General k-uniform problem: k large

The conclusion of Theorem 2.1 for k large can be extended to give an analogous result in a more general setting. The exact formulation of this generalization (Theorem 3.1) is rather ugly however we give two natural corollaries (Corollaries 3.2 and 3.3). Recall the definition (1) of a (G, k)-star with centre C from the introduction.

Theorem 3.1 has the following intuitive interpretation: if a largest (G, k)-star contains slightly more than half of all k-sets and there are lots of "independent" (G, k)-stars of this size then the "majority family", consisting of all k-sets belonging to more than half of these (G, k)-stars, contains almost all k-sets. (Idea of proof: a random k-set belongs to any particular largest (G, k)-star with probability $1 / 2+\epsilon$ so with high probability it belongs to a majority of them.)

Theorem 3.1. Let $\left\{G_{n}\right\}_{n=1}^{\infty}$ be a sequence of graphs of order n and $1 \leq k \leq n$. If the following three conditions hold for all n sufficiently large then $N\left(G_{n}, k\right)=$ $(1-o(1))\binom{n}{k}$.
(i) There exist isomorphic $\left(G_{n}, k\right)$-stars: $\mathcal{A}_{1}^{*}, \mathcal{A}_{2}^{*}, \ldots, \mathcal{A}_{w_{n}}^{*}$ with pairwise disjoint centres $C_{1}, C_{2}, \ldots, C_{w_{n}}$ such that $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$.
(ii) The common size of the centres of the \mathcal{A}_{i}^{*} is γ_{n}.
(iii) Each of the \mathcal{A}_{i}^{*} has size S_{n} satisfying

$$
S_{n} \geq\left(\frac{1}{2}+\left(\gamma_{n}+1\right) \sqrt{\frac{\log w_{n}}{w_{n}}}\right)\binom{n}{k}
$$

Let C_{n}^{p} denote the p th power of the n-cycle. (That is the graph with vertex set $[n]$ and $i \sim_{C_{n}^{p}} j$ iff $1 \leq \operatorname{dist}(i, j) \leq p$, where distance is measured around the cycle.)

Corollary 3.2. Let $p \geq 1$ be a constant and let α_{p} be the smallest positive root of

$$
(1-x)^{2 p+1}(1+p x)=1 / 2 .
$$

There exists $\epsilon_{p, n}=o(n)$ such that if $k \geq \alpha_{p} n+\epsilon_{p, n}$ then $N\left(C_{n}^{p}, k\right)=(1-$ $o(1))\binom{n}{k}$. In particular $N\left(C_{n}, k\right)=(1-o(1))\binom{n}{k}$ for $k>0.266 n$.
Corollary 3.3. If $r \geq 1$ is a constant and the number of pairwise disjoint r cliques in G_{n} is unbounded as $n \rightarrow \infty$ then there exists $\epsilon_{r, n}=o(n)$ such that $N\left(G_{n}, k\right)=(1-o(1))\binom{n}{k}$, for $k>\left(1-2^{-1 / r}\right) n+\epsilon_{r, n}$.

We note that both Corollaries 3.2 and 3.3 could be extended to the case of p, r non-constant but for simplicity we omit these extensions.

Proof of Theorem 3.1. Suppose that $\left\{G_{n}\right\}_{n=1}^{\infty}, \mathcal{A}_{1}^{*}, \mathcal{A}_{2}^{*}, \ldots, \mathcal{A}_{w_{n}}^{*}$, and C_{1}, C_{2}, $\ldots, C_{w_{n}}$ satisfy conditions (i)-(iii). For $A \in\binom{[n]}{k}$ let

$$
\lambda(A)=\#\left\{i \in\left[w_{n}\right]: A \in \mathcal{A}_{i}^{*}\right\}
$$

and define

$$
\mathcal{A}_{\mathrm{maj}}=\left\{A \in\binom{[n]}{k}: \lambda(A)>w_{n} / 2\right\}
$$

Clearly $\mathcal{A}_{\text {maj }}$ is G_{n}-intersecting since if $A, B \in \mathcal{A}_{\text {maj }}$ then there exists $i \in\left[w_{n}\right]$ such that $A, B \in \mathcal{A}_{i}^{*}$ and \mathcal{A}_{i}^{*} is G_{n}-intersecting (since it is a ($\left.G_{n}, k\right)$-star). We will adapt the proof method of Theorem 2.1 to show that $\left|\mathcal{A}_{\text {maj }}\right|=(1-o(1))\binom{n}{k}$.

