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Abstract

We consider a new type of extremal hypergraph problem: given an
r-graph F and an integer k ≥ 2 determine the maximum number of edges
in an F-free, k-colourable r-graph on n vertices.

Our motivation for studying such problems is that it allows us to give
a new upper bound for an old Turán problem. We show that a 3-graph
in which any four points span at most two edges has density less than
0.32975 <

1

3
− 1

280
, improving previous bounds of 1

3
due to de Caen [2],

and 1

3
− 4.5305 × 10−6 due to Mubayi [13].

1 Introduction and main results

Given an r-graph F the Turán number ex(n,F) is the maximum number of
edges in an n-vertex r-graph not containing a copy of F . The Turán density of
F is

π(F) = lim
n→∞

ex(n,F)
(

n
r

) .

For 2-graphs the Turán density is determined completely by the chromatic num-
ber but for r ≥ 3 there are very few r-graphs for which π(F) is known. (Ex-
amples of 3-graphs for which π(F) is now known include the Fano plane [3],
F = {abc, abd, abe, cde} [12] and F = {abc, abd, cde} [9].)

The two most well-known problems in this area are to determine π(K4) and
π(K−

4 ), where K4 = {abc, abd, acd, bcd} is the complete 3-graph on 4 vertices
and K−

4 = {abc, abd, acd} is the complete 3-graph on 4 vertices with an edge
removed. For π(K4) we have the following bounds due to Turán and Chung and
Lu [4] respectively

5

9
≤ π(K4) ≤

3 +
√

17

12
= 0.59359 . . . .
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Although the problem of determining π(K4) is an extremely natural question
in some respects the problem of determining π(K−

4 ) is even more basic since
K−

4 is the smallest 3-graph satisfying π(F) 6= 0. Note also that the problem
of determining π(K−

4 ) can be restated as: determine the maximum density of
a 3-graph in which any four vertices span less than three edges. (In this last
form the problem is a special case of a question due to Brown, Erdős and Sós
[1] asking for the maximum number of edges in an r-graph of order n in which
any v vertices span less than e edges. The case r = e = 3 and v = 6 is the well
known (6, 3)-problem, see Ruzsa and Szemerédi [15].)

The problem of determining π(K−
4 ) has been considered by many people,

including Turán [17], Erdős and Sós [7], Frankl and Füredi [10], de Caen [2] and
Mubayi [13]. Previously the best bounds known were

2

7
≤ π(K−

4 ) ≤ 1

3
− (4.5305× 10−6).

The upper bound was proved by Mubayi [13], improving on the upper bound
π(K−

4 ) ≤ 1/3 due to de Caen [2]. The lower bound follows from the following
construction due to Frankl and Füredi [10].

Let S be the following 3-graph of order 6 with 10 edges

S = {124, 234, 346, 456, 126, 256, 135, 145, 235, 136}.

Let |V | = n and suppose that V is partitioned as V = V1∪̇ · · · ∪̇V6. For such a
partition we define HS to be the “blow-up” of S. So HS has vertex set V and
edge set

HS = {vi1vi2vi3 | 1 ≤ i1 < i2 < i3 ≤ 6, i1i2i3 ∈ S and vij
∈ Vij

}. (1)

If the vertex classes Vi are taken to be as equal as possible in size then this
yields a K−

4 -free 3-graph with density greater than 5/18. Moreover if RS is the
3-graph given by iterating this process, partitioning each Vi and inserting a copy
of HS repeatedly, then we obtain a K−

4 -free 3-graph with density approaching
2/7. (See [10] for details.)

Our main aim in this paper is to prove the following theorem, improving the
upper bound for π(K−

4 ).

Theorem 1 The Turán density of K−
4 satisfies

2

7
≤ π(K−

4 ) < 0.32975 <
1

3
− 1

280
.

Our approach involves a new type of extremal problem which we call chro-
matic Turán problems. These are questions of the form: given an r-graph F
and an integer k ≥ 2 determine the maximum number of edges in an F-free,
k-colourable r-graph on n vertices. (Recall that an r-graph is k-colourable iff its
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vertices can be partitioned into k classes none of which contain an edge.) We
denote this quantity by exk(n,F).

A simple averaging argument shows that for any r, k, n and F

exk(n + 1,F)
(

n+1
r

) ≤ exk(n,F)
(

n
r

)

and so the corresponding k-chromatic Turán density can defined as the limit

πk(F) = lim
n→∞

exk(n,F)
(

n
r

) .

One obvious reason why such problems do not seem to have been previously
considered is that for 2-graphs they are rather uninteresting.

If G is a 2-graph then the Erdős-Simonovits-Stone theorem determines not
only the ordinary Turán density of G but also all of the chromatic Turán den-
sities of G.

Theorem 2 (Erdős–Simonovits–Stone [5],[8]) If the 2-graph G has chro-
matic number χ(G) then

π(G) = 1 − 1

χ(G) − 1
.

