Chromatic Turán problems and a new upper bound for the Turán density of \mathcal{K}_{4}^{-}

John Talbot
University College London
E-mail: talbot@math.ucl.ac.uk

March 16, 2006

Abstract

We consider a new type of extremal hypergraph problem: given an r-graph \mathcal{F} and an integer $k \geq 2$ determine the maximum number of edges in an \mathcal{F}-free, k-colourable r-graph on n vertices.

Our motivation for studying such problems is that it allows us to give a new upper bound for an old Turán problem. We show that a 3 -graph in which any four points span at most two edges has density less than $0.32975<\frac{1}{3}-\frac{1}{280}$, improving previous bounds of $\frac{1}{3}$ due to de Caen [2], and $\frac{1}{3}-4.5305 \times 10^{-6}$ due to Mubayi [13].

1 Introduction and main results

Given an r-graph \mathcal{F} the Turán number $\operatorname{ex}(n, \mathcal{F})$ is the maximum number of edges in an n-vertex r-graph not containing a copy of \mathcal{F}. The Turán density of \mathcal{F} is

$$
\pi(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{r}} .
$$

For 2-graphs the Turán density is determined completely by the chromatic number but for $r \geq 3$ there are very few r-graphs for which $\pi(\mathcal{F})$ is known. (Examples of 3 -graphs for which $\pi(\mathcal{F})$ is now known include the Fano plane [3], $\mathcal{F}=\{a b c, a b d, a b e, c d e\}[12]$ and $\mathcal{F}=\{a b c, a b d, c d e\}[9]$.

The two most well-known problems in this area are to determine $\pi\left(\mathcal{K}_{4}\right)$ and $\pi\left(\mathcal{K}_{4}^{-}\right)$, where $\mathcal{K}_{4}=\{a b c, a b d, a c d, b c d\}$ is the complete 3 -graph on 4 vertices and $\mathcal{K}_{4}^{-}=\{a b c, a b d, a c d\}$ is the complete 3 -graph on 4 vertices with an edge removed. For $\pi\left(\mathcal{K}_{4}\right)$ we have the following bounds due to Turán and Chung and Lu [4] respectively

$$
\frac{5}{9} \leq \pi\left(\mathcal{K}_{4}\right) \leq \frac{3+\sqrt{17}}{12}=0.59359 \ldots
$$

Although the problem of determining $\pi\left(\mathcal{K}_{4}\right)$ is an extremely natural question in some respects the problem of determining $\pi\left(\mathcal{K}_{4}^{-}\right)$is even more basic since \mathcal{K}_{4}^{-}is the smallest 3 -graph satisfying $\pi(\mathcal{F}) \neq 0$. Note also that the problem of determining $\pi\left(\mathcal{K}_{4}^{-}\right)$can be restated as: determine the maximum density of a 3 -graph in which any four vertices span less than three edges. (In this last form the problem is a special case of a question due to Brown, Erdős and Sós [1] asking for the maximum number of edges in an r-graph of order n in which any v vertices span less than e edges. The case $r=e=3$ and $v=6$ is the well known (6, 3)-problem, see Ruzsa and Szemerédi [15].)

The problem of determining $\pi\left(\mathcal{K}_{4}^{-}\right)$has been considered by many people, including Turán [17], Erdős and Sós [7], Frankl and Füredi [10], de Caen [2] and Mubayi [13]. Previously the best bounds known were

$$
\frac{2}{7} \leq \pi\left(\mathcal{K}_{4}^{-}\right) \leq \frac{1}{3}-\left(4.5305 \times 10^{-6}\right)
$$

The upper bound was proved by Mubayi [13], improving on the upper bound $\pi\left(\mathcal{K}_{4}^{-}\right) \leq 1 / 3$ due to de Caen [2]. The lower bound follows from the following construction due to Frankl and Füredi [10].

