G-intersection theorems for matchings and other graphs

J Robert Johnson^{*} John Talbot[†]

July 30, 2009

Abstract

If G is a graph with vertex set [n] then $\mathcal{A} \subseteq 2^{[n]}$ is G-intersecting if for all $A, B \in \mathcal{A}$ either $A \cap B \neq \emptyset$ or there exist $a \in A$ and $b \in B$ such that $a \sim_G b$.

The question of how large a k-uniform G-intersecting family can be was first considered by Bohman, Frieze, Ruszinkó and Thoma [2] who identified two natural candidates for the extrema depending on the relative sizes of k and n and asked whether there is a sharp phase transition between the two. Our first result shows that there is a sharp transition and characterizes the extremal families when G is a matching. We also give an example demonstrating that other extremal families can occur.

Our second result gives a sufficient condition for the largest *G*-intersecting family to contain almost all *k*-sets. In particular we show that if C_n is the *n*-cycle and $k > \alpha n + o(n)$, where $\alpha = 0.266...$ is the smallest positive root of $(1 - x)^3(1 + x) = 1/2$, then the largest C_n -intersecting family has size $(1 - o(1))\binom{n}{k}$.

Finally we consider the non-uniform problem and show that in this case the size of the largest G-intersecting family depends on the matching number of G.

1 Introduction

The following generalization of the notion of an intersecting family was introduced by Bohman, Frieze, Ruszinkó and Thoma [2]. If G is a graph with vertex set [n] then $\mathcal{A} \subseteq 2^{[n]}$ is *G*-intersecting if for all $A, B \in \mathcal{A}$ either $A \cap B \neq \emptyset$ or there exist $a \in A$ and $b \in B$ such that $a \sim_G b$.

The question of how large a k-uniform G-intersecting family can be is a natural generalization of the Erdős–Ko–Rado problem, indeed if G is the empty graph it is answered by the classical Erdős–Ko–Rado theorem [5].

^{*}School of Mathematical Sciences, Queen Mary, University of London, E1 4NS, UK, Email: r.johnson@qmul.ac.uk

[†]Department of Mathematics, University College London, WC1E 6BT, UK, Email: talbot@math.ucl.ac.uk. This author is a Royal Society University Research Fellow.

Theorem 1.1 (Erdős–Ko–Rado 1938 [5]). If $\mathcal{A} \subseteq {\binom{[n]}{k}}$ is intersecting then

$$|\mathcal{A}| \le \begin{cases} \binom{n-1}{k-1}, & 1 \le k \le n/2, \\ \binom{n}{k}, & n/2 < k \le n. \end{cases}$$

Moreover if k < n/2 then equality is attained iff \mathcal{A} consists of all k-sets containing a fixed element of [n]. While (trivially) if k > n/2 then equality is attained iff $\mathcal{A} = \binom{[n]}{k}$.

For a graph G with vertex set [n] and $1 \le k \le n$ we define

$$N(G,k) = \max\left\{ |\mathcal{A}| : \mathcal{A} \subseteq \binom{[n]}{k} \text{ is } G \text{-intersecting} \right\}.$$

Bohman et al. [2] were the first to consider the problem of determining N(G, k). They identified two types of behaviour for the extrema depending on the relative sizes of k and n, mirroring the extremal behaviour of ordinary k-uniform intersecting families (as given by Theorem 1.1).

The augmented neighbourhood of $A \subseteq [n]$, denoted by $\Gamma^+(A)$, is the union of A and its neighbourhood in G. So a family $\mathcal{A} \subseteq 2^{[n]}$ is G-intersecting iff for all $A, B \in \mathcal{A}$ we have $A \cap \Gamma^+(B) \neq \emptyset$.

An obvious example of a k-uniform G-intersecting family is the collection of all k-sets meeting a fixed clique in G. For instance if $G = C_n$ is the n-cycle then

$$\mathcal{A} = \left\{ A \in \binom{[n]}{k} : A \cap \{1, 2\} \neq \emptyset \right\},\$$

is C_n -intersecting. However \mathcal{A} is not maximal: it can be extended to

$$\mathcal{B} = \mathcal{A} \cup \left\{ B \in \binom{[n]}{k} : 3, n \in B \right\}.$$

More generally if K is a clique in G and $M_1, M_2, \ldots, M_r \subseteq [n] \setminus K$ satisfy

$$K \subseteq \Gamma^+(M_i) \text{ for } 1 \le i \le r \text{ and } M_i \cap \Gamma^+(M_j) \ne \emptyset, \ i \ne j$$

then

$$\mathcal{A}(K; M_1, \dots, M_r) = \left\{ A \in \binom{[n]}{k} : A \cap K \neq \emptyset \text{ or } M_i \subseteq A \text{ for some } i \right\}, \quad (1)$$

is also G-intersecting. We will call such a family a (G, k)-star with centre

$$C = K \cup \bigcup_{i=1}^{r} M_i.$$

Bohman et al. [2] showed that if G is sparse and $k = O(n^{1/4})$ then the largest G-intersecting families are of this form. (More recently Bohman and Martin [3] gave an improvement, showing that a similar result also holds for $k = O(n^{1/2})$.)

Bohman et al. [2] also showed that if G is sparse with minimum degree δ and k > cn, where c is a constant satisfying $c - (1 - c)^{\delta+1} > 0$, then

$$N(G,k) = (1 - o(1)) \binom{n}{k}.$$

These two different types of extrema mirror the two cases of the Erdős–Ko– Rado theorem, however there is a large gap between the values of k for which they are known to occur. Bohman et al. [2] asked whether there is a sharp phase transition and whether other types of extrema exist.

Our first result in the next section (Theorem 2.1) shows that there is a sharp transition and characterizes the extremal families when G is a perfect matching. We also give an example of a graph demonstrating that other types of extrema exist.

In the third section we give a sufficient condition for the largest *G*-intersecting family to contain almost all *k*-sets (Theorem 3.1). In particular we show that if C_n is the *n*-cycle and $k > \alpha n + o(n)$, where $\alpha = 0.266...$ is the smallest positive root of $(1-x)^3(1+x) = 1/2$, then the largest C_n -intersecting family has size $(1-o(1))\binom{n}{k}$ (Corollary 3.2). This improves an earlier bound of k > 0.317ndue to Bohman et al. [2].

In the fourth section we consider the non-uniform problem and show that in this case the size of the largest G-intersecting family depends on the matching number of G (Theorem 4.1).

We end the paper with some open problems and conjectures.