Corollary 3 If G is a 2-graph and k ≥ 2 then

πk(G) =

{

1 − 1
k , k ≤ χ(G) − 1,

1 − 1
χ(G)−1 , k ≥ χ(G).

For r ≥ 3 the problems of determining chromatic and ordinary Turán numbers
seem to be genuinely different. An obvious reason for this is that while for a
2-graph H the extremal H-free graphs are not only H-free but also (χ(H)− 1)-
colourable this does not seem to be the case in general.

The particular chromatic Turán problems which we will consider are those
of determining π2(K−

4 ) and π3(K−
4 ). We obtain the following bounds.

Theorem 4 There exists ω2 > 0 such that the 2-chromatic Turán density
π2(K−

4 ) satisfies

0.25682 < π2(K−
4 ) <

3

10
− ω2.

Theorem 5 There exists ω3 > 0 such that the 3-chromatic Turán density
π3(K−

4 ) satisfies

5

18
≤ π3(K−

4 ) <
3 +

√

11/3

15
− ω3.
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In the next section we will introduce the key ideas linking ordinary and chro-
matic Turán densities. In the third section we will prove Theorems 4 and 5. In
the final section we prove Theorem 1.

Throughout the remainder of this paper we will write π = π(K−
4 ), π2 =

π2(K−
4 ) and π3 = π3(K−

4 ). For a 3-graph G with vertex set V and A ⊆ V we let
e(A) denote the number of edges of G contained in A. The degree of a vertex
x ∈ V is denoted by dx = #{yz | xyz ∈ G} while the degree of a pair of vertices
x, y is denoted by dxy = #{z | xyz ∈ G}.

We will let F denote a K−
4 -free 3-graph with vertex set V of order n and with

ex(n,K−
4 ) = m = η

(

n
3

)

edges. Similarly Fk, k = 2, 3, will denote a k-colourable

K−
4 -free 3-graph with vertex set V of order n and with mk = exk(n,K−

4 ) edges.

We take ε to denote an arbitrary small positive constant (we will assume ε <
10−10). We suppose that n is always sufficiently large that whenever s ≥ n/100
we have exk(s,K−

4 ) ≤ (πk + ε)
(

s
3

)

(for k = 2, 3) and ex(s,K−
4 ) ≤ (π + ε)

(

s
3

)

.

For any value a > 0 we will use a′ to denote a + ε.

2 Ordinary and chromatic Turán densities

Let F be a K−
4 -free 3-graph with vertex set V of order n and with ex(n,K−

4 ) =
m = η

(

n
3

)

edges, as defined above. We count edges in subsets of the vertices of
F of size four. If

qi = #{A ∈ V (4) | e(A) = i}
then as F is K−

4 -free we have

m(n − 3) = q1 + 2q2

and

q2 =
∑

xy∈V (2)

(

dxy

2

)

.

Using the following identity (which holds since every edge contains three pairs
of vertices)

∑

xy∈V (2)

dxy = 3m (2)

we obtain
mn = q1 +

∑

xy∈V (2)

d2
xy. (3)

Convexity of f(x) = x2 and (2) then imply that

mn ≥ q1 +
9m2

(

n
2

) . (4)
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Now q1 ≥ 0 yields

m ≤ n2(n − 1)

18
. (5)

Dividing by
(

n
3

)

and taking the limit as n → ∞ gives de Caen’s bound π(K−
4 ) ≤

1/3.

Mubayi’s improved upper bound for π(K−
4 ) [13] follows from (4) by using

supersaturation to give a lower bound for q1. He used a result of Frankl and
Füredi [10] characterizing 3-graphs in which every four points span exactly 0 or
2 edges.

Our improved upper bound for π is achieved by an entirely different ap-
proach, although we will also implicitly make use of supersaturation at one
point.

Our aim in this section is to prove Lemma 6, giving a lower bound on q1 in
terms of the 3-chromatic Turán density π3. We will say that A ∈ V (4) is a good
4-set iff A spans exactly one edge. Recall that η = m/

(

n
3

)

.

Lemma 6 If π > π3 then for ε sufficiently small and π′
3 = π3 + ε the number

of good 4-sets in F satisfies

q1 ≥ 2mn(1− γ)

3(2 − µ)
+ O(n3). (6)

where γ = π′
3/η and

µ = γ −
√

1 − 2γ

3
− γ2

3
.

We will assume for the remainder of this section that π > π3 and that ε is
sufficiently small that γ = π′

3/η ≤ (π3 + ε)/π < 1.

We start with some simple observations. As before F is a K−
4 -free 3-graph

on n vertices with m = η
(

n
3

)

= ex(n,K−
4 ) edges.

We may assume that for any pair of vertices x, y ∈ V we have dx−dy ≤ n−2,
since if this does not hold then by deleting y and duplicating x we obtain a new
K−

4 -free 3-graph on n vertices with at least

m + dx − dy − (n − 2) > ex(n,K−
4 )

edges. Since
∑

x∈V

dx = 3m = 3η

(

n

3

)

this implies that if x ∈ V then

dx =
ηn2

2
+ O(n). (7)
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We count q1, the number of good 4-sets, by considering pairs of disjoint
edges uvw, xyz ∈ F . For two such edges define

q(uvw, xyz) = #{good 4-sets amongst uvwx, uvwy, uvwz, xyzu, xyzv, xyzw}.