Let \mathcal{S} be the following 3 -graph of order 6 with 10 edges

$$
\mathcal{S}=\{124,234,346,456,126,256,135,145,235,136\}
$$

Let $|V|=n$ and suppose that V is partitioned as $V=V_{1} \dot{\cup} \cdots \dot{U} V_{6}$. For such a partition we define $\mathcal{H}_{\mathcal{S}}$ to be the "blow-up" of \mathcal{S}. So $\mathcal{H}_{\mathcal{S}}$ has vertex set V and edge set

$$
\begin{equation*}
\mathcal{H}_{\mathcal{S}}=\left\{v_{i_{1}} v_{i_{2}} v_{i_{3}} \mid 1 \leq i_{1}<i_{2}<i_{3} \leq 6, i_{1} i_{2} i_{3} \in \mathcal{S} \text { and } v_{i_{j}} \in V_{i_{j}}\right\} \tag{1}
\end{equation*}
$$

If the vertex classes V_{i} are taken to be as equal as possible in size then this yields a \mathcal{K}_{4}^{-}-free 3 -graph with density greater than $5 / 18$. Moreover if $\mathcal{R}_{\mathcal{S}}$ is the 3-graph given by iterating this process, partitioning each V_{i} and inserting a copy of $\mathcal{H}_{\mathcal{S}}$ repeatedly, then we obtain a \mathcal{K}_{4}^{-}-free 3 -graph with density approaching $2 / 7$. (See [10] for details.)

Our main aim in this paper is to prove the following theorem, improving the upper bound for $\pi\left(\mathcal{K}_{4}^{-}\right)$.

Theorem 1 The Turán density of \mathcal{K}_{4}^{-}satisfies

$$
\frac{2}{7} \leq \pi\left(\mathcal{K}_{4}^{-}\right)<0.32975<\frac{1}{3}-\frac{1}{280}
$$

Our approach involves a new type of extremal problem which we call chromatic Turán problems. These are questions of the form: given an r-graph \mathcal{F} and an integer $k \geq 2$ determine the maximum number of edges in an \mathcal{F}-free, k-colourable r-graph on n vertices. (Recall that an r-graph is k-colourable iff its
vertices can be partitioned into k classes none of which contain an edge.) We denote this quantity by $\operatorname{ex}_{k}(n, \mathcal{F})$.

A simple averaging argument shows that for any r, k, n and \mathcal{F}

$$
\frac{\operatorname{ex}_{k}(n+1, \mathcal{F})}{\binom{n+1}{r}} \leq \frac{\operatorname{ex}_{k}(n, \mathcal{F})}{\binom{n}{r}}
$$

and so the corresponding k-chromatic Turán density can defined as the limit

$$
\pi_{k}(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}_{k}(n, \mathcal{F})}{\binom{n}{r}}
$$

One obvious reason why such problems do not seem to have been previously considered is that for 2 -graphs they are rather uninteresting.

If G is a 2 -graph then the Erdős-Simonovits-Stone theorem determines not only the ordinary Turán density of G but also all of the chromatic Turán densities of G.

Theorem 2 (Erdős-Simonovits-Stone [5],[8]) If the 2-graph G has chromatic number $\chi(G)$ then

$$
\pi(G)=1-\frac{1}{\chi(G)-1}
$$

Corollary 3 If G is a 2-graph and $k \geq 2$ then

$$
\pi_{k}(G)= \begin{cases}1-\frac{1}{k}, & k \leq \chi(G)-1 \\ 1-\frac{1}{\chi(G)-1}, & k \geq \chi(G)\end{cases}
$$

For $r \geq 3$ the problems of determining chromatic and ordinary Turán numbers seem to be genuinely different. An obvious reason for this is that while for a 2-graph H the extremal H-free graphs are not only H-free but also $(\chi(H)-1)$ colourable this does not seem to be the case in general.

The particular chromatic Turán problems which we will consider are those of determining $\pi_{2}\left(\mathcal{K}_{4}^{-}\right)$and $\pi_{3}\left(\mathcal{K}_{4}^{-}\right)$. We obtain the following bounds.