2 Matchings

Let M_n be a matching of order n = 2t with edges e_1, \ldots, e_t , where $e_i = \{2i - 1, 2i\}$. For $A \in {[n] \choose k}$ let $I_A = \{i \in [t] : A \cap e_i \neq \emptyset\}$ (so I_A indexes the edges that A meets). An obvious candidate for the largest M_n -intersecting family when k is small is

$$\mathcal{A}_{\text{pair}} = \left\{ A \in {[n] \choose k} : 1 \in I_A \right\}.$$

The precise form of the extremal family when k is large will depend on the parity of t. For t odd let

$$\mathcal{A}_{\mathrm{maj}} = \left\{ A \in {[n] \choose k} : |I_A| > \frac{t}{2} \right\}.$$

For t even we can extend \mathcal{A}_{maj} by adding half of those k-sets meeting exactly t/2 edges. To be precise, for t even let $\mathcal{B} \subseteq \binom{t}{t/2}$ be an (ordinary) intersecting family of maximum size $\frac{1}{2}\binom{t}{t/2}$. We define

$$\mathcal{A}_{\mathrm{maj}} = \left\{ A \in \binom{[n]}{k} : |I_A| > \frac{t}{2} \text{ or } I_A \in \mathcal{B} \right\}.$$

Note that both $\mathcal{A}_{\text{pair}}$ and \mathcal{A}_{maj} are M_n -intersecting.

The result of Bohman and Martin (Theorem 2 [3]) implies that $\mathcal{A}_{\text{pair}}$ is a k-uniform M_n -intersecting family of maximum size for $k = O(n^{1/2})$ while the result of Bohman et al. (Theorem 7 [2]) implies that $N(M_n, k) = (1 - o(1))\binom{n}{k}$ for k > 0.38196n. We are able to give the following result describing a sharp threshold for the behaviour of $N(M_n, k)$ and characterizing the extremal families.

Theorem 2.1. Let $n = 2t \ge 1000$, $1 \le k \le n$ and M_n be a matching of order n with edges $\{1, 2\}$, $\{3, 4\}, \ldots, \{n - 1, n\}$. If $d = 1 - 2^{-1/2} = 0.29289 \ldots$ then

$$N(M_n, k) = \begin{cases} |\mathcal{A}_{pair}| = \binom{n}{k} - \binom{n-2}{k}, & k < dn, \\ |\mathcal{A}_{maj}| = (1 - o(1))\binom{n}{k}, & k > dn(1 + \epsilon_n), \end{cases}$$

where $\epsilon_n = 30\sqrt{\frac{\log n}{n}} = o(1)$. Moreover, up to isomorphism, these bounds are only achieved by the families \mathcal{A}_{pair} and \mathcal{A}_{maj} described above.

For the remainder of this section we will say that k is small (with respect to n) if k < dn and k is large (with respect to n) if $k > dn(1 + \epsilon_n)$.

Proof of Theorem 2.1. Let $\mathcal{A} \subseteq {\binom{[n]}{k}}$ be a k-uniform M_n -intersecting family of maximum size (so $|\mathcal{A}| = N(M_n, k)$). We define

$$\mathcal{I}(\mathcal{A}) = \{ I_A \subseteq [t] : A \in \mathcal{A} \}.$$

Note that the sets in $\mathcal{I}(\mathcal{A})$ all have sizes in the range $\lceil k/2 \rceil$ up to k. (Since a k-set cannot meet less than $\lceil k/2 \rceil$ edges or more than k edges.)

For $B \subseteq [t]$ define

$$W_k(B) = \left\{ A \in \binom{[n]}{k} : I_A = B \right\}.$$

So $W_k(B)$ is the family of all k-sets meeting precisely those edges indexed by B. The size of this family depends only on the size of B. For $1 \le m \le t$ let $w_k(m) = |W_k([m])|$. (So $w_k(m) \ne 0$ iff $\lceil k/2 \rceil \le m \le k$.) We note a few useful facts whose proofs we defer.

Lemma 2.2. $\mathcal{I}(\mathcal{A})$ has the following properties:

- (a) $\mathcal{I}(\mathcal{A})$ is intersecting.
- (b) If $B \subseteq [t], [k/2] \leq |B| \leq k$ and $\mathcal{I}(\mathcal{A}) \cup \{B\}$ is intersecting then $B \in \mathcal{I}(\mathcal{A})$.
- (c) If $B \in \mathcal{I}(\mathcal{A})$, $B \subset C \subseteq [t]$ and $|C| \leq k$ then $C \in \mathcal{I}(\mathcal{A})$.

Lemma 2.3. If $A \in \mathcal{A}$, $B \in {\binom{[n]}{k}}$ and $I_A = I_B$ then $B \in \mathcal{A}$. Hence

$$\mathcal{A} = \bigcup_{B \in \mathcal{I}(\mathcal{A})}^{\cdot} W_k(B).$$

Thus if $\mathcal{A}_m = \{A \in \mathcal{A} : |I_A| = m\}$, $\mathcal{I}_m(\mathcal{A}) = \{B \in \mathcal{I}(\mathcal{A}) : |B| = m\}$ and $i_m(\mathcal{A}) = |\mathcal{I}_m(\mathcal{A})|$ then

$$|\mathcal{A}_m| = i_m(\mathcal{A})w_k(m)$$
 and $|\mathcal{A}| = \sum_{m=\lceil k/2 \rceil}^k i_m(\mathcal{A})w_k(m).$

Using Lemmas 2.2 and 2.3 the problem of determining $N(M_n, k)$ can be reduced to a weighted intersection problem for $\mathcal{I}(\mathcal{A})$, with the weight of a set $B \in \mathcal{I}(\mathcal{A})$ given by $w_k(|B|)$.

Lemma 2.4.

$$w_k(m) = \begin{cases} 2^{2m-k} \binom{m}{k-m}, & \lceil k/2 \rceil \le m \le k, \\ 0, & otherwise. \end{cases}$$

Lemma 2.5. There exists $m^* = m^*(k,t)$ such that $\{w_k(m)\}_{m=\lceil k/2 \rceil}^k$ satisfies

$$w_k(\lceil k/2 \rceil) < \cdots < w_k(m^*) \ge w_k(m^*+1) > w_k(m^*+2) > \cdots > w_k(k)$$

That is the sequence is strictly increasing up to a maximum which is attained at m^* and possibly also attained at $m^* + 1$ and thereafter the sequence is strictly decreasing.

Lemma 2.6. If k is small then $m^* < t/2$. Moreover if $\lceil k/2 \rceil \leq m \leq k$ and m < t/2 then $w_k(m) > w_k(t-m)$.