Let $A \in\binom{[n]}{k}$ be chosen uniformly at random. For $j \in[n]$ let

$$
X_{j}(A)= \begin{cases}1, & j \in A \\ 0, & \text { otherwise }\end{cases}
$$

Since the centres $C_{1}, C_{2}, \ldots, C_{w_{n}}$ are pairwise disjoint and have common size γ_{n} we may suppose that for $i \in\left[w_{n}\right]$ we have $C_{i}=\left[(i-1) \gamma_{n}+1, i \gamma_{n}\right]$. For $i \in\left[w_{n}\right]$ let \mathcal{F}_{i} be the σ-algebra generated by $X_{1}(A), X_{2}(A), \ldots, X_{i \gamma_{n}}(A)$. (That is we condition on how A meets the centres of $\mathcal{A}_{1}^{*}, \mathcal{A}_{2}^{*}, \ldots, A_{i}^{*}$.) Let $Y_{0}=\mathbb{E}\left(w_{n}-\lambda(A)\right)$ and for $i \in\left[w_{n}\right]$ define $Y_{i}=\mathbb{E}\left(w_{n}-\lambda(A) \mid \mathcal{F}_{i}\right)$. Now $Y_{0}, Y_{1}, \ldots, Y_{w_{n}}$ is a martingale and, since each centre has size γ_{n}, we have

$$
\left|Y_{i}-Y_{i-1}\right| \leq \gamma_{n}+1
$$

for $i \in\left[w_{n}\right]$. Moreover

$$
Y_{0}=w_{n}\left(1-\frac{S_{n}}{\binom{n}{k}}\right) \leq \frac{w_{n}}{2}-\left(\gamma_{n}+1\right) \sqrt{w_{n} \log w_{n}}
$$

Applying Azuma's inequality (Lemma 2.9) we obtain

$$
\begin{aligned}
\operatorname{Pr}\left(A \notin \mathcal{A}_{\mathrm{maj}}\right) & =\operatorname{Pr}\left(Y_{w_{n}} \geq w_{n} / 2\right) \\
& \leq \operatorname{Pr}\left(Y_{w_{n}} \geq Y_{0}+\left(\gamma_{n}+1\right) \sqrt{w_{n} \log w_{n}}\right) \\
& \leq \frac{1}{\sqrt{w_{n}}} \\
& =o(1)
\end{aligned}
$$

The result now follows.

Proof of Corollary 3.2. A largest $\left(C_{n}^{p}, k\right)$-star, \mathcal{C}^{*}, is given by taking a largest clique K (of order $p+1$) and all $\binom{p+1}{2}$ pairs of vertices $\{i, j\} \in\binom{[n] \backslash K}{2}$ satisfying $i \not \chi_{C_{n}^{p}} j$ and $K \subseteq \Gamma^{+}(\{i, j\})$. Hence

$$
\left|\mathcal{C}^{*}\right|=\binom{n}{k}-\binom{n-2 p-1}{k}-p\binom{n-2 p-2}{k-1}
$$

Note that the centre of \mathcal{C}^{*} has size $3 p+1$. Moreover the number of $\left(C_{n}^{p}, k\right)$-stars of maximum size with pairwise disjoint centres is at least $\lfloor n /(3 p+1)\rfloor \rightarrow \infty$ as $n \rightarrow \infty$. (So conditions (i) and (ii) of Theorem 3.1 hold.)

