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Abstract

If G is a graph with vertex set [n] then A C 2" is G-intersecting if
for all A, B € A either AN B # @ or there exist a € A and b € B such
that a ~g b.

The question of how large a k-uniform G-intersecting family can be
was first considered by Bohman, Frieze, Ruszinké and Thoma [2] who
identified two natural candidates for the extrema depending on the relative
sizes of k£ and n and asked whether there is a sharp phase transition
between the two. Our first result shows that there is a sharp transition
and characterizes the extremal families when G is a matching. We also
give an example demonstrating that other extremal families can occur.

Our second result gives a sufficient condition for the largest G-inter-
secting family to contain almost all k-sets. In particular we show that if
C), is the n-cycle and k > an + o(n), where o = 0.266. . . is the smallest
positive root of (1 — x)3(1 4+ x) = 1/2, then the largest C,-intersecting
family has size (1 —o(1))(})-

Finally we consider the non-uniform problem and show that in this
case the size of the largest G-intersecting family depends on the matching
number of G.

1 Introduction

The following generalization of the notion of an intersecting family was intro-
duced by Bohman, Frieze, Ruszinké and Thoma [2]. If G is a graph with vertex
set [n] then A C 2" is G-intersecting if for all A, B € A either AN B # () or
there exist a € A and b € B such that a ~¢g b.

The question of how large a k-uniform G-intersecting family can be is a
natural generalization of the Erd6s—Ko—Rado problem, indeed if G is the empty
graph it is answered by the classical Erdés—Ko—Rado theorem [5].
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Theorem 1.1 (Erdés—-Ko—Rado 1938 [5]). If A C ([Z]) is intersecting then

(17D, 1<k<n/2
|A|§{ (Z), n/2 <k <n.

Moreover if k < n/2 then equality is attained iff A consists of all k-sets contain-
ing a fized element of [n]. While (trivially) if k > n/2 then equality is attained

i A= ().

For a graph G with vertex set [n] and 1 < k < n we define
N(G, k) = max {|A| tAC ([Z]> is G—intersecting} .

Bohman et al. [2] were the first to consider the problem of determining N (G, k).
They identified two types of behaviour for the extrema depending on the rela-
tive sizes of k and n, mirroring the extremal behaviour of ordinary k-uniform
intersecting families (as given by Theorem 1.1).

The augmented neighbourhood of A C [n], denoted by I'"(A), is the union
of A and its neighbourhood in G. So a family A C 2" is G-intersecting iff for
all A,B € A we have ANTT(B) # (.

An obvious example of a k-uniform G-intersecting family is the collection of
all k-sets meeting a fixed clique in G. For instance if G = C,, is the n-cycle then

A= {Ae <[Z]) :An{1,2}¢®},

is Cp-intersecting. However A is not maximal: it can be extended to

B_AU{BG([Z]> :3,neB}.

More generally if K is a clique in G and My, Ma, ..., M, C [n]\K satisfy
KCIH(M;) for 1<i<r and M;NT(M;)#£0, i # 7,

then

AK; My, ..., M,) = {AE <[Z]) :ANK # 0 or M; C A for some i}7 (1)

is also G-intersecting. We will call such a family a (G, k)-star with centre

=1

Bohman et al. [2] showed that if G is sparse and k = O(n'/*) then the largest
G-intersecting families are of this form. (More recently Bohman and Martin [3]
gave an improvement, showing that a similar result also holds for k = O(n'/?).)



Bohman et al. [2] also showed that if G is sparse with minimum degree ¢ and
k > cn, where c is a constant satisfying ¢ — (1 — ¢)®** > 0, then

N(G.k) = (1 —0(1))(7;).

These two different types of extrema mirror the two cases of the Erdos—Ko—
Rado theorem, however there is a large gap between the values of k£ for which
they are known to occur. Bohman et al. [2] asked whether there is a sharp phase
transition and whether other types of extrema exist.

Our first result in the next section (Theorem 2.1) shows that there is a sharp
transition and characterizes the extremal families when G is a perfect matching.
We also give an example of a graph demonstrating that other types of extrema
exist.

In the third section we give a sufficient condition for the largest G-intersect-
ing family to contain almost all k-sets (Theorem 3.1). In particular we show
that if C,, is the n-cycle and k > an + o(n), where ov = 0.266. . . is the smallest
positive root of (1—z)3(1+x) = 1/2, then the largest C,,-intersecting family has
size (1—0(1))(}) (Corollary 3.2). This improves an earlier bound of k > 0.317n
due to Bohman et al. [2].