Lemma 2.7. If k is large then $m^* > t/2$ and

$$\sum_{n < t/2} w_k(m) \binom{t}{m} < \frac{1}{t} \binom{n}{k}$$

Lemma 2.8. If $m_1 \leq m_2$, $\mathcal{B} \subseteq {\binom{[t]}{m_2}}$ and

$$\partial^{(m_1)}(\mathcal{B}) = \left\{ C \in \binom{[t]}{m_1} : C \subseteq B \text{ for some } B \in \mathcal{B} \right\}$$

then

$$\frac{|\partial^{(m_1)}(\mathcal{B})|}{\binom{t}{m_1}} \ge \frac{|\mathcal{B}|}{\binom{t}{m_2}}$$

Returning to the proof of Theorem 2.1 we suppose first that k is small and let $\mathcal{I}(\mathcal{A})$, \mathcal{A}_m , $\mathcal{I}_m(\mathcal{A})$ and $i_m(\mathcal{A})$ be as defined above. Lemma 2.3 implies that for m < t/2

$$|\mathcal{A}_m| + |\mathcal{A}_{t-m}| = i_m(\mathcal{A})w_k(m) + i_{t-m}(\mathcal{A})w_k(t-m).$$
⁽²⁾

By Lemma 2.2 (a), $i_m(\mathcal{A}) + i_{t-m}(\mathcal{A})$ is the size of an intersecting family in $\binom{[t]}{m} \cup \binom{[t]}{t-m}$. Hence Lemma 2.6 and the Erdős–Ko–Rado theorem (Theorem 1.1) imply that

$$|\mathcal{A}_m| + |\mathcal{A}_{t-m}| \le {t-1 \choose m-1} w_k(m) + {t-1 \choose t-m-1} w_k(t-m),$$

with strict inequality unless $\mathcal{I}_m(\mathcal{A}) \cup \mathcal{I}_{t-m}(\mathcal{A})$ consists of all sets in $\binom{|t|}{m} \cup \binom{|t|}{t-m}$ containing a fixed element of [t] (which is the case for $\mathcal{A}_{\text{pair}}$). Finally if t is even then Theorem 1.1 implies that

$$|\mathcal{A}_{t/2}| \le w_k(t/2) \frac{1}{2} \binom{t}{t/2} \tag{3}$$

and again this is achieved by $\mathcal{A}_{\text{pair}}$. Hence $N(M_n, k) = |\mathcal{A}| \leq |\mathcal{A}_{\text{pair}}|$.

To see that $\mathcal{A}_{\text{pair}}$ is (up to isomorphism) the unique extremal family note that for equality to hold $\mathcal{I}_{\lceil k/2 \rceil}(\mathcal{A})$ must consist of all $\lceil k/2 \rceil$ -sets containing a fixed element $i \in [t]$. Without loss of generality we may suppose that i = 1. Lemma 2.2 (c) now implies that $\mathcal{A}_{\text{pair}} \subseteq \mathcal{A}$. Finally k < dn implies that $\mathcal{A}_{\text{pair}}$ is a maximal M_n -intersecting family and hence $\mathcal{A} = \mathcal{A}_{\text{pair}}$. (Indeed it is easy to check that $\mathcal{A}_{\text{pair}}$ is a maximal M_n -intersecting family whenever $k \leq n/3$.) Note that this part of Theorem 2.1 holds for all values of n and k < dn (the condition $n \geq 1000$ is only required for the k large case).

Now suppose that k is large, that is $k > dn(1 + \epsilon_n)$. If k > t = n/2 then $\mathcal{A}_{\text{maj}} = {[n] \choose k}$ and the result is trivial, so suppose that $k \leq t$. In this case Lemma 2.7 tells us that the maximum of $w_k(m)$ is achieved at $m^* > t/2$. By Lemma 2.5, $w_k(m)$ is strictly increasing for $m < m^*$ so $w_k(m) > w_k(t-m)$ for $t/2 < m \leq m^*$. By Lemma 2.2 (a), $i_m(\mathcal{A}) + i_{t-m}(\mathcal{A})$ is the size of an intersecting family in ${[t] \choose t} \cup {[t] \choose t-m}$ so, for $t/2 < m \leq m^*$, $w_k(m) > w_k(t-m)$ implies that

$$|\mathcal{A}_m| + |\mathcal{A}_{t-m}| \le \binom{t}{m} w_k(m),\tag{4}$$

with strict inequality unless $\mathcal{I}_{t-m}(\mathcal{A})$ is empty and $\mathcal{I}_m(\mathcal{A}) = {\binom{|t|}{m}}$ (which is the case for \mathcal{A}_{maj}).

If t is odd then (4) bounds the number of sets in \mathcal{A}_m for $t - m^* \leq m \leq m^*$. However if t is even then we note that $i_{t/2}(\mathcal{A})$ is the size of an intersecting family in $\binom{t}{t/2}$ and so (3) holds.

If $\mathcal{I}_m(\mathcal{A}) = \emptyset$ for $m < t - m^*$ then (4) and, in the case of t even (3), imply that $|\mathcal{A}| \leq |\mathcal{A}_{\text{maj}}|$, with strict inequality unless $\mathcal{A} = \mathcal{A}_{\text{maj}}$. We suppose now, for a contradiction, that there exists $m < t - m^*$ such that $\mathcal{I}_m(\mathcal{A}) \neq \emptyset$. Let $m_0 < t - m^*$ be chosen so that

$$\frac{i_{m_0}(\mathcal{A})}{\binom{t}{m_0}} = \max\left\{\frac{i_m(\mathcal{A})}{\binom{t}{m}} : m < t - m^*\right\}.$$

(So the proportion of m_0 -sets in $\mathcal{I}(\mathcal{A})$ is maximal subject to $m_0 < t - m^*$.) Let $\beta = i_{m_0}(\mathcal{A})/{t \choose m_0} > 0$. By Lemma 2.3 we have

$$\sum_{m < t-m^*} |\mathcal{A}_m| \le \beta \sum_{m < t-m^*} w_k(m) \binom{t}{m}.$$
(5)

The complements of the sets in $\mathcal{I}_{m_0}(\mathcal{A})$ are all missing from $\mathcal{I}_{t-m_0}(\mathcal{A})$, so if $\mathcal{B} = \binom{[t]}{t-m_0} \setminus \mathcal{I}_{t-m_0}(\mathcal{A})$ then $|\mathcal{B}| \ge i_{m_0}(\mathcal{A}) = \beta \binom{t}{m_0}$. Recall that

$$\partial^{(m)}(\mathcal{B}) = \left\{ C \in \binom{[t]}{m} : C \subseteq B \text{ for some } B \in \mathcal{B} \right\}$$

If $t/2 < m \leq t - m_0$ then Lemma 2.2 (c) implies that $\partial^{(m)}(\mathcal{B}) \cap \mathcal{I}_m(\mathcal{A}) = \emptyset$ while Lemma 2.8 implies that

$$\frac{|\partial^{(m)}(\mathcal{B})|}{\binom{t}{m}} \ge \frac{|\mathcal{B}|}{\binom{t}{t-m_0}} \ge \beta.$$