For an edge uvw ∈ F we then define

q(uvw) =
∑

xyz∈F

q(uvw, xyz).

The following lemma shows how this can be used to count the number of good
4-sets in F .

Lemma 7 If F is as above then
∑

uvw∈F

q(uvw) = ηn2q1 + O(n5). (8)

Proof: The LHS of (8) counts a good 4-set A twice for each unordered pair of
edges uvw, xyz such that A is either uvwx, uvwy, uvwz, xyzu, xyzv or xyzw. If
A = uvwx is a good 4-set with single edge uvw then the number of ways of
choosing an unordered pair of edges that count A is simply

dx − #{xyz ∈ F | {y, z} ∩ {u, v, w} 6= ∅} =
ηn2

2
+ O(n),

using (7). Finally q1 = O(n4) implies that (8) holds. 2

For the remainder of this section we will attempt to find lower bounds for
q(uvw), where uvw ∈ F , and then use (8) to give a lower bound for q1.

For x, y ∈ V we let Exy = {z | xyz ∈ F}. The following notation and
definitions are all relative to some fixed edge uvw ∈ F . Let

Euvw = Euv ∪ Euw ∪ Evw and Duvw = V \Euvw.

Let |Duvw| = δuvwn. An edge xyz ∈ F is internal iff it is contained entirely
within either Euv , Euw or Evw. We denote the number of such edges by iuvw.

We call an edge xyz ∈ F bad iff it is not internal and it does not meet Duvw.
An edge which is not bad is said to be good. We denote the number of bad edges
by buvw. Let Buvw be the 3-graph with vertex set Euvw and edge set consisting
of all the bad edges of F .

The relationship between estimating q1 and the 3-chromatic Turán problem
enters in our next lemma.

Lemma 8 If uvw ∈ F and |Duvw| = δuvwn then Buvw is 3-colourable with a
3-colouring given by the vertex partition Euv∪̇Euw∪̇Evw. Hence

buvw ≤ ex3((1 − δuvw)n,K−
4 ). (9)

Moreover any internal edge xyz ∈ F is good and satisfies q(uvw, xyz) ≥ 2.

6



bad edges

internal edge

EvwEuv

Euw Duvw

Figure 1: The 3-graph F

Proof: Since uvw ∈ F and F is K−
4 -free so Euv∪̇Euw∪̇Evw is a partition of

Euvw. Moreover since no internal edge belongs to Buvw this partition yields a
3-colouring of Buvw. Then as |Euvw | = (1 − δuvw)n so (9) holds by definition.

Any internal edge is by definition good so we now need to show that any
internal edge xyz satisfies q(uvw, xyz) ≥ 2.

Let xyz be an internal edge. Without loss of generality we may suppose
that xyz ⊆ Euv . Now consider the 4-sets {xyzu, xyzv, xyzw}. Since F is
K−

4 -free and uvx, uvy, uvz ∈ F we know that xyu, xyv, xzu, xzv, yzu, yzv 6∈ F .
Hence xyzu and xyzv are both good 4-sets containing the single edge xyz so
q(uvw, xyz) ≥ 2 and the result follows. 2

For W ⊆ V let ej(W ) denote the number of edges in F which contain exactly
j vertices from W . We now give a simple lower bound for q(uvw).

Lemma 9 If uvw ∈ F then

q(uvw) ≥ 2iuvw + 3e3(Duvw) + 2e2(Duvw) + e1(Duvw) + O(n2).

Proof: We saw in Lemma 8 that if xyz is an internal edge then q(uvw, xyz) ≥
2. If xyz ∈ F is disjoint from uvw and contains j vertices from Duvw then
q(uvw, xyz) ≥ j, since each vertex in {x, y, z}∩Duvw forms a good 4-set together
with uvw. The result then follows since the number of edges meeting uvw is
O(n2). 2

We require one final lemma

Lemma 10 If uvw ∈ F and π′
3 = π3 + ε then

q(uvw)

m
≥ 2 − 2γ + 3µδuvw + O

(

n−1
)

, (10)
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where γ = π′
3/η and

µ = γ −
√

1 − 2γ

3
− γ2

3
.

Proof: We will give two lower bounds for q(uvw)/m. The first bound (12) is
always valid while the second bound (16) is valid only if δuvw ≤ 99/100.