In the fourth section we consider the non-uniform problem and show that in
this case the size of the largest G-intersecting family depends on the matching
number of G (Theorem 4.1).

We end the paper with some open problems and conjectures.

2 Matchings

Let M, be a matching of order n = 2t with edges ey,...,e;, where e; = {2i —
1,2i}. For A € ([Z]) let Io={i€[t]: ANe; # 0} (so L4 indexes the edges that
A meets). An obvious candidate for the largest M,,-intersecting family when &

is small is
-Apair = {A S ([Z]> :1e IA}.

The precise form of the extremal family when k is large will depend on the
parity of t. For ¢ odd let

A = {A € <[Z]> Al > ;}

For t even we can extend Ay,j by adding half of those k-sets meeting exactly

t/2 edges. To be precise, for ¢ even let B C (t;Q) be an (ordinary) intersecting

family of maximum size %( t;Q)' We define

n t
Amaj:{Ae ([k]>|IA|>2OYIAEB}



Note that both Ap.ir and Ayaj are M,-intersecting.

The result of Bohman and Martin (Theorem 2 [3]) implies that Apai is
a k-uniform M, -intersecting family of maximum size for & = O(n'/?) while
the result of Bohman et al. (Theorem 7 [2]) implies that N(M,, k) = (1 —
o(1))(}) for k > 0.38196n. We are able to give the following result describing a
sharp threshold for the behaviour of N (M, k) and characterizing the extremal
families.

Theorem 2.1. Let n =2t > 1000, 1 < k < n and M, be a matching of order
n with edges {1,2}, {3,4},....{n—1,n}. Ifd=1—-2"12=0.29289... then

| Apair] = (1) — (";221 k < dn,
k

N(Mmk):{| Amagl = (1= 0 1))(7), k> dn(l+e,),

where €, = 30\/10% = o(1). Moreover, up to isomorphism, these bounds are
only achieved by the families Apqir and Apmaj described above.

For the remainder of this section we will say that k is small (with respect to
n) if k < dn and k is large (with respect to n) if k > dn(1 +€,).

Proof of Theorem 2.1. Let A C ( ) be a k-uniform M, -intersecting family of
maximum size (so |A| = N(M,, k)) We define

T(A)={I4C[1]: Ae A}

Note that the sets in Z(.A) all have sizes in the range [k/2] up to k. (Since a
k-set cannot meet less than [k/2] edges or more than & edges.)
For B C [t] define

Wi (B) = {A c ([Z]> Iy = B}.

So Wi (B) is the family of all k-sets meeting precisely those edges indexed by
B. The size of this family depends only on the size of B. For 1 < m < t let
wi(m) = |Wg([m])|. (So wg(m) # 0iff [k/2] <m < k.)

We note a few useful facts whose proofs we defer.

Lemma 2.2. Z(A) has the following properties:
(a) Z(A) is intersecting.
(b) If B C [t], [k/2] < |B| <k and Z(A)U{B} is intersecting then B € Z(A).
(¢c) If BEI(A), BC CC[t] and |C] <k then C € Z(A).

Lemma 2.3. If Ac A, B € (') and 14 = Ip then B € A. Hence

U Wi(B)

BeI(A)



Thus if Ay, = {A € A |I4] = m}, Z,,(A) = {B € Z(A) : |B| = m} and
im(A) = |Zm(A)| then
k
Am| = im(Awi(m)  and A= Y im(Awi(m).
m=[k/2]
Using Lemmas 2.2 and 2.3 the problem of determining N(M,, k) can be

reduced to a weighted intersection problem for Z(A), with the weight of a set
B € Z(A) given by w(|B]).

Lemma 2.4.

2m—k( m m
wy,(m) { g (:7n), [R/2] <m <k,

otherwise.
Lemma 2.5. There exists m* = m*(k,t) such that {wk(m)}fn:[k/21 satisfies
wi([k/2]) < <wp(m™) > wp(m* + 1) > wp(m*™ +2) > - > wg(k).

That is the sequence is strictly increasing up to a mazimum which is attained at
m* and possibly also attained at m* + 1 and thereafter the sequence is strictly
decreasing.