Note that $m^* < t - m_0$ and hence for $t/2 < m \le m^*$,

$$i_m(\mathcal{A}) \le \binom{t}{m} - |\partial^{(m)}(\mathcal{B})| \le (1-\beta)\binom{t}{m}.$$
(6)

Now if $t/2 < m \le m^*$ then $w_k(m) > w_k(t-m)$, so (6) implies that

$$|\mathcal{A}_m| + |\mathcal{A}_{t-m}| \le \binom{t}{m} ((1-\beta)w_k(m) + \beta w_k(t-m)).$$
⁽⁷⁾

If $m < t - m^*$ then, by the definition of β ,

$$|\mathcal{A}_m| \le \beta \binom{t}{m} w_k(m). \tag{8}$$

While trivially if $m > m^*$ then $|\mathcal{A}_m| \le w_k(m) \binom{t}{m}$. Together with (7), (8), and in the case of t even (3), this implies that

$$|\mathcal{A}| - |\mathcal{A}_{\mathrm{maj}}| \le \sum_{m < t/2} \beta \binom{t}{m} w_k(m) - \sum_{t/2 < m \le m^*} \beta \binom{t}{m} w_k(m).$$

Now Lemma 2.7 implies that

$$|\mathcal{A}| - |\mathcal{A}_{\mathrm{maj}}| < \beta \left(\frac{1}{t} \binom{n}{k} - \sum_{t/2 < m \le m^*} \binom{t}{m} w_k(m) \right).$$

So we will have $|\mathcal{A}| < |\mathcal{A}_{maj}|$ (and the proof will be complete) if we show that

$$\sum_{t/2 < m \le m^*} {t \choose m} w_k(m) \ge \frac{1}{t} {n \choose k}.$$
(9)

Let m_1 satisfy

$$w_k(m_1) \binom{t}{m_1} = \max\left\{ w_k(m) \binom{t}{m} : \lceil k/2 \rceil \le m \le k \right\}.$$

Recall that

$$\sum_{m=\lceil k/2\rceil}^{k} \binom{t}{m} w_k(m) = \binom{n}{k}$$

and $k \leq t$. Hence

$$\binom{t}{m_1} w_k(m_1) \ge \frac{1}{\frac{k}{2} + 1} \binom{n}{k} \ge \frac{2}{t+2} \binom{n}{k}.$$
 (10)

Since $m^* > t/2$, both $w_k(m)$ and $\binom{t}{m}$ are increasing in m for $m \le t/2$ and decreasing in m for $m > m^*$ so $m_1 \in \{\lceil t/2 \rceil, \ldots, m^*\}$. If $m_1 \ne t/2$ then $t/2 < m_1 \le m^*$ and so (10) implies that (9) holds. Otherwise t is even and $m_1 = t/2$. In which case (10) and $w_k(t/2 + 1) > w_k(t/2)$ imply that

$$\binom{t}{t/2+1}w_k(t/2+1) > \frac{t}{t+2}\binom{t}{t/2}w_k(t/2) \ge \frac{2t}{(t+2)^2}\binom{n}{k}.$$

This implies that (9) holds so long as $2t^2 \ge (t+2)^2$, which is true for $t \ge 5$. \Box

Proof of Lemma 2.2. If $A, B \in \mathcal{I}(\mathcal{A})$ then there exist $C, D \in \mathcal{A}$ such that $A = I_C$ and $B = I_D$. Since \mathcal{A} is M_n -intersecting so C and D must meet a common edge e_i . Hence $i \in A \cap B$ and so $\mathcal{I}(\mathcal{A})$ is intersecting.

If Lemma 2.2 (b) does not hold then there is $B \subseteq [t]$, with $\lceil k/2 \rceil \leq |B| \leq k$ such that $\mathcal{I}(\mathcal{A}) \cup \{B\}$ is intersecting but $B \notin \mathcal{I}(\mathcal{A})$. Now $\lceil k/2 \rceil \leq |B| \leq k$ implies that $W_k(B) \neq \emptyset$ and so $\mathcal{B} = \mathcal{A} \cup W_k(B)$ is a k-uniform M_n -intersecting family satisfying $|\mathcal{B}| > |\mathcal{A}|$, contradicting the maximality of $|\mathcal{A}|$.

Finally (b) implies (c) since if $B \subset C$ and $B \in \mathcal{I}(\mathcal{A})$ then $\mathcal{I}(\mathcal{A}) \cup \{C\}$ is also intersecting.

Proof of Lemma 2.3. If $A \in \mathcal{A}$, $B \in {\binom{[n]}{k}}$ and $I_A = I_B$ then $\mathcal{A} \cup \{B\}$ is M_n -intersecting. So, by the maximality of $|\mathcal{A}|, B \in \mathcal{A}$. Hence

$$\mathcal{A} = \bigcup_{B \in \mathcal{I}(\mathcal{A})} W_k(B).$$

Moreover this is a disjoint union since if $B, C \in \mathcal{I}(\mathcal{A})$ and $B \neq C$ then $W_k(B) \cap W_k(C) = \emptyset$. The final part follows directly from the definitions. \Box

Proof of Lemma 2.4. If $m < \lceil k/2 \rceil$ or m > k then no k-set meets m edges and hence $w_k(m) = 0$, so suppose that $\lceil k/2 \rceil \le m \le k$. Consider $A \in {\binom{[n]}{k}}$ meeting the first m edges of M_n (that is $A \in W_k([m])$). For such a set let a_i denote the number of edges it meets in exactly i elements, where i = 1, 2. Since $a_1 + a_2 = m$ and $a_1 + 2a_2 = k$ we have $a_1 = 2m - k$ and $a_2 = k - m$. Thus such a set is uniquely determined by choosing k - m of the m edges from which to take both vertices and then choosing one of the two possible vertices from each of the remaining 2m - k edges. Proof of Lemma 2.5. We show first that if $\lfloor k/2 \rfloor \leq m \leq k$ then

$$w_k(m)^2 > w_k(m+1)w_k(m-1).$$
 (11)

First note that this holds for $m = \lceil k/2 \rceil$ or m = k since in this case the RHS of (11) is zero while the LHS is positive. So suppose that $\lceil k/2 \rceil < m < k$. Now

$$\frac{w_k(m)^2}{w_k(m+1)w_k(m-1)} = \frac{m(k-m+1)(2m-k+2)(2m-k+1)}{(m+1)(k-m)(2m-k)(2m-k-1)}$$

>
$$\frac{m(k-m+1)}{(m+1)(k-m)}$$

> 1.

Hence if $y_m = w_k(m)/w_k(m+1)$ then $\{y_m\}_{m=\lceil k/2\rceil}^k$ is strictly increasing. This implies the result.