Lemma 9 tells us that

q(uvw) ≥ 3e3(Duvw) + 2e2(Duvw) + e1(Duvw) + O(n2)

=
∑

x∈Duvw

dx + O(n2). (11)

Thus for any value of δuvw, (11), (7) and |Duvw | = δuvwn imply that

q(uvw)

m
≥ 3δuvw + O

(

n−1
)

. (12)

Since

m = iuvw + buvw + e1(Duvw) + e2(Duvw) + e3(Duvw)

Lemma 9 implies that

q(uvw) ≥ 2(m − buvw) + e3(Duvw) − e1(Duvw) + O(n2). (13)

Now (9) together with our assumption that ex3(s,K−
4 ) ≤ π′

3

(

s
3

)

for s ≥ n/100
imply that if δuvw < 99/100 then

buvw ≤ π′
3

(

(1 − δuvw)n

3

)

. (14)

Also (7) implies that

e1(D) ≤
∑

x∈Duvw

dx =
ηn3δuvw

2
+ O(n2). (15)

Let γ = π′
3/η. If δuvw ≤ 99/100 then (13), (14) and (15) imply that

q(uvw)

m
≥ 2 − 2γ(1− δuvw)3 − 3δuvw + O

(

n−1
)

.

Expanding we obtain

q(uvw)

m
≥ 2− 2γ + 3δuvw

(

2γ − 1 − 2γδuvw +
2γδ2

uvw

3

)

+ O
(

n−1
)

. (16)

If

δ1 =
2(1 − γ)

3(1− µ)
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and δuvw ≥ δ1 then (12) implies that (10) holds so we may suppose that δuvw ≤
δ1. It is easy to check that δ1 ≤ 2/3 < 99/100 and so (16) holds.

To show that (10) holds in this case we need to check that for δuvw ≤ δ1 the
following inequality holds

2γ − 1 − 2γδuvw +
2γδ2

uvw

3
≥ µ. (17)

This is straightforward. Since the LHS of (17) is decreasing in δuvw it is sufficient
to check that

2γ − 1 − 2γδ1 = µ.

Hence (10) holds for all edges uvw ∈ F . 2

Proof of Lemma 6: Let uvw ∈ F . Since

Duvw = {x ∈ V | x 6∈ Euv ∪ Euw ∪ Evw}

and δuvwn = |Duvw| we have

q1 =
∑

uvw∈F

δuvwn. (18)

The bound on q1 in (6) now follows directly from (10) and (8). 2

3 Bounds for chromatic Turán problems

Our aim in this section is to give bounds on the chromatic Turán densities of
K−

4 . We start by considering the 2-chromatic case. Proof of Theorem 4: Let F2

be a 2-colourable K−
4 -free 3-graph of order n with m2 edges. Let the two vertex

classes of F2 be A and B, with |A| = αn and |B| = (1 − α)n. We may suppose
that |A| ≤ |B| and so α ≤ 1/2.

Counting edges in 4-sets we obtain an analogous equality to (3)

nm2 = q1 +
∑

xy∈A(2)∪B(2)

d2
xy +

∑

xy∈A×B

d2
xy,

where, as previously, q1 is the number of good 4-sets (that is the number of
4-sets containing exactly one edge). Since neither A nor B contain any edges
we have the following two identities

∑

xy∈A(2)∪B(2)

dxy = m2 and
∑

xy∈A×B

dxy = 2m2.

Thus convexity implies that

nm2 ≥ q1 +
m2

2
(

αn
2

)

+
(

(1−α)n
2

)
+

4m2
2

α(1 − α)n2
.
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Writing α = (1 − β)/2 and using the fact that q1 ≥ 0, this implies that m2 ≤
n3

2f(β) , where

f(β) =
4

(1 − β)2 + (1 + β)2
+

8

1 − β2

=
4

1 − β4
+

6

1− β2

≥ 10.

Thus we have

m2 ≤ n3

20
.

Hence dividing by
(

n
3

)

and taking the limit n → ∞ we obtain π2 ≤ 3/10.

To see that this may be improved to π2 < 3/10 − ω2 for some ω2 > 0
we note that we assumed in the above argument that q1 = 0. We can use
a supersaturation argument (analogous to that given in [13]) to show that a
positive proportion of 4-sets contribute to q1. (In fact with a little work one
can take ω2 > 10−4 although we will only require ω2 > 0 in the sequel.) This
completes the proof of the upper bound.

For the lower bound we use the following construction. Let G8 be the 2-
colourable K−

4 -free 3-graph of order 8 with the following edges

G8 = {125, 135, 145, 126, 136, 246, 346, 456, 127, 237,

247, 357, 457, 367, 138, 238, 348, 258, 268, 178, 478}
Form a blow-up of this 3-graph to give G8(n) a 3-graph of order n with vertex
classes V1, V2, . . . , V8 of sizes a1n, a2n, . . . , a8n (so

∑

ai = 1) and edges given by

G8(n) = {vi1vi2vi3 | 1 ≤ i1 < i2 < i3 ≤ 8, i1i2i3 ∈ G8 and vij
∈ Vij

}.