Writing $c=k / n$ we have

$$
\left|\mathcal{C}^{*}\right| \geq\left(1-(1-c)^{2 p+1}(1+c p)+O\left(\frac{1}{n}\right)\right)\binom{n}{k}
$$

Hence, for a suitable choice of $\epsilon_{p, n}$ (which can clearly be taken to satisfy $\epsilon_{p, n}=$ $o(n)$), if $k \geq \alpha_{p} n+\epsilon_{p, n}$ then condition (iii) of Theorem 3.1 also holds and the result follows.

Proof of Corollary 3.3. This is almost identical to the proof of Corollary 3.2 so we give only a sketch. Let $K_{1}, K_{2}, \ldots, K_{w_{n}}$ be pairwise disjoint r-cliques in G_{n}, with $w_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If

$$
\mathcal{A}_{i}^{*}=\left\{A \in\binom{[n]}{k}: A \cap K_{i} \neq \emptyset\right\}
$$

then $\left|\mathcal{A}_{i}^{*}\right|=\binom{n}{k}-\binom{n-r}{k}$. Conditions (i) and (ii) of Theorem 3.1 hold with $\gamma_{n}=r$. Moreover there exists $\epsilon_{r, n}=o(n)$ such that if $k>\left(1-2^{-1 / r}\right) n+\epsilon_{r, n}$ then condition (iii) also holds. The result now follows.

4 Non-uniform G-intersecting families

The question of how large a non-uniform intersecting family $\mathcal{A} \subseteq 2^{[n]}$ can be is rather easy: \mathcal{A} cannot contain both a set and its complement and so $|\mathcal{A}| \leq 2^{n-1}$, moreover this bound can attained in numerous different ways.

The non-uniform G-intersection problem is also easier to solve than the k uniform version. For a graph G of order n let

$$
N(G)=\max \left\{|\mathcal{A}|: \mathcal{A} \subseteq 2^{[n]} \text { is } G \text {-intersecting }\right\}
$$

The size of the extremal family depends on the matching number, $m(G)$, the size of a largest matching in G.

Theorem 4.1. If $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a sequence of non-empty graphs of order n with $m\left(G_{n}\right)$ non-decreasing then either $m\left(G_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$, in which case $N\left(G_{n}\right)=(1-o(1)) 2^{n}$, or there exists $m \geq 1$ such that $m\left(G_{n}\right)=m$ for all $n \geq n_{0}$ and

$$
\begin{equation*}
1-e^{-m / 8} \leq \mathbb{P}(\operatorname{Bin}(m, 3 / 4)>m / 2) \leq \frac{N\left(G_{n}\right)}{2^{n}} \leq 1-2^{-(2 m+1)} \tag{17}
\end{equation*}
$$

In the latter case both bounds are attainable.
Lemma 4.2. Let G be a graph of order n with a matching of size $m \geq 1$ then

$$
\frac{N(G)}{2^{n}} \geq \mathbb{P}(\operatorname{Bin}(m, 3 / 4)>m / 2) \geq 1-e^{-m / 8}
$$

Proof. Take a matching M of size m and define

$$
\begin{equation*}
\mathcal{M}_{\text {maj }}=\left\{A \in 2^{[n]}: A \text { meets }>m / 2 \text { of the edges in } M\right\} . \tag{18}
\end{equation*}
$$

Note that $\mathcal{M}_{\text {maj }}$ is G-intersecting.
If we select a set $A \in 2^{[n]}$ uniformly at random by choosing each $i \in[n]$ independently with probability $1 / 2$ then A meets any edge $e \in M$ independently with probability $3 / 4$. Hence if $X \sim \operatorname{Bin}(m, 3 / 4)$ then

$$
\mathbb{P}\left(A \in \mathcal{M}_{\mathrm{maj}}\right)=\mathbb{P}(X>m / 2)
$$

Hoeffding's inequality [6] implies that this is at least $1-e^{-m / 8}$ and the result follows.