Proof of Lemma 2.6. Let k be small. We will assume that t = 2s is even, the proof for t odd is essentially identical. By Lemma 2.5 if $w_k(s-1) > w_k(s)$ then $m^* < s$. Recall that since k is small we have $k \leq dn - 1$, where $d = 1 - 2^{-1/2}$ and n = 2t = 4s. Now

$$\frac{w_k(s-1)}{w_k(s)} = \frac{(2s-k)(2s-k-1)}{4s(k-s+1)} \\ > \frac{(2s-k-1)^2}{4s(k-s+1)} \\ \ge 1.$$

Hence $m^* < s = t/2$.

We now prove by induction on $a \ge 1$ that if $\lceil k/2 \rceil \le s - a \le k$ then $w_k(s-a) > w_k(s+a)$. (Note that we may suppose that $s + a \le k$ since otherwise $w_k(s+a) = 0$.) For a = 1 this follows from $m^* \le s - 1$ and Lemma 2.5 so suppose that $a \ge 2$ and the result holds for a - 1. It is sufficient to show that

$$\frac{w_k(s-a)}{w_k(s+a)} \ge \frac{w_k(s-(a-1))}{w_k(s+a-1)},\tag{12}$$

since the RHS of (12) is strictly greater than 1 by our inductive hypothesis. We consider

$$y = \frac{w_k(s-a)w_k(s+a-1)}{w_k(s+a)w_k(s-(a-1))}.$$

We wish to show that $\gamma \geq 1$. Now

~

$$\gamma = \frac{(2s - 2a - k + 2)(2s - 2a - k + 1)(2s + 2a - k)(2s + 2a - k - 1)}{16(s - a + 1)(s + a)(k - s + a)(k - s - a + 1)} > \frac{(2s - k + 2a - 1)^2(2s - k - 2a - 1)^2}{16((s^2 - a^2)((k - s + 1)^2 - a^2))}$$
(13)

Since (13) is decreasing in k and k < dn (since k is small) we may suppose that k = dn - 1 = 4ds - 1. Rearranging we now need to check that

$$(s - 2ds + a)^{2}(s - 2ds - a)^{2} - (s^{2} - a^{2})((4ds - s)^{2} - a^{2}) \ge 0.$$
(14)

Differentiating (14) with respect to a we see that it is increasing in a, for a > 0 (the partial derivative is $16ad^2s^2$). Hence it is sufficient to check that (14) holds for a = 0, which it does with equality.

For the proof of Lemma 2.7 we will require Azuma's inequality.

Lemma 2.9 (Azuma [1]). If Y_0, \ldots, Y_t is a martingale and $|Y_i - Y_{i-1}| \le c_i$ for $1 \le i \le t$ then for any $\lambda > 0$

$$\mathbb{P}(Y_t \ge Y_0 + \lambda) \le \exp\left(\frac{-\lambda^2}{2\sum_{i=1}^t c_i^2}\right)$$

Proof of Lemma 2.7. Let k be large. We will assume that t = 2s is even, the proof for t odd is essentially identical. By Lemma 2.5 if $w_k(s) < w_k(s+1)$ then $m^* > s$. Since k is large we have $k \ge dn + 4d = 4d(s+1)$, where $d = 1 - 2^{-1/2}$ and n = 2t = 4s. Now

$$\frac{w_k(s)}{w_k(s+1)} = \frac{(2s-k+2)(2s-k+1)}{4(s+1)(k-s)}$$

$$< \frac{(2s-k+2)^2}{4(s+1)(k-s-1)}$$

$$\leq 1.$$

Hence $m^* > s = t/2$.

We now need to show that

$$\sum_{n < t/2} w_k(m) \binom{t}{m} < \frac{1}{t} \binom{n}{k}.$$
(15)

If $A \in {[n] \choose k}$ is chosen uniformly at random and

r

$$I_A = \{i \in [t] : A \cap e_i \neq \emptyset\},\$$

then

$$\mathbb{P}(|I_A| < t/2) = \sum_{m < t/2} \frac{w_k(m) \binom{t}{m}}{\binom{n}{k}}.$$

So it is sufficient to prove that

$$\mathbb{P}(|I_A| < t/2) < \frac{1}{t}.$$
(16)

For $j \in [n]$ let

$$X_j(A) = \begin{cases} 1, & j \in A, \\ 0, & \text{otherwise} \end{cases}$$

Recall that M_n has edges e_1, \ldots, e_t , with $e_i = \{2i - 1, 2i\}$. For $i \in [t]$ let \mathcal{F}_i be the σ -algebra generated by X_1, X_2, \ldots, X_{2i} and define $Y_i = \mathbb{E}(|[t] \setminus I_A| \mid \mathcal{F}_i)$. If $Y_0 = \mathbb{E}(|[t] \setminus I_A|)$ then Y_0, Y_1, \ldots, Y_t is a martingale and

$$\mathbb{E}(|[t]\backslash I_A|) = \sum_{i=1}^t \mathbb{P}(A \cap e_i = \emptyset) = \frac{t\binom{n-2}{k}}{\binom{n}{k}}.$$

The values of X_{2i-1} and X_{2i} can change the expected number of edges which A meets among e_{i+1}, \ldots, e_t by at most two, as well as determining whether or not $i \in I_A$. Hence

$$|Y_i - Y_{i-1}| \le 3.$$

Azuma's inequality then implies that

$$\mathbb{P}(Y_t > t \frac{\binom{n-2}{k}}{\binom{n}{k}} + \sqrt{18t\log t}) < \frac{1}{t}.$$

Now $|I_A| = t - Y_t$ so the proof will be complete if we show that (for k large)

$$\frac{t\binom{n-2}{k}}{\binom{n}{k}} + \sqrt{18t\log t} \le \frac{t}{2}$$

This will hold if

$$(2t-k)^2 \le 2t^2 - 4t^2 \sqrt{\frac{18\log t}{t}}$$

A routine calculation now shows that this holds for $k > dn \left(1 + 30\sqrt{\frac{\log n}{n}}\right)$ and $n = 2t \ge 1000$.

Proof of Lemma 2.8. This is a simple exercise in double counting. Each set $B \in \mathcal{B}$ contains $\binom{m_2}{m_1}$ subsets of size m_1 , while each set $C \in \partial^{(m_1)}(\mathcal{B})$ is contained in $\binom{t-m_1}{m_2-m_1}$ supersets of size m_2 (and thus in at most this number of sets in \mathcal{B}). Hence

$$|\partial^{(m_1)}(\mathcal{B})|\binom{t-m_1}{m_2-m_1} \ge |\mathcal{B}|\binom{m_2}{m_1},$$

which implies the result.

In fact the same value $d=1-2^{-1/2}$ is a threshold for a slightly more general class of graphs.