Now G8(n) is clearly still 2-colourable and K−
4 -free. Moreover for the correct

choice of a1, . . . , a8 and n large it has density greater than 0.25682. (To be pre-
cise we can take a1 = 0.1608, a2 = 0.1882, a3 = 0.1868, a4 = a5 = 0.0379, a6 =
0.1086, a7 = 0.1437, a8 = 0.1361. Such an “optimal” blow-up is found by calcu-
lating the Lagrangian of G8, see for example [11].) 2

Turán originally conjectured that π = 1/4. This was disproved by Frankl
and Füredi [10] with their construction of a K−

4 -free 3-graph with
(

2
7 + o(n)

) (

n
3

)

edges. It is interesting to note that even with the seemingly much stronger
condition that F2 is K−

4 -free and 2-colourable F2 can still have density greater
than 1/4.

We now turn to the the 3-chromatic case and the proof of Theorem 5. This
will follow directly from Theorem 4 and the following lemma.

Lemma 11 The 3-chromatic Turán density of K−
4 is bounded above by the

larger root of
243x2 − 18x(8π2 + 3) + 64π2

2 = 0. (19)
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Proof of Theorem 5: The lower bound for π3 is given by HS the 3-graph con-
structed by Frankl and Füredi which we met earlier (1). Since HS is the blow-up
of

S = {124, 234, 346, 456, 126, 256, 135, 145, 235, 136}
a 3-colouring of S yields a 3-colouring of HS in the obvious way. The vertices of
HS consist of six classes corresponding to the six vertices of S. All the vertices
in a single class Vi inherit the colour of the corresponding vertex i ∈ V (S). A
3-colouring of S is given by partitioning the vertices as {1, 2} ∪ {3, 4} ∪ {5, 6}.
Hence HS is 3-colourable and K−

4 -free. It is straightforward to check that it has
density at least 5/18.

The upper bound follows by substituting π2 < 3/10−ω2 from Theorem 4 into
(19) and solving. (It is easy to check that since the bound π2 ≤ 3/10 yields π3 ≤
(3 +

√

11/3)/15 so the bound π2 < 3/10− ω2 yields π3 < (3 +
√

11/3)/15− ω3

for some ω3 > 0.) 2

We note that in this case, unlike the 2-chromatic case, the lower bound could
well be the true value.

Using convexity we are able to give a simple lower bound for
∑

d2
xy since

this is minimized (for
∑

dxy constant) by taking all of the degrees to be equal.
Our next lemma will allow us to improve this lower bound when some of the
pairs xy ∈ V (2) have smaller than average degree. Lemma 13 then provides a
collection of pairs of small degree to which we may apply this result.

Lemma 12 If X ⊆ V (2), |X | ≥ t,
∑

xy∈V (2) dxy = S and

1

|X |
∑

xy∈X

dxy ≤ θ ≤ S
(

n
2

)

then
∑

xy∈V (2)

d2
xy ≥ θ2t +

(S − tθ)2
(

n
2

)

− t
.

Proof: Suppose that |X | = u ≥ t and

1

|X |
∑

xy∈X

dxy = κ ≤ θ.

By the convexity of x2 we have
∑

xy∈V (2)

d2
xy =

∑

xy∈X

d2
xy +

∑

xy∈V (2)\X

d2
xy

≥ uκ2 +
(S − κu)2
(

n
2

)

− u
. (20)

Now the RHS of (20) is increasing in u and decreasing in κ (for u ≥ t and
κ ≤ θ). Hence it is minimized when κ = θ and u = t. The result follows. 2
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Lemma 13 Let π′
2 = π2 + ε. If F3 is a K−

4 -free 3-colourable 3-graph of order n
with 3-colouring given by the partition V = A∪̇B∪̇C and X = A(2) ∪B(2)∪C(2)

then
1

n|X |
∑

xy∈X

dxy ≤ 8π′
2

9
+ O(n−1). (21)

Proof: Recall our assumption that n is sufficiently large so that any K−
4 -free

2-colourable 3-graph of order s ≥ n/100 has at most π′
2

(

s
3

)

edges. Let F3 be as
above with 3-colouring given by the partition V = A∪̇B∪̇C, and |A| ≥ |B| ≥
|C|.

We first deal with the case that |B ∪C| is small. So suppose that |B ∪C| ≤
n/100. In this case we have |X | ≥ |A(2)| ≥

(

99n/100
2

)

. Since F3 is 3-colourable
no edge contains more than one pair from X (otherwise there would be an edge
contained in A, B or C) and hence using de Caen’s bound (5) we have

1

n|X |
∑

xy∈X

dxy ≤ n2(n − 1)

18n
(

99n/100
2

)

<
1

5
.

So in this case (21) holds since 8π′
2/9 > 8π2/9 > 2/9 > 1/5, by Theorem 4.

We now consider the case that all unions of pairs of vertex classes are rea-
sonably large, so |B∪C| ≥ n/100. Let |A| = αn, |B| = βn so |C| = (1−α−β)n.
We have 99/100 ≥ α + β ≥ 2/3.