Lemma 2.6. If k is small then m* < t/2. Moreover if [k/2] < m < k and
m < t/2 then wi(m) > wi(t —m).
Lemma 2.7. If k is large then m* > t/2 and

5 mn(2) <)

m<t/2

Lemma 2.8. If m; < msg, BC (75]2) and

™) (B) = {CG ([t]) : C C B for some B eB}

mi
then ()
o\ (B B
o (B) 18
(m,) (o)
Returning to the proof of Theorem 2.1 we suppose first that k is small and

let Z(A), Ay, T, (A) and i,,(A) be as defined above. Lemma 2.3 implies that
for m < t/2

[Am| + At | = im (A)wi (m) + i (A)wy (¢ = m). (2)

By Lemma 2.2 (a), iy, (A) + ét—m(A) is the size of an intersecting family in
(Eﬂ) U (titln) Hence Lemma 2.6 and the Erdés—Ko-Rado theorem (Theorem
1.1) imply that

And il < (17 Yot + (01 Junte—m),

1 t—m



with strict inequality unless Z,,, (A) UZ;_,,(A) consists of all sets in ([Tfl]) u (tﬂn)
containing a fixed element of [¢] (which is the case for Ap,i,). Finally if ¢ is even

then Theorem 1.1 implies that

1/t
Al < /251, @
and again this is achieved by Apai,. Hence N (M, k) = |A] < | Apair-

To see that Apair is (up to isomorphism) the unique extremal family note
that for equality to hold Zj/21(A) must consist of all [k/2]-sets containing a
fixed element ¢ € [t]. Without loss of generality we may suppose that i = 1.
Lemma 2.2 (c) now implies that Apair € A. Finally k& < dn implies that Apair
is a maximal M, -intersecting family and hence A = Ap,ir. (Indeed it is easy to
check that Apai, is a maximal M, -intersecting family whenever k < n/3.) Note
that this part of Theorem 2.1 holds for all values of n and k < dn (the condition
n > 1000 is only required for the k large case).

Now suppose that k is large, that is k > dn(1 4+ ¢€,). If K >t = n/2 then
Amaj = ([Z]) and the result is trivial, so suppose that k& < ¢. In this case
Lemma 2.7 tells us that the maximum of wg(m) is achieved at m* > t/2. By
Lemma 2.5, wy(m) is strictly increasing for m < m* so wi(m) > wy(t — m) for
t/2 <m < m*. By Lemma 2.2 (a), i, (A) 414t (A) is the size of an intersecting
family in (Eﬁb) u (tﬂn) so, for t/2 < m < m*, wi(m) > wy(t —m) implies that

t
m

A+ Wil < (1 )ntm) (@
with strict inequality unless Z;_,,(A) is empty and Z,,,(A) = (Eﬂ) (which is the
case for Apaj).

If ¢ is odd then (4) bounds the number of sets in A,, for t —m* < m < m*.
However if ¢ is even then we note that i, /5(A) is the size of an intersecting family
in (t;Q) and so (3) holds.

If Z,,(A) = 0 for m <t — m* then (4) and, in the case of t even (3), imply
that |A| < |Amaj|, with strict inequality unless A = Apaj. We suppose now,
for a contradiction, that there exists m < t — m* such that Z,,(A) # 0. Let
mo <t —m™ be chosen so that

imo (A) = max im(A) m<t— m*} .
() { @ "

(So the proportion of mg-sets in Z(A) is maximal subject to mg < t —m*.) Let
B = im, (.A)/(nio) > 0. By Lemma 2.3 we have

> Mal<s 3 wm()). )

m<t—m* m<t—m*




The complements of the sets in Z,,,(A) are all missing from Z;_,,,(A), so if
B=( I\Zt—mo (A) then |B| > ip, (A) = 5(,. ). Recall that

[¢] t
tfmo mo

oM (B) = {C € (g) :C' C B for some B € B}.

If t/2 < m <t —mg then Lemma 2.2 (c) implies that 9™ (B) N Z,,(A) = 0
while Lemma 2.8 implies that

o (B)| _1B]
() ()

Note that m* <t — mg and hence for t/2 < m < m*,

> p.

i< (1) -lommi<a-n( ). (6)

m m

Now if t/2 < m < m* then wi(m) > wg(t —m), so (6) implies that

A+ el < (1)1 = B)ntm) + B (e~ m). @

If m <t — m™* then, by the definition of 3,
Al < 8 Veon(m) (8)
m| > m k .