Theorem 4 There exists $\omega_{2}>0$ such that the 2-chromatic Turán density $\pi_{2}\left(\mathcal{K}_{4}^{-}\right)$satisfies

$$
0.25682<\pi_{2}\left(\mathcal{K}_{4}^{-}\right)<\frac{3}{10}-\omega_{2}
$$

Theorem 5 There exists $\omega_{3}>0$ such that the 3-chromatic Turán density $\pi_{3}\left(\mathcal{K}_{4}^{-}\right)$satisfies

$$
\frac{5}{18} \leq \pi_{3}\left(\mathcal{K}_{4}^{-}\right)<\frac{3+\sqrt{11 / 3}}{15}-\omega_{3}
$$

In the next section we will introduce the key ideas linking ordinary and chromatic Turán densities. In the third section we will prove Theorems 4 and 5. In the final section we prove Theorem 1.

Throughout the remainder of this paper we will write $\pi=\pi\left(\mathcal{K}_{4}^{-}\right), \pi_{2}=$ $\pi_{2}\left(\mathcal{K}_{4}^{-}\right)$and $\pi_{3}=\pi_{3}\left(\mathcal{K}_{4}^{-}\right)$. For a 3 -graph \mathcal{G} with vertex set V and $A \subseteq V$ we let $e(A)$ denote the number of edges of \mathcal{G} contained in A. The degree of a vertex $x \in V$ is denoted by $d_{x}=\#\{y z \mid x y z \in \mathcal{G}\}$ while the degree of a pair of vertices x, y is denoted by $d_{x y}=\#\{z \mid x y z \in \mathcal{G}\}$.

We will let \mathcal{F} denote a \mathcal{K}_{4}^{-}-free 3 -graph with vertex set V of order n and with $\operatorname{ex}\left(n, \mathcal{K}_{4}^{-}\right)=m=\eta\binom{n}{3}$ edges. Similarly $\mathcal{F}_{k}, k=2,3$, will denote a k-colourable \mathcal{K}_{4}^{-}-free 3 -graph with vertex set V of order n and with $m_{k}=\operatorname{ex}_{k}\left(n, \mathcal{K}_{4}^{-}\right)$edges.

We take ϵ to denote an arbitrary small positive constant (we will assume $\epsilon<$ 10^{-10}). We suppose that n is always sufficiently large that whenever $s \geq n / 100$ we have $\operatorname{ex}_{k}\left(s, \mathcal{K}_{4}^{-}\right) \leq\left(\pi_{k}+\epsilon\right)\binom{s}{3}$ (for $\left.k=2,3\right)$ and $\operatorname{ex}\left(s, \mathcal{K}_{4}^{-}\right) \leq(\pi+\epsilon)\binom{s}{3}$.

For any value $a>0$ we will use a^{\prime} to denote $a+\epsilon$.

2 Ordinary and chromatic Turán densities

Let \mathcal{F} be a \mathcal{K}_{4}^{-}-free 3 -graph with vertex set V of order n and with $\operatorname{ex}\left(n, \mathcal{K}_{4}^{-}\right)=$ $m=\eta\binom{n}{3}$ edges, as defined above. We count edges in subsets of the vertices of \mathcal{F} of size four. If

$$
q_{i}=\#\left\{A \in V^{(4)} \mid e(A)=i\right\}
$$

then as \mathcal{F} is \mathcal{K}_{4}^{-}-free we have

$$
m(n-3)=q_{1}+2 q_{2}
$$

and

$$
q_{2}=\sum_{x y \in V^{(2)}}\binom{d_{x y}}{2}
$$

Using the following identity (which holds since every edge contains three pairs of vertices)

$$
\begin{equation*}
\sum_{x y \in V^{(2)}} d_{x y}=3 m \tag{2}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
m n=q_{1}+\sum_{x y \in V^{(2)}} d_{x y}^{2} \tag{3}
\end{equation*}
$$

Convexity of $f(x)=x^{2}$ and (2) then imply that

$$
\begin{equation*}
m n \geq q_{1}+\frac{9 m^{2}}{\binom{n}{2}} \tag{4}
\end{equation*}
$$

Now $q_{1} \geq 0$ yields

$$
\begin{equation*}
m \leq \frac{n^{2}(n-1)}{18} \tag{5}
\end{equation*}
$$

Dividing by $\binom{n}{3}$ and taking the limit as $n \rightarrow \infty$ gives de Caen's bound $\pi\left(\mathcal{K}_{4}^{-}\right) \leq$ $1 / 3$.