Theorem 2.10. If G_n is the graph of order n with w_n pairwise disjoint edges and $n - 2w_n$ isolated vertices, where $w_n \to \infty$ as $n \to \infty$, then there exists $\delta_n = o(1)$ such that

$$N(G_n, k) = \begin{cases} \binom{n}{k} - \binom{n-2}{k}, & k < dn, \\ (1 - o(1))\binom{n}{k}, & k > dn(1 + \delta_n). \end{cases}$$

Proof. For k < dn note that G_n is a subgraph of M_n and so $N(G_n, k) \le N(M_n, k)$. Moreover $\mathcal{A}_{\text{pair}}$ is a (G_n, k) -star of size $\binom{n}{k} - \binom{n-2}{k}$.

For $k > dn(1+\delta_n)$ a similar proof to that already given for Theorem 2.1 can be used (for more details see Corollary 3.3 in the next section).

Bohman et al. [2] asked whether other types of extremal *G*-intersecting families can occur (apart from families which are either (G, k)-stars or consist of almost all of $\binom{[n]}{k}$). We show that they can by giving a simple example of a graph for which (for appropriate values of k) the extremal family must be of a third type.

Let H_n be the graph with vertex set [n] and edges $\{1, 2\}, \{3, 4\}, \{5, 6\}$. The following family is H_n -intersecting

$$\mathcal{A}_2 = \left\{ A \in \binom{[n]}{k} : A \text{ meets at least two of the three edges of } H_n \right\}.$$

Note that

$$|\mathcal{A}_2| = \binom{n}{k} - 3\binom{n-4}{k} + 2\binom{n-6}{k}.$$

Let $\epsilon > 0$ be small, $n \ge n_0(\epsilon)$ be large and $1 - 2^{-1/2} + \epsilon < k/n < 1/2 - \epsilon$. Since $k/n > 1 - 2^{-1/2} + \epsilon$ it is straightforward to check that \mathcal{A}_2 is larger than the largest (H_n, k) -star. (The largest (H_n, k) -star consists of all k-sets meeting a fixed edge of H_n and so has size $\binom{n}{k} - \binom{n-2}{k}$.) Moreover $N(H_n, k) \neq (1 - o(1))\binom{n}{k}$, since $k/n < 1/2 - \epsilon$ implies (by the Erdős–Ko–Rado theorem) that any H_n -intersecting family contains at most $\binom{n-7}{k-1}$ of the sets in $\binom{[n]\setminus[6]}{k}$, so $N(H_n, k) \le \binom{n}{k} - \binom{n-7}{k}$.

Hence if \mathcal{B} is a k-uniform H_n -intersecting family of maximum size then \mathcal{B} does not contain almost all k-sets and \mathcal{B} is not an (H_n, k) -star. We do not know what form \mathcal{B} can take, only that it must be of some new third type, however \mathcal{A}_2 is an obvious candidate extremal family.

3 General k-uniform problem: k large

The conclusion of Theorem 2.1 for k large can be extended to give an analogous result in a more general setting. The exact formulation of this generalization (Theorem 3.1) is rather ugly however we give two natural corollaries (Corollaries 3.2 and 3.3). Recall the definition (1) of a (G, k)-star with centre C from the introduction.

Theorem 3.1 has the following intuitive interpretation: if a largest (G, k)-star contains slightly more than half of all k-sets and there are lots of "independent" (G, k)-stars of this size then the "majority family", consisting of all k-sets belonging to more than half of these (G, k)-stars, contains almost all k-sets. (Idea of proof: a random k-set belongs to any particular largest (G, k)-star with probability $1/2 + \epsilon$ so with high probability it belongs to a majority of them.)

Theorem 3.1. Let $\{G_n\}_{n=1}^{\infty}$ be a sequence of graphs of order n and $1 \le k \le n$. If the following three conditions hold for all n sufficiently large then $N(G_n, k) = (1 - o(1))\binom{n}{k}$.

- (i) There exist isomorphic (G_n, k) -stars: $\mathcal{A}_1^*, \mathcal{A}_2^*, \ldots, \mathcal{A}_{w_n}^*$ with pairwise disjoint centres $C_1, C_2, \ldots, C_{w_n}$ such that $w_n \to \infty$ as $n \to \infty$.
- (ii) The common size of the centres of the \mathcal{A}_i^* is γ_n .
- (iii) Each of the \mathcal{A}_i^* has size S_n satisfying

$$S_n \ge \left(\frac{1}{2} + (\gamma_n + 1)\sqrt{\frac{\log w_n}{w_n}}\right) \binom{n}{k}.$$

Let C_n^p denote the *p*th power of the *n*-cycle. (That is the graph with vertex set [n] and $i \sim_{C_n^p} j$ iff $1 \leq \text{dist}(i, j) \leq p$, where distance is measured around the cycle.)

Corollary 3.2. Let $p \ge 1$ be a constant and let α_p be the smallest positive root of

$$(1-x)^{2p+1}(1+px) = 1/2.$$

There exists $\epsilon_{p,n} = o(n)$ such that if $k \ge \alpha_p n + \epsilon_{p,n}$ then $N(C_n^p, k) = (1 - o(1))\binom{n}{k}$. In particular $N(C_n, k) = (1 - o(1))\binom{n}{k}$ for k > 0.266n.

Corollary 3.3. If $r \ge 1$ is a constant and the number of pairwise disjoint *r*cliques in G_n is unbounded as $n \to \infty$ then there exists $\epsilon_{r,n} = o(n)$ such that $N(G_n, k) = (1 - o(1)) \binom{n}{k}$, for $k > (1 - 2^{-1/r})n + \epsilon_{r,n}$.

We note that both Corollaries 3.2 and 3.3 could be extended to the case of p, r non-constant but for simplicity we omit these extensions.

Proof of Theorem 3.1. Suppose that $\{G_n\}_{n=1}^{\infty}$, \mathcal{A}_1^* , \mathcal{A}_2^* , ..., $\mathcal{A}_{w_n}^*$, and C_1, C_2 , ..., C_{w_n} satisfy conditions (i)–(iii). For $A \in {\binom{[n]}{k}}$ let

$$\lambda(A) = \#\{i \in [w_n] : A \in \mathcal{A}_i^*\}$$

and define

$$\mathcal{A}_{\mathrm{maj}} = \{ A \in \binom{[n]}{k} : \lambda(A) > w_n/2 \}.$$

Clearly \mathcal{A}_{maj} is G_n -intersecting since if $A, B \in \mathcal{A}_{\text{maj}}$ then there exists $i \in [w_n]$ such that $A, B \in \mathcal{A}_i^*$ and \mathcal{A}_i^* is G_n -intersecting (since it is a (G_n, k) -star). We will adapt the proof method of Theorem 2.1 to show that $|\mathcal{A}_{\text{maj}}| = (1 - o(1))\binom{n}{k}$.