While trivially if m > m* then |A,,| < wy(m)(/). Together with (7), (8), and
in the case of ¢ even (3), this implies that

t t
A= ol < 3 5( 0 Juntm) = X () Juntm)
m<t/2 t/2<m<m*
Now Lemma 2.7 implies that
1/n t
Al - ‘Amaj| <p (t (k) - Z (m) wk(m)) .
t/2<m<m*
So we will have|A| < |Amaj| (and the proof will be complete) if we show that
t 1/n
> — .
£ (Jeim ()
t/2<m<m*

Let m; satisfy

anomn) (1) =meax {unom) (1) < /21 < < .



Recall that

5 Qpon-)

and k < t. Hence

t 1 n 2 (n
> — > — . 10
<m1>w’“(m1)— 2+1<k) —t+2(k> (10)
Since m* > ¢/2, both wy(m) and () are increasing in m for m < ¢/2 and
decreasing in m for m > m* so my € {[t/2],...,m*}. If my # t/2 then

t/2 < m; < m* and so (10) implies that (9) holds. Otherwise ¢ is even and
my = t/2. In which case (10) and wy(t/2 4+ 1) > wy(t/2) imply that

(a0 > g (o) 2 e ()

This implies that (9) holds so long as 2¢% > (¢ +2)2, which is true for t > 5. O

Proof of Lemma 2.2. If A, B € Z(A) then there exist C, D € A such that A =
Ic and B = Ip. Since A is M,-intersecting so C' and D must meet a common
edge e;. Hence i € AN B and so Z(A) is intersecting.

If Lemma 2.2 (b) does not hold then there is B C [t], with [k/2] < |B| <k
such that Z(A) U {B} is intersecting but B ¢ Z(A). Now [k/2] < |B| < k
implies that W (B) # () and so B = AU W (B) is a k-uniform M,,-intersecting
family satisfying |B| > |.A|, contradicting the maximality of |.A|.

Finally (b) implies (¢) since if B C C and B € Z(A) then Z(A) U{C} is also
intersecting. O

Proof of Lemma 2.3. If A € A, B € ([Z]) and I4 = Ip then AU {B} is M,-

intersecting. So, by the maximality of |A|, B € A. Hence
A= |J w(B).

BeI(A)
Moreover this is a disjoint union since if B,C € Z(A) and B # C then W (B)N
Wi (C) = (. The final part follows directly from the definitions. O

Proof of Lemma 2.4. If m < [k/2] or m > k then no k-set meets m edges and
hence wy(m) = 0, so suppose that [k/2] < m < k. Consider A € ([Z]) meeting
the first m edges of M, (that is A € Wy([m])). For such a set let a; denote the
number of edges it meets in exactly ¢ elements, where ¢ = 1,2. Since a1 +as =m
and a; + 2a2 = k we have a; = 2m — k and as = kK — m. Thus such a set is
uniquely determined by choosing k — m of the m edges from which to take both
vertices and then choosing one of the two possible vertices from each of the
remaining 2m — k edges. O



Proof of Lemma 2.5. We show first that if [k/2] < m < k then
wi(m)? > wi(m + Dwy,(m — 1). (11)

First note that this holds for m = [k/2] or m = k since in this case the RHS of
(11) is zero while the LHS is positive. So suppose that [k/2] < m < k. Now

wy(m)? - om(k—m+1)2m —k+2)(2m —k+1)
wi(m+ Dweg(m—1)  (m+1)(k—m)2m —k)(2m —k — 1)
m(k—m+1)
(m+1)(k—m)
> 1.

Hence if y,,, = wy(m)/wg(m + 1) then {ym}¥ _ rk/2) 1 strictly increasing. This
implies the result. O

Proof of Lemma 2.6. Let k be small. We will assume that ¢ = 2s is even, the
proof for ¢ odd is essentially identical. By Lemma 2.5 if wg (s — 1) > wg(s) then
m* < s. Recall that since k is small we have k < dn — 1, where d =1 — 271/2
and n = 2t = 4s. Now

wrp(s—1)  (2s—k)(2s—k—1)
wi($) B 4s(k — s+ 1)
(25 —k —1)2
4s(k —s+1)
1.