Considering edges containing pairs of vertices from X we obtain

1

n|X |
∑

xy∈X

dxy ≤
π′

2

(

(

(α+β)n
3

)

+
(

(1−α)n
3

)

+
(

(1−β)n
3

)

)

n
(

(

αn
2

)

+
(

βn
2

)

+
(

(1−α−β)n
2

)

)

≤ π′
2((α + β)3 + (1 − α)3 + (1 − β)3)

3(α2 + β2 + (1 − α − β)2)
+ O(n−1).

Thus it is sufficient to prove that

(α + β)3 + (1 − α)3 + (1 − β)3

α2 + β2 + (1 − α − β)2
≤ 8

3
. (22)

This is straightforward. Writing ξ = α+β and ρ = α−β we see that (22) holds
iff the following inequality holds

0 ≤ 8 − 28ξ + 30ξ2 − 9ξ3 + ρ2(9ξ − 2).

Now ξ = α+β ≥ 2/3 so 9ξ−2 ≥ 4 and it is sufficient to check that the following
inequality holds

0 ≤ 8 − 28ξ + 30ξ2 − 9ξ3 + 4ρ2. (23)

12



The RHS of (23) is clearly increasing in ρ and also in ξ (for 2/3 ≤ ξ ≤ 1). Hence
it is minimized at ρ = 0 and ξ = 2/3 when (23) holds with equality. 2

Proof of Lemma 11: Let π′
2 = π2+ε and F3 be a 3-colourableK−

4 -free 3-graph
with vertex set V of order n = 3k and of maximum size m3 = ex3(K−

4 , n) =
η3

(

n
3

)

. (So η3 ≥ π3.) Let a 3-colouring of F3 be given by the partition V =
A∪̇B∪̇C with |A| = αn, |B| = βn and |C| = (1 − α − β)n. We may suppose
that |A| ≥ |B| ≥ |C| and hence 2/3 ≤ α + β ≤ 1.

We will wish to consider sums over pairs of vertices and so define

X = A(2) ∪ B(2) ∪ C(2).

Note that |X | is minimized when A, B and C are as equal as possible in size.
Hence

|X | ≥ 3

(

n/3

2

)

.

Counting edges in 4-sets we obtain an analogous equality to (3)

nm3 = q1 +
∑

xy∈X

d2
xy +

∑

xy∈V (2)\X

d2
xy, (24)

where, as previously, q1 is the number of good 4-sets (that is the number of
4-sets containing exactly one edge).

Letting π′
3 = π3 + ε and noting that π′

2 ≤ π′
3, Lemma 13 says precisely that

the average degree of pairs of vertices from X is at most

8π′
2n

9
+ O(1) ≤ 8π′

3n

9
+ O(1)

< η3(n − 2),

for n large (since ε < 10−10).

Hence the average degree of pairs of vertices from X is strictly less than
the average degree of pairs of vertices from V . (The average degree of pairs of
vertices from V being η3(n − 2).)

Using q1 ≥ 0, n = 3k, (24) and Lemma 12 with θ = 8π′
2n/9 + O(1) and

t = 3
(

k
2

)

we obtain

3km3 ≥ 3

(

k

2

) (

8π′
2k

3

)2

+
(3m3 − 8π′

2k
(

k
2

)

)2
(

3k
2

)

− 3
(

k
2

) + O(k3).

Dividing by k
18

(

3k
3

)

and rearranging we obtain

0 ≥ 243η2
3 − 18η3(8π′

2 + 3) + 64(π′
2)

2 + O(k−1).

Since π3 ≤ η3 and this last inequality holds for all ε sufficiently small and n = 3k
sufficiently large, the result follows. 2
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4 A new upper bound for the Turán density of

K−
4

For Theorem 1 we need to show that π < 0.32975. This will require another
new idea, enabling us to not only give a lower bound for q1 but also to show that
if π is close to 1/3 then the degrees of pairs of vertices in an extremal K−

4 -free
3-graph will not all be equal. To be precise we will show that if π is close to 1/3
then we can find a collection of pairs of vertices which have lower than average
degree and then appeal to Lemma 12 to improve our lower bound for

∑

d2
xy.

We define π0 = 1 − 3π > 0. Our next lemma tells us that if π0 is small (so
π is close to 1/3) then we can find an edge uvw such that the degrees of pairs

of vertices from E
(2)
uv ∪ E

(2)
uw ∪ E

(2)
vw are small.

Lemma 14 Let π′
0 = π0 + ε and π′

2 = π2 + ε. There is an edge uvw ∈ F such

that if Xuvw = E
(2)
uv ∪ E

(2)
uw ∪ E

(2)
vw then

1

n|Xuvw|
∑

xy∈Xuvw

dxy ≤ 8π′
2

9
+ ν0 + O(n−1), (25)

where

ν0 =
(2 − 8π′

2/9)π′
0

1 − 2π′
0

. (26)

Furthermore δuvw = |Duvw|/n satisfies δuvw ≤ δ0 where

δ0 =
π′

0

(1 − 2π′
0)

(

1 +
3

(1 − 16π′
2/9)

)

. (27)

Proof: Recall our assumption that n is sufficiently large that any 2-colourable
K−

4 -free 3-graph of order s ≥ n/100 has at most π′
2

(

s
3

)

edges, where π′
2 = π2 + ε.