Let $A \in {\binom{[n]}{k}}$ be chosen uniformly at random. For $j \in [n]$ let

$$X_j(A) = \begin{cases} 1, & j \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Since the centres $C_1, C_2, \ldots, C_{w_n}$ are pairwise disjoint and have common size γ_n we may suppose that for $i \in [w_n]$ we have $C_i = [(i-1)\gamma_n + 1, i\gamma_n]$. For $i \in [w_n]$ let \mathcal{F}_i be the σ -algebra generated by $X_1(A), X_2(A), \ldots, X_{i\gamma_n}(A)$. (That is we condition on how A meets the centres of $\mathcal{A}_1^*, \mathcal{A}_2^*, \ldots, \mathcal{A}_i^*$.) Let $Y_0 = \mathbb{E}(w_n - \lambda(A))$ and for $i \in [w_n]$ define $Y_i = \mathbb{E}(w_n - \lambda(A)|\mathcal{F}_i)$. Now $Y_0, Y_1, \ldots, Y_{w_n}$ is a martingale and, since each centre has size γ_n , we have

$$|Y_i - Y_{i-1}| \le \gamma_n + 1$$

for $i \in [w_n]$. Moreover

$$Y_0 = w_n \left(1 - \frac{S_n}{\binom{n}{k}} \right) \le \frac{w_n}{2} - (\gamma_n + 1)\sqrt{w_n \log w_n}$$

Applying Azuma's inequality (Lemma 2.9) we obtain

$$Pr(A \notin \mathcal{A}_{maj}) = Pr(Y_{w_n} \ge w_n/2)$$

$$\leq Pr(Y_{w_n} \ge Y_0 + (\gamma_n + 1)\sqrt{w_n \log w_n})$$

$$\leq \frac{1}{\sqrt{w_n}}$$

$$= o(1).$$

The result now follows.

Proof of Corollary 3.2. A largest (C_n^p, k) -star, \mathcal{C}^* , is given by taking a largest clique K (of order p+1) and all $\binom{p+1}{2}$ pairs of vertices $\{i, j\} \in \binom{[n] \setminus K}{2}$ satisfying $i \not\sim_{C_n^p} j$ and $K \subseteq \Gamma^+(\{i, j\})$. Hence

$$|\mathcal{C}^*| = \binom{n}{k} - \binom{n-2p-1}{k} - p\binom{n-2p-2}{k-1}$$

Note that the centre of \mathcal{C}^* has size 3p+1. Moreover the number of (C_n^p, k) -stars of maximum size with pairwise disjoint centres is at least $\lfloor n/(3p+1) \rfloor \to \infty$ as $n \to \infty$. (So conditions (i) and (ii) of Theorem 3.1 hold.)

Writing c = k/n we have

$$|\mathcal{C}^*| \ge \left(1 - (1-c)^{2p+1}(1+cp) + O\left(\frac{1}{n}\right)\right) \binom{n}{k}.$$

Hence, for a suitable choice of $\epsilon_{p,n}$ (which can clearly be taken to satisfy $\epsilon_{p,n} = o(n)$), if $k \ge \alpha_p n + \epsilon_{p,n}$ then condition (iii) of Theorem 3.1 also holds and the result follows.

Proof of Corollary 3.3. This is almost identical to the proof of Corollary 3.2 so we give only a sketch. Let $K_1, K_2, \ldots, K_{w_n}$ be pairwise disjoint *r*-cliques in G_n , with $w_n \to \infty$ as $n \to \infty$. If

$$\mathcal{A}_i^* = \left\{ A \in \binom{[n]}{k} : A \cap K_i \neq \emptyset \right\}$$

then $|\mathcal{A}_i^*| = \binom{n}{k} - \binom{n-r}{k}$. Conditions (i) and (ii) of Theorem 3.1 hold with $\gamma_n = r$. Moreover there exists $\epsilon_{r,n} = o(n)$ such that if $k > (1 - 2^{-1/r})n + \epsilon_{r,n}$ then condition (iii) also holds. The result now follows.

4 Non-uniform *G*-intersecting families

The question of how large a non-uniform intersecting family $\mathcal{A} \subseteq 2^{[n]}$ can be is rather easy: \mathcal{A} cannot contain both a set and its complement and so $|\mathcal{A}| \leq 2^{n-1}$, moreover this bound can attained in numerous different ways.

The non-uniform G-intersection problem is also easier to solve than the k-uniform version. For a graph G of order n let

$$N(G) = \max\{|\mathcal{A}| : \mathcal{A} \subseteq 2^{\lfloor n \rfloor} \text{ is } G \text{-intersecting}\}.$$

The size of the extremal family depends on the matching number, m(G), the size of a largest matching in G.

Theorem 4.1. If $\{G_n\}_{n=1}^{\infty}$ is a sequence of non-empty graphs of order n with $m(G_n)$ non-decreasing then either $m(G_n) \to \infty$ as $n \to \infty$, in which case $N(G_n) = (1 - o(1))2^n$, or there exists $m \ge 1$ such that $m(G_n) = m$ for all $n \ge n_0$ and

$$1 - e^{-m/8} \le \mathbb{P}(Bin(m, 3/4) > m/2) \le \frac{N(G_n)}{2^n} \le 1 - 2^{-(2m+1)}.$$
 (17)

In the latter case both bounds are attainable.

Lemma 4.2. Let G be a graph of order n with a matching of size $m \ge 1$ then

$$\frac{N(G)}{2^n} \ge \mathbb{P}(Bin(m, 3/4) > m/2) \ge 1 - e^{-m/8}.$$

Proof. Take a matching M of size m and define

$$\mathcal{M}_{\text{maj}} = \{ A \in 2^{[n]} : A \text{ meets} > m/2 \text{ of the edges in } M \}.$$
(18)

Note that \mathcal{M}_{maj} is *G*-intersecting.

If we select a set $A \in 2^{[n]}$ uniformly at random by choosing each $i \in [n]$ independently with probability 1/2 then A meets any edge $e \in M$ independently with probability 3/4. Hence if $X \sim \operatorname{Bin}(m, 3/4)$ then

$$\mathbb{P}(A \in \mathcal{M}_{\mathrm{maj}}) = \mathbb{P}(X > m/2).$$

Hoeffding's inequality [6] implies that this is at least $1 - e^{-m/8}$ and the result follows.