Hence m* < s =t/2.
We now prove by induction on a > 1 that if [k/2] < s —a < k then
wi(s —a) > wi(s + a). (Note that we may suppose that s + a < k since
otherwise wg (s + a) = 0.) For a = 1 this follows from m* < s — 1 and Lemma
2.5 so suppose that a > 2 and the result holds for a — 1. It is sufficient to show
that
wi(s — a) < wi(s — (a—1))
wr(s+a) — wi(s+a—1)"

(12)

since the RHS of (12) is strictly greater than 1 by our inductive hypothesis. We

consider
wi(s — a)wg(s +a—1)

wi(s + a)wg(s — (a — 1))’
We wish to show that v > 1. Now

(2s—2a—k+2)(2s—2a—k+1)(25s+2a—k)(2s+2a—k —1)
16(s—a+1)(s+a)k—s+a)(k—s—a+1)
(2s —k+2a—1)%(2s — k —2a — 1)
16((s2 —a?)((k —s+1)%2 — a?)

’y:

(13)



Since (13) is decreasing in k and k < dn (since k is small) we may suppose that
k=dn —1=4ds — 1. Rearranging we now need to check that

(5 — 2ds 4 a)*(s — 2ds — a)* — (s*> — a®)((4ds — 5)* — a?) > 0. (14)

Differentiating (14) with respect to a we see that it is increasing in a, for a > 0
(the partial derivative is 16ad?s?). Hence it is sufficient to check that (14) holds
for a = 0, which it does with equality. O

For the proof of Lemma 2.7 we will require Azuma’s inequality.

Lemma 2.9 (Azuma [1)). IfYy,...,Y; is a martingale and |Y; = Y;_1| < ¢; for
1<i<t then for any A >0

2
P(Y; 2 Yo + ) <exp <w> :
Proof of Lemma 2.7. Let k be large. We will assume that t = 2s is even, the
proof for ¢ odd is essentially identical. By Lemma 2.5 if w(s) < wg(s+ 1) then
m* > s. Since k is large we have k > dn + 4d = 4d(s + 1), where d = 1 —271/2
and n = 2t = 4s. Now

wg(s) (25 —kE+2)(25s—-k+1)
wr(s+1) A(s+1)(k—s)
(25 — k + 2)?
4(s+1)(k—s—1)
1.

Hence m* > s =1/2.
‘We now need to show that

t 1/n
Z wg(m) <m) < t(k)' (15)
m<t/2
IfAe ([Z]) is chosen uniformly at random and
IA:{iE [t] :Aﬁei;«é@},

then

P <t/2)= 3 )

m<t/2 (Z)

So it is sufficient to prove that
1
P(|1a] <t/2) < n (16)

For j € [n] let
|1, jeA,
X;(4) = { 0, otherwise.

10



Recall that M, has edges e1, ..., e, with e; = {2i — 1,2i}. For i € [t] let F; be
the o-algebra generated by X7, Xs,..., Xs; and define Y; = E(|[t]\I4| | F;). If
Yo = E(|[t]\14]) then Yy, Y7,...,Y; is a martingale and

WWKM)=§:MAﬂm=®y=“?y.
i=1 k

The values of X5;_1 and X5; can change the expected number of edges which
A meets among €;,1,...,e; by at most two, as well as determining whether or
not ¢ € I4. Hence

lY; = Yi_1| < 3.

Azuma’s inequality then implies that

n—2
P(Y; >t((,’§)) ++/18tlogt) <
k

Now |I4| =t —Y; so the proof will be complete if we show that (for k large)

| =

n—2
() + /18tlogt <

(%)

18logt
(2t — k)% < 212 —4752,/%.

A routine calculation now shows that this holds for k& > dn (1 + 304/ 105 ”) and
n = 2t > 1000. O

N |+

This will hold if

Proof of Lemma 2.8. This is a simple exercise in double counting. Each set
B € B contains (2?) subsets of size m1, while each set C' € 9" (B) is contained

in (,/""™ ) supersets of size m, (and thus in at most this number of sets in B).

WWWQ(t‘ml)zw(mﬁ,
ma —my mi

Hence
which implies the result. O

In fact the same value d = 1 —2~1/2

class of graphs.

is a threshold for a slightly more general

Theorem 2.10. If G,, is the graph of order n with w,, pairwise disjoint edges
and n — 2w, isolated vertices, where w, — oo as n — oo, then there exists
0n = o(1) such that

™ ("), k<dn,
N(Gn, k) = { ((f)_ 0((1)13()2)7 k> dn(1+94,).