Let uvw ∈ F and Xuvw = E
(2)
uv ∪ E

(2)
uw ∪ E

(2)
vw . As in Section 2 let

Duvw = V \(Euv ∪ Euw ∪ Evw),

iuvw = #{xyz ∈ F | xyz ⊂ Euv or xyz ⊂ Euw or xyz ⊂ Evw}
(that is iuvw is the number of internal edges) and |Duvw| = δuvwn. For i = 0, 1
let ei denote the number of edges in F meeting Duvw in exactly i vertices and
containing exactly one pair from Xuvw.

Considering the different types of edges containing a pair of vertices from
Xuvw we obtain the following identity (see Figure 4)

∑

xy∈Xuvw

dxy = e0 + e1 + 3iuvw. (28)

We now need to identify a particular choice of edge uvw ∈ F .

14



internal edge

e  edge0 e  edge1
EvwEuv

Euw Duvw

Figure 2: The edges counted by
∑

xy∈Xuvw
dxy.

Let τ = 1/2− 8π′
2/9, ιuvw = iuvw/m and

χ0 = min
xyz∈F

{

ιxyz

(1 − δxyz)2
+ τδxyz

}

.

We claim that

χ0 ≤ (2 − 8π′
2/9)π′

0

1 − 2π′
0

, (29)

where π′
0 = π0 + ε.

To see this recall Lemma 9 and (7). These imply that for any edge uvw ∈ F
we have

q(uvw) ≥ 2iuvw +
∑

x∈Duvw

dx

≥ 2iuvw + 3mδuvw + O(n2).

Hence we obtain
q(uvw)

m
≥ 2ιuvw + 3δuvw + O(n−1).

Now for any uvw ∈ F the definition of χ0 implies that

2ιuvw ≥ 2(χ0 − τδuvw)(1 − 2δuvw).

Hence
q(uvw)

m
≥ 2χ0 + σδuvw + O(n−1), (30)

where σ = 3 − 4χ0 − 2τ . Lemma 7 tells us that

∑

uvw∈F

q(uvw)

m
=

6q1

n
+ O(n2),

15



while we also have the identity (18)

q1 =
∑

uvw∈F

δuvwn.

Hence (30) implies that

q1 ≥ 2χ0mn

6 − σ
+ O(n3).

Thus (4)

mn ≥ q1 +
9m2

(

n
2

) ,

implies that for n sufficiently large

2χ0

6 − σ
≤ π′

0.

Rearranging this yields (29) proving the claim.

We now choose uvw ∈ F such that

ιuvw

(1 − δuvw)2
+ τδuvw = χ0. (31)

Since ιuvw ≥ 0 we have

δuvwτ ≤ (2 − 8π′
2/9)π′

0

1 − 2π′
0

.

Dividing by τ = 1/2 − 8π′
2/9 this implies that δuvw ≤ δ0, where δ0 is given by

(27). Moreover since π′
0 < 1/20 (as π ≥ 2/7) and π′

2 < 3/10 (by Theorem 4) it
is easy to check that δ0 < 1/2.

We now revisit (28), for which we wish to find an upper bound in the case
of uvw ∈ F chosen to satisfy (31).

For any vertex t ∈ Duvw we know that Et (the neighbourhood of t) is a
triangle-free 2-graph. Hence, by Turán’s theorem, we have

e1

|Xuvw|
≤ δuvwn

2
+ O(1).

Since e0 counts the number of edges in a 3-colourable K−
4 -free 3-graph of order

n(1 − δuvw) with two vertices in a single vertex class we can bound e0/|Xuvw|
using Lemma 13 which implies (since δuvw ≤ δ0 < 1/2) that

e0

n|Xuvw|
≤ 8π′

2

9
(1 − δuvw) + O(n−1).

Since τ = 1/2− 8π′
2/9 and ιuvw = iuvw/m, (28) yields

1

n|Xuvw|
∑

xy∈Xuvw

dxy ≤ 8π′
2

9
+ τδuvw +

3mιuvw

n|Xuvw|
+ O(n−1).
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Now

|Xuvw| =

(|Euv |
2

)

+

(|Euw|
2

)

+

(|Evw|
2

)

≥ 3

(

n(1 − δuvw)/3

2

)

=
n2(1 − δuvw)2

6
+ O(n).

By de Caen’s bound m < n3/18. So we have

1

n|Xuvw|
∑

xy∈Xuvw

dxy ≤ 8π′
2

9
+ τδuvw +

ιuvw

(1 − δuvw)2
+ O(n−1).

Using (29) and (31) this implies that (25) holds. 2

Our next lemma tells us that either π0 is large or there is a non-trivial lower
bound for

∑

d2
xy.