Proof of Theorem 4.1. Since $m(G_n)$ is increasing either $m(G_n) \to \infty$ as $n \to \infty$ or there exists $m \ge 1$ such that $m(G_n) = m$ for all $n \ge n_0$. In the former case Lemma 4.2 implies that $N(G_n) = (1 - o(1))2^n$, so suppose that $m(G_n) = m$ for all $n \ge n_0$. Lemma 4.2 now implies that the lower bound in (17) holds. For the upper bound consider a maximal matching in G_n , this contains at most 2mvertices. Let $W \subseteq [n]$ be the other vertices of G_n . Since W is the complement of a maximal matching it is an independent set and so if $A, B \subseteq 2^W$ are G_n intersecting then $A \cap B \neq \emptyset$. Hence if $A \subseteq 2^{[n]}$ is G_n -intersecting then it contains at most half of the sets from 2^W . The fact that $|W| \ge n - 2m$ yields the upper bound in (17).

Note that if G_n is the union of a clique of order 2m + 1 and n - 2m - 1 isolated vertices then the upper bound in (17) is sharp. (The family of all sets meeting the clique is G_n -intersecting and of the correct size.)

To see that the lower bound in (17) is also attainable requires slightly more work. We claim that if G_n is the union of a matching M on m edges and n-2m isolated vertices then the family \mathcal{M}_{maj} defined in (18) is a largest G_n intersecting family. (We will assume for simplicity that m is odd, if m is even a similar argument will work.)

Let $\mathcal{A} \subseteq 2^{[n]}$ be a G_n -intersecting family of maximum size. Let $E = \{e_1, e_2, \ldots, e_m\}$ be the *m* edges of the matching and let $V = \{v_1, v_2, \ldots, v_{n-2m}\}$ be the n-2m isolated vertices. For $\mathcal{A} \subseteq E$ and $\mathcal{B} \subseteq V$ let

$$\mathcal{S}(A, B) = \{ C \in 2^{[n]} : A = \{ e \in E : C \cap e \neq \emptyset \} \text{ and } B = \{ v \in V : v \in C \} \}.$$

So $\mathcal{S}(A, B)$ contains those sets which meet precisely those edges in A and contain precisely those isolated vertices in B.

First note that if $A \subseteq E$ and $B \subseteq V$ then $|\mathcal{S}(A, B)| = 3^{|A|}$. Secondly if $A \subseteq E$ and $B \subseteq V$ then at most one of $\mathcal{A} \cap \mathcal{S}(A, B)$ and $\mathcal{A} \cap \mathcal{S}(E \setminus A, V \setminus B)$ can be non-empty (otherwise \mathcal{A} is not G_n -intersecting). Moreover the maximality of \mathcal{A} implies that if $\mathcal{A} \cap \mathcal{S}(A, B) \neq \emptyset$ then $\mathcal{S}(A, B) \subseteq \mathcal{A}$. Finally note that if for each $A \subseteq E$ and $B \subseteq V$ we take the larger of $\mathcal{S}(A, B)$ and $\mathcal{S}(E \setminus A, V \setminus B)$ then the resulting family is at least as large as \mathcal{A} . However this family is \mathcal{M}_{maj} . \Box

5 Open problems and conjectures

An analogue of Theorem 2.1 should surely hold when $G_{r,n} = K_1 \dot{\cup} K_2 \dot{\cup} \cdots \dot{\cup} K_t$ is the disjoint union of r-cliques, where r > 2 is a constant and n = rt. Indeed by Corollary 3.3 we have $N(G_{r,n},k) = (1-o(1))\binom{n}{k}$ for $k > d_rn(1+o(1))$ (where $d_r = 1 - 2^{-1/r}$). Moreover if $k < d_rn(1-o(1))$ then we can prove that $N(G_{r,n},k) = (1+o(1))\binom{n}{k} - \binom{n-r}{k}$). However an exact version should hold so we make the following conjecture.

Conjecture 5.1. If r > 2 is a constant, $G_{r,n}$ is a disjoint union of r-cliques and $d_r = 1 - 2^{-1/r}$ then there exists $\delta_{r,n} = o(1)$ such that

$$N(G_{r,n},k) = \begin{cases} \binom{n}{k} - \binom{n-r}{k}, & k < d_r n(1-\delta_{r,n}), \\ (1-o(1))\binom{n}{k}, & k > d_r n(1+\delta_{r,n}). \end{cases}$$

Moreover the extremal families are unique up to isomorphism.

Since there is a small range of values of k for which Theorem 2.1 fails to determine $N(M_n, k)$ we ask the following obvious question.

Question 5.2. Is $N(M_n, k) = \max\{|\mathcal{A}_{pair}|, |\mathcal{A}_{maj}|\}$ for all values of k and n?

Bohman et al. [2] made the following conjecture concerning the cycle.

Conjecture 5.3 (Bohman et al. [2]). There is a constant c such that for any fixed $\epsilon > 0$

$$N(C_n, k) = \begin{cases} \binom{n}{k} - \binom{n-2}{k} + \binom{n-4}{k-2}, & k < (c-\epsilon)n, \\ (1-o(1))\binom{n}{k}, & k > (c+\epsilon)n. \end{cases}$$

Given our result for cycles (Corollary 3.2) we make the following conjecture.

Conjecture 5.4. Conjecture 5.3 is true with c = 0.266..., the smallest positive root of $(1 - x)^3(1 + x) = 1/2$.

Given our example showing that there exist graphs and values of k for which the extremal k-uniform G-intersecting families are neither (G, k)-stars nor almost all of $\binom{[n]}{k}$ we pose the following question.

Question 5.5. Is it true that for any graph G and $1 \le k \le n$, there exist (G,k)-stars $\mathcal{A}_1^*, \ldots, \mathcal{A}_t^*$ such that $N(G,k) = |\mathcal{A}_{maj}|$? Where for t odd

$$\mathcal{A}_{maj} = \left\{ A \in {[n] \choose k} : A \text{ belongs to } > t/2 \text{ of the } \mathcal{A}_i^* \right\}$$

and for t even we extend this family to include as many k-sets as possible that belong to exactly t/2 of the \mathcal{A}_i^* .

We note that a result of Erdős, Frankl and Katona [4] implies that a positive answer to this question would yield a positive answer to Question 5.2.

References

- Azuma, K. (1967) Weighted sums of certain dependent random variables. Tôhoku Math. J. 19 357-367.
- [2] Bohman, T., Frieze, A., Ruszinkó, M. and Thoma, L. (2000) G-intersecting families. Combin. Probab. and Comput. 10 376–384.
- [3] Bohman, T. and Martin, R. (2003) A note on G-intersecting families. Discrete. Math. 260 183–188.
- [4] Erdős, P. L., Frankl, P. and Katona, G. O. H. (1985) Extremal hypergraph problems and convex hulls. *Combinatorica* 5 11–26.

- [5] Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets. Q. J. Math. Oxford Ser. 2 12 313–320.
- [6] Hoeffding, W., (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (301) 13–30.