Proof. For k < dn note that G,, is a subgraph of M, and so N(G,,k) <
N (M, k). Moreover Apa;, is a (Gy, k)-star of size (Z) — (";2)

For k > dn(1+4,) a similar proof to that already given for Theorem 2.1 can
be used (for more details see Corollary 3.3 in the next section). O

Bohman et al. [2] asked whether other types of extremal G-intersecting fam-
ilies can occur (apart from families which are either (G, k)-stars or consist of
almost all of ([Z})) We show that they can by giving a simple example of a
graph for which (for appropriate values of k) the extremal family must be of a
third type.

Let H, be the graph with vertex set [n] and edges {1,2},{3,4}, {5,6}. The
following family is H,,-intersecting

Ay = {A € <[Z]) 1 A meets at least two of the three edges of Hn} .

A= ()7 (1)

Let € > 0 be small, n > ng(e) be large and 1 — 272 + ¢ < k/n < 1/2 — ¢
Since k/n > 1 — 2712 4 ¢ it is straightforward to check that A, is larger
than the largest (H,,k)-star. (The largest (H,,k)-star consists of all k-sets
meeting a fixed edge of H, and so has size () — (".%).) Moreover N(H,, k) #
(1 —0(1))(3}), since k/n < 1/2 — € implies (by the Erdés—Ko—Rado theorem)
that any H,-intersecting family contains at most (Z:I) of the sets in (["];[6]),
so N(Ha, k) < (3) = (*7)-

Hence if B is a k-uniform H,-intersecting family of maximum size then B
does not contain almost all k-sets and B is not an (H,, k)-star. We do not know
what form B can take, only that it must be of some new third type, however
Aj is an obvious candidate extremal family.

Note that

3 General k-uniform problem: k£ large

The conclusion of Theorem 2.1 for k large can be extended to give an analogous
result in a more general setting. The exact formulation of this generalization
(Theorem 3.1) is rather ugly however we give two natural corollaries (Corollaries
3.2 and 3.3). Recall the definition (1) of a (G, k)-star with centre C' from the
introduction.

Theorem 3.1 has the following intuitive interpretation: if a largest (G, k)-star
contains slightly more than half of all k-sets and there are lots of “independent”
(G, k)-stars of this size then the “majority family”, consisting of all k-sets be-
longing to more than half of these (G, k)-stars, contains almost all k-sets. (Idea
of proof: a random k-set belongs to any particular largest (G, k)-star with prob-
ability 1/2 4 € so with high probability it belongs to a majority of them.)

12



Theorem 3.1. Let {G,}5°, be a sequence of graphs of order n and 1 < k < n.
If the following three conditions hold for all n sufficiently large then N(G,, k) =

(1= o(1)()-

1) There exist isomorphic (G, k)-stars: Ay, A5, ..., A% with pairwise dis-
1 2 W,
joint centres C1,Ca, ..., Cy, such that w, — co as n — oo.

(i) The common size of the centres of the Af is .

(i1i) Each of the A has size Sy, satisfying

1 log wy, n
> | = 1 .
5> <2+m+ NEL ) ()

Let CP denote the pth power of the n-cycle. (That is the graph with vertex
set [n] and i ~cr j iff 1 < dist(4, j) < p, where distance is measured around the
cycle.)

Corollary 3.2. Let p > 1 be a constant and let oy, be the smallest positive root

of
(1 —2)?*T(1 +px) = 1/2.

There exists €,, = o(n) such that if k > apn + €,,, then N(CP, k) = (1 —
o(1))(}). In particular N(Cy, k) = (1 —0(1))(}) for k > 0.266n.

Corollary 3.3. If r > 1 is a constant and the number of pairwise disjoint r-
cliques in G, is unbounded as n — oo then there exists €., = o(n) such that
N(Gn,k) = (1= 00)(}), for k> (1 —27Y")n+ €.

We note that both Corollaries 3.2 and 3.3 could be extended to the case of
p, r non-constant but for simplicity we omit these extensions.

Proof of Theorem 3.1. Suppose that {G,}n,, A, A5,..., A}, , and C1,Cy,
.., Cly, satisfy conditions (i)—(iii). For A € ([Z]) let

A(A) = #{i € [wn] : A € A7}

and define

Apaj = {A € ([Z]> S A(A) > wn/2).