Lemma 15 Let F be as before, with m = η
(

n
3

)

then either π0 = 1− 3π ≥ 1/33
or

∑

xy∈V (2)

d2
xy ≥ n2

(

n

2

) (

η2 +
λ2

0x0

1 − x0

)

+ O(n3). (32)

Where λ0 = η − ν0 − 8π′
2/9, ν0 is given by (26) and

x0 =
(1 − δ0)

2

3
,

with δ0 given by (27).

Proof: Let uvw ∈ F be an edge given by Lemma 14. If X = Xuvw = E
(2)
uvw ∪

E
(2)
uw ∪ E

(2)
vw then |X | ≥ x0

(

n
2

)

+ O(n) and

1

|X |
∑

xy∈X

dxy ≤ (η − λ0)(n − 2) + O(1).

If λ0 > 0 then we can apply Lemma 12 with θ = (η−λ0)(n−2)+O(1), t = x0

(

n
2

)

and S = 3m = 3η
(

n
3

)

to yield (32). It remains to show that λ0 > 0.

Since π ≤ η it is easy to check that λ0 > 0 if the following inequality holds

π(1 − 2π′
0) − 2π′

0 >
8π′

2

9
(1 − 3π′

0).

Now since π0 = 1− 3π and π′
2 < 3/10 (by Theorem 4) this will hold if

10(π′
0)

2 − 33π′
0 + 1 > 0.

This last inequality certainly holds if π0 ≤ 1/33 and ε is sufficiently small. 2

We are now ready to prove Theorem 1.
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Proof of Theorem 1: Let 0 < ε < min{10−10, ω2, ω3} where ω2, ω3 are given
by Theorems 4 and 5 (so π′

2 < 3/10 and π′
3 < (3 +

√

11/3)/15).

We will suppose, for a contradiction, that π ≥ 0.32975. So certainly π >
π′

3 > π3 holds. If π0 ≥ 0.010751− ε then ε < 10−10 implies that π < 0.32975 so
we may suppose that π0 < 0.010751− ε (and so π′

0 < 0.010751).

From Lemma 6 we have the following lower bound on q1 (since we are as-
suming that π > π3)

q1 ≥ 2mn(1− γ)

3(2 − µ)
+ O(n3),

where γ = π′
3/η and

µ = γ −
√

1 − 2γ

3
− γ2

3
.

Now η ≥ π ≥ 0.32975 and π′
3 < (3+

√

11/3)/15 imply that γ < γ0 = 0.9936527.
Moreover it is routine to check that the following function is decreasing in γ

f(γ) =
1 − γ

2 − µ
.

Hence

q1 ≥ ηf(γ0)n
4

9
+ O(n3). (33)

We now consider lower bounds for
∑

d2
xy. Since π0 < 1/33, Lemma 15

implies that (32) holds. The RHS of (32) is increasing in x0 and λ0 so we
require lower bounds on these quantities.

First consider δ0, given by (27). This is increasing in π′
0 and π′

2. Hence
π′

0 < 0.010751 and π′
2 < 3/10 imply that δ0 < 0.08162. Thus

x0 =
(1 − δ0)

2

3
> 0.28114.

Writing ζ = 8π′
2/9, Lemma 15 and (26) imply that

λ0 ≥ π − ζ − (2 − ζ)π′
0

1 − 2π′
0

.

The RHS of this last inequality is decreasing in ζ and π′
0. Moreover π′

2 < 3/10
implies that ζ < 4/15. Together with π′

0 < 0.010751 this implies that λ0 >
0.044038. Hence (32) implies that

∑

xy∈V (2)

d2
xy ≥ n4

2

(

η2 + c0

)

+ O(n3), (34)

where c0 = 0.0007584. We now use (3) which says that

mn = q1 +
∑

xy∈V (2)

d2
xy.
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Combining (3), (33) and (34) we obtain

0 ≥ n4η2

2
− n4η

(

1

6
− f(γ0)

9

)

+
c0n

4

2
+ O(n3).

Dividing by n4 and evaluating we obtain

0 ≥ 0.5η2 − 0.1660246η + 0.0003792 + O(n−1).

But now the RHS of this last inequality is increasing in η, thus η ≥ π ≥ 0.329725
implies that

0 ≥ 0.0000001 + O(n−1),

which clearly cannot hold for n sufficiently large. 2

Clearly any improvement in the upper bound for π2 would directly yield an
improvement in the upper bound for π3, via Lemma 11.

An improvement in the upper bound for π3 would also yield an improvement
in the upper bound for π, although this is more difficult to quantify. Lemma 6
would allow us to obtain an improved lower bound for q1 which in turn would
improve the upper bound for π. However our argument to bound π also involved
finding a non-trivial lower bound for

∑

d2
xy, which relied directly on our upper

bound for π2 (Lemmas 14 and 15).

In the 2-chromatic case we have no real idea as to the true value of π2 (the
construction we have seems very unlikely to yield the correct answer). However
in the 3-chromatic case the lower bound is quite possibly correct and we make the
following conjecture which would imply a significantly improved upper bound
for π.

Conjecture 1 The 3-chromatic Turán density of K−
4 is 5

18 .
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