Proof of Theorem 4.1. Since $m\left(G_{n}\right)$ is increasing either $m\left(G_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ or there exists $m \geq 1$ such that $m\left(G_{n}\right)=m$ for all $n \geq n_{0}$. In the former case Lemma 4.2 implies that $N\left(G_{n}\right)=(1-o(1)) 2^{n}$, so suppose that $m\left(G_{n}\right)=m$ for all $n \geq n_{0}$. Lemma 4.2 now implies that the lower bound in (17) holds. For the upper bound consider a maximal matching in G_{n}, this contains at most $2 m$ vertices. Let $W \subseteq[n]$ be the other vertices of G_{n}. Since W is the complement of a maximal matching it is an independent set and so if $A, B \subseteq 2^{W}$ are $G_{n^{-}}$ intersecting then $A \cap B \neq \emptyset$. Hence if $\mathcal{A} \subseteq 2^{[n]}$ is G_{n}-intersecting then it contains at most half of the sets from 2^{W}. The fact that $|W| \geq n-2 m$ yields the upper bound in (17).

Note that if G_{n} is the union of a clique of order $2 m+1$ and $n-2 m-1$ isolated vertices then the upper bound in (17) is sharp. (The family of all sets meeting the clique is G_{n}-intersecting and of the correct size.)

To see that the lower bound in (17) is also attainable requires slightly more work. We claim that if G_{n} is the union of a matching M on m edges and $n-2 m$ isolated vertices then the family $\mathcal{M}_{\text {maj }}$ defined in (18) is a largest $G_{n^{-}}$ intersecting family. (We will assume for simplicity that m is odd, if m is even a similar argument will work.)

Let $\mathcal{A} \subseteq 2^{[n]}$ be a G_{n}-intersecting family of maximum size. Let $E=\left\{e_{1}\right.$, $\left.e_{2}, \ldots, e_{m}\right\}$ be the m edges of the matching and let $V=\left\{v_{1}, v_{2}, \ldots, v_{n-2 m}\right\}$ be the $n-2 m$ isolated vertices. For $A \subseteq E$ and $B \subseteq V$ let

$$
\mathcal{S}(A, B)=\left\{C \in 2^{[n]}: A=\{e \in E: C \cap e \neq \emptyset\} \text { and } B=\{v \in V: v \in C\}\right\} .
$$

So $\mathcal{S}(A, B)$ contains those sets which meet precisely those edges in A and contain precisely those isolated vertices in B.

First note that if $A \subseteq E$ and $B \subseteq V$ then $|\mathcal{S}(A, B)|=3^{|A|}$. Secondly if $A \subseteq E$ and $B \subseteq V$ then at most one of $\mathcal{A} \cap \mathcal{S}(A, B)$ and $\mathcal{A} \cap \mathcal{S}(E \backslash A, V \backslash B)$ can be non-empty (otherwise \mathcal{A} is not G_{n}-intersecting). Moreover the maximality of \mathcal{A} implies that if $\mathcal{A} \cap \mathcal{S}(A, B) \neq \emptyset$ then $\mathcal{S}(A, B) \subseteq \mathcal{A}$. Finally note that if for each $A \subseteq E$ and $B \subseteq V$ we take the larger of $\mathcal{S}(A, B)$ and $\mathcal{S}(E \backslash A, V \backslash B)$ then the resulting family is at least as large as \mathcal{A}. However this family is $\mathcal{M}_{\text {maj }}$.