Clearly Ay is Gp-intersecting since if A, B € Ayy,;j then there exists ¢ € [wy,]
such that A, B € AF and A} is G,,-intersecting (since it is a (G, k)-star). We
will adapt the proof method of Theorem 2.1 to show that [Ama;| = (1—0(1))(}).

Let A € ([Z]) be chosen uniformly at random. For j € [n] let

|1, jeA,
X;j(4) = { 0, otherwise.
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Since the centres C1,Cy, ..., C,,, are pairwise disjoint and have common size 7,
we may suppose that for ¢ € [w,] we have C; = [(i — 1)y, + 1, 47v,]. For i € [wy)
let F; be the o-algebra generated by X;(A4), X2(A),...,Xiy, (A). (That is we
condition on how A meets the centres of A}, A%, ..., A¥.) Let Yo = E(w,—A(A))
and for i € [wy] define V; = E(w, — AM(A)|F:). Now Yo, Y7, ...,Y,, is a
martingale and, since each centre has size v,, we have

Vi =Yioa| <y +1,

for ¢ € [w,]. Moreover

Yy = wy, (1 — ?ZS) < % — (Y + 1)/ wy, log w,,.
k

Applying Azuma’s inequality (Lemma 2.9) we obtain
Pr(A & Amaj) Pr(Y,, > w,/2)

< Pr(Yu, > Yo+ (vn + 1)/ wy, logws,)
< 1
= T
= o(1)
The result now follows. O

Proof of Corollary 3.2. A largest (C?,k)-star, C*, is given by taking a largest
clique K (of order p+1) and all (p'gl) pairs of vertices {7,j} € ([”]Q\K) satisfying
i %bcr j and K C T ({i,j}). Hence

()1 )()

Note that the centre of C* has size 3p+ 1. Moreover the number of (CZ, k)-stars
of maximum size with pairwise disjoint centres is at least [n/(3p+1)| — co as
n — 00. (So conditions (i) and (ii) of Theorem 3.1 hold.)

Writing ¢ = k/n we have

c*| > <1 — (1= (1+ep)+0 <i)> (Z)

Hence, for a suitable choice of €, ,, (which can clearly be taken to satisfy €, , =
o(n)), if K > apn + €, then condition (iii) of Theorem 3.1 also holds and the
result follows. O

Proof of Corollary 3.3. This is almost identical to the proof of Corollary 3.2 so
we give only a sketch. Let K1, Ko, ..., K, be pairwise disjoint r-cliques in G,
with w,, — co as n — oo. If

A;‘:{Ae <[Z]) :AﬂKi;é@}
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then [A7] = (7) — (","). Conditions (i) and (ii) of Theorem 3.1 hold with
~n = r. Moreover there exists €, , = o(n) such that if &k > (1 — 2=/ + €rm
then condition (iii) also holds. The result now follows. O

4 Non-uniform G-intersecting families

The question of how large a non-uniform intersecting family A C 2"} can be is
rather easy: A cannot contain both a set and its complement and so |A| < 2771,
moreover this bound can attained in numerous different ways.

The non-uniform G-intersection problem is also easier to solve than the k-
uniform version. For a graph G of order n let

N(G) = max{|A| : A C 2"l is G-intersecting}.

The size of the extremal family depends on the matching number, m(G), the
size of a largest matching in G.

Theorem 4.1. If {G,,}52, is a sequence of non-empty graphs of order n with
m(Gy) non-decreasing then either m(G,) — oo as n — oo, in which case
N(G,) = (1 = o(1))2™, or there exists m > 1 such that m(G,) = m for all
n > ng and

1_eﬂw8gpuwum3pg>numf;Ngf)g1_2%%ww. (17)

In the latter case both bounds are attainable.
Lemma 4.2. Let G be a graph of order n with a matching of size m > 1 then

N(G)
2n

> P(Bin(m,3/4) > m/2) >1—e ™5,
Proof. Take a matching M of size m and define
Miunaj = {A € 2" A meets > m/2 of the edges in M}. (18)

Note that My,,;j is G-intersecting.

If we select a set A € 2[" uniformly at random by choosing each i € [n]
independently with probability 1/2 then A meets any edge e € M independently
with probability 3/4. Hence if X ~ Bin(m, 3/4) then

P(A € Muaj) = P(X > m/2).