Mubayi's improved upper bound for $\pi\left(\mathcal{K}_{4}^{-}\right)$[13] follows from (4) by using supersaturation to give a lower bound for q_{1}. He used a result of Frankl and Füredi [10] characterizing 3-graphs in which every four points span exactly 0 or 2 edges.

Our improved upper bound for π is achieved by an entirely different approach, although we will also implicitly make use of supersaturation at one point.

Our aim in this section is to prove Lemma 6, giving a lower bound on q_{1} in terms of the 3 -chromatic Turán density π_{3}. We will say that $A \in V^{(4)}$ is a good 4-set iff A spans exactly one edge. Recall that $\eta=m /\binom{n}{3}$.

Lemma 6 If $\pi>\pi_{3}$ then for ϵ sufficiently small and $\pi_{3}^{\prime}=\pi_{3}+\epsilon$ the number of good 4 -sets in \mathcal{F} satisfies

$$
\begin{equation*}
q_{1} \geq \frac{2 m n(1-\gamma)}{3(2-\mu)}+O\left(n^{3}\right) \tag{6}
\end{equation*}
$$

where $\gamma=\pi_{3}^{\prime} / \eta$ and

$$
\mu=\gamma-\sqrt{1-\frac{2 \gamma}{3}-\frac{\gamma^{2}}{3}} .
$$

We will assume for the remainder of this section that $\pi>\pi_{3}$ and that ϵ is sufficiently small that $\gamma=\pi_{3}^{\prime} / \eta \leq\left(\pi_{3}+\epsilon\right) / \pi<1$.

We start with some simple observations. As before \mathcal{F} is a \mathcal{K}_{4}^{-}-free 3 -graph on n vertices with $m=\eta\binom{n}{3}=\operatorname{ex}\left(n, \mathcal{K}_{4}^{-}\right)$edges.

We may assume that for any pair of vertices $x, y \in V$ we have $d_{x}-d_{y} \leq n-2$, since if this does not hold then by deleting y and duplicating x we obtain a new \mathcal{K}_{4}^{-}-free 3-graph on n vertices with at least

$$
m+d_{x}-d_{y}-(n-2)>\operatorname{ex}\left(n, \mathcal{K}_{4}^{-}\right)
$$

edges. Since

$$
\sum_{x \in V} d_{x}=3 m=3 \eta\binom{n}{3}
$$

this implies that if $x \in V$ then

$$
\begin{equation*}
d_{x}=\frac{\eta n^{2}}{2}+O(n) \tag{7}
\end{equation*}
$$

We count q_{1}, the number of good 4 -sets, by considering pairs of disjoint edges $u v w, x y z \in \mathcal{F}$. For two such edges define
$q(u v w, x y z)=\#\{\operatorname{good} 4$-sets amongst $u v w x, u v w y, u v w z, x y z u, x y z v, x y z w\}$.
For an edge $u v w \in \mathcal{F}$ we then define

$$
q(u v w)=\sum_{x y z \in \mathcal{F}} q(u v w, x y z)
$$

The following lemma shows how this can be used to count the number of good 4-sets in \mathcal{F}.

Lemma 7 If \mathcal{F} is as above then

$$
\begin{equation*}
\sum_{u v w \in \mathcal{F}} q(u v w)=\eta n^{2} q_{1}+O\left(n^{5}\right) \tag{8}
\end{equation*}
$$

Proof: The LHS of (