5 Open problems and conjectures

An analogue of Theorem 2.1 should surely hold when $G_{r, n}=K_{1} \dot{\cup} K_{2} \dot{\cup} \cdots \dot{\cup} K_{t}$ is the disjoint union of r-cliques, where $r>2$ is a constant and $n=r t$. Indeed by Corollary 3.3 we have $N\left(G_{r, n}, k\right)=(1-o(1))\binom{n}{k}$ for $k>d_{r} n(1+o(1))$ (where $d_{r}=1-2^{-1 / r}$). Moreover if $k<d_{r} n(1-o(1))$ then we can prove that $N\left(G_{r, n}, k\right)=(1+o(1))\left(\binom{n}{k}-\binom{n-r}{k}\right)$. However an exact version should hold so we make the following conjecture.
Conjecture 5.1. If $r>2$ is a constant, $G_{r, n}$ is a disjoint union of r-cliques and $d_{r}=1-2^{-1 / r}$ then there exists $\delta_{r, n}=o(1)$ such that

$$
N\left(G_{r, n}, k\right)=\left\{\begin{array}{ll}
\binom{n}{k}-\binom{n-r}{k}, & k<d_{r} n\left(1-\delta_{r, n}\right), \\
(1-o(1)
\end{array}\right)\binom{n}{k}, \quad k>d_{r} n\left(1+\delta_{r, n}\right) .
$$

Moreover the extremal families are unique up to isomorphism.
Since there is a small range of values of k for which Theorem 2.1 fails to determine $N\left(M_{n}, k\right)$ we ask the following obvious question.

Question 5.2. Is $N\left(M_{n}, k\right)=\max \left\{\left|\mathcal{A}_{\text {pair }}\right|,\left|\mathcal{A}_{\text {maj }}\right|\right\}$ for all values of k and n ?
Bohman et al. [2] made the following conjecture concerning the cycle.
Conjecture 5.3 (Bohman et al. [2]). There is a constant c such that for any fixed $\epsilon>0$

$$
N\left(C_{n}, k\right)= \begin{cases}\binom{n}{k}-\binom{n-2}{k}+\binom{n-4}{k-2}, & k<(c-\epsilon) n, \\ (1-o(1))\binom{n}{k}, & k>(c+\epsilon) n .\end{cases}
$$

Given our result for cycles (Corollary 3.2) we make the following conjecture.
Conjecture 5.4. Conjecture 5.3 is true with $c=0.266 \ldots$, the smallest positive root of $(1-x)^{3}(1+x)=1 / 2$.

Given our example showing that there exist graphs and values of k for which the extremal k-uniform G-intersecting families are neither (G, k)-stars nor almost all of $\binom{[n]}{k}$ we pose the following question.

Question 5.5. Is it true that for any graph G and $1 \leq k \leq n$, there exist (G, k)-stars $\mathcal{A}_{1}^{*}, \ldots, \mathcal{A}_{t}^{*}$ such that $N(G, k)=\left|\mathcal{A}_{\text {maj }}\right|$? Where for t odd

$$
\mathcal{A}_{\text {maj }}=\left\{A \in\binom{[n]}{k}: A \text { belongs to }>t / 2 \text { of the } \mathcal{A}_{i}^{*}\right\}
$$

and for t even we extend this family to include as many k-sets as possible that belong to exactly $t / 2$ of the \mathcal{A}_{i}^{*}.

We note that a result of Erdős, Frankl and Katona [4] implies that a positive answer to this question would yield a positive answer to Question 5.2.

References

[1] Azuma, K. (1967) Weighted sums of certain dependent random variables. Tôhoku Math. J. 19 357-367.
[2] Bohman, T., Frieze, A., Ruszinkó, M. and Thoma, L. (2000) G-intersecting families. Combin. Probab. and Comput. 10 376-384.
[3] Bohman, T. and Martin, R. (2003) A note on G-intersecting families. Discrete. Math. 260 183-188.
[4] Erdős, P. L., Frankl, P. and Katona, G. O. H. (1985) Extremal hypergraph problems and convex hulls. Combinatorica 5 11-26.
[5] Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 212 313-320.
[6] Hoeffding, W., (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (301) 13-30.

[^0]: *School of Mathematical Sciences, Queen Mary, University of London, E1 4NS, UK, Email: r.johnson@qmul.ac.uk
 ${ }^{\dagger}$ Department of Mathematics, University College London, WC1E 6BT, UK, Email: talbot@math.ucl.ac.uk. This author is a Royal Society University Research Fellow.