Hoeffding’s inequality [6] implies that this is at least 1 — e=™/® and the result

follows. O
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Proof of Theorem 4.1. Since m(G,,) is increasing either m(G,) — oo as n — oo
or there exists m > 1 such that m(G,) = m for all n > ng. In the former case
Lemma 4.2 implies that N(G,,) = (1 — o(1))2", so suppose that m(G,) = m
for all n > ng. Lemma 4.2 now implies that the lower bound in (17) holds. For
the upper bound consider a maximal matching in GG,, this contains at most 2m
vertices. Let W C [n] be the other vertices of G,,. Since W is the complement
of a maximal matching it is an independent set and so if A, B C 2V are G-
intersecting then ANB # ). Hence if A C 2[") is G, -intersecting then it contains
at most half of the sets from 2. The fact that |W| > n — 2m yields the upper
bound in (17).

Note that if G, is the union of a clique of order 2m + 1 and n — 2m — 1
isolated vertices then the upper bound in (17) is sharp. (The family of all sets
meeting the clique is G,,-intersecting and of the correct size.)

To see that the lower bound in (17) is also attainable requires slightly more
work. We claim that if G,, is the union of a matching M on m edges and
n — 2m isolated vertices then the family M,,; defined in (18) is a largest G-
intersecting family. (We will assume for simplicity that m is odd, if m is even a
similar argument will work.)

Let A C 2[" be a G, -intersecting family of maximum size. Let E = {e1,
€2, ..., €m} be the m edges of the matching and let V' = {vy, vo,...,vp_2m} be
the n — 2m isolated vertices. For A C E and B C V let

SAB ={Ce2M:A={ecE:Cne#0}and B={veV:veC}.

So S(A, B) contains those sets which meet precisely those edges in A and contain
precisely those isolated vertices in B.

First note that if A C E and B C V then |S(A, B)| = 3/4l. Secondly if
A C F and B CV then at most one of ANS(A4, B) and ANS(E\A, V\B) can
be non-empty (otherwise A is not G,-intersecting). Moreover the maximality
of A implies that if ANS(A, B) # 0) then S(A, B) C A. Finally note that if for
each A C E and B C V we take the larger of S(A, B) and S(E\A, V\B) then
the resulting family is at least as large as A. However this family is My,;. O

5 Open problems and conjectures

An analogue of Theorem 2.1 should surely hold when G, , = KjUK>U--- UK}
is the disjoint union of r-cliques, where r > 2 is a constant and n = rt. Indeed
by Corollary 3.3 we have N(Grn,k) = (1 —0(1))(}) for k > dyn(1 + o(1))
(where d, = 1 —271/7). Moreover if k < d,.n(1 — o(1)) then we can prove that
N(Grn, k) = (1+0(1)) ((}) = ("2"))- However an exact version should hold so
we make the following conjecture.

Conjecture 5.1. If r > 2 is a constant, G, is a disjoint union of r-cliques
and d. =1 — 277" then there exists Orm = 0(1) such that

)= ("), k<dm(l=96,,),

N(Gyn, k) = { (1— 0(1))(2), k> dmn(l+40p5).
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Moreover the extremal families are unique up to isomorphism.

Since there is a small range of values of k for which Theorem 2.1 fails to
determine N (M, k) we ask the following obvious question.

Question 5.2. Is N(M,, k) = max{|Apair|, | Amaj|} for all values of k and n?
Bohman et al. [2] made the following conjecture concerning the cycle.

Conjecture 5.3 (Bohman et al. [2]). There is a constant ¢ such that for any
fized € > 0

_ (n) — (n72) + (n:;l), k< (c—e)n,
NG k) = { T=o(@), " k> (et+om.

Given our result for cycles (Corollary 3.2) we make the following conjecture.

Conjecture 5.4. Conjecture 5.3 is true with ¢ = 0.266 . . ., the smallest positive
root of (1 —x)3(1 +2) = 1/2.

Given our example showing that there exist graphs and values of k for which
the extremal k-uniform G-intersecting families are neither (G, k)-stars nor al-
most all of ([Z]) we pose the following question.

Question 5.5. Is it true that for any graph G and 1 < k < n, there exist
(G, k)-stars A3, ..., Af such that N(G, k) = | Amqj| ¢ Where for t odd

Apaj = {A € <[Z]> : A belongs to > t/2 of the Af}
and for t even we extend this family to include as many k-sets as possible that
belong to exactly t/2 of the Af.

We note that a result of Erdds, Frankl and Katona [4] implies that a positive
answer to this question would yield a positive answer to Question 5.2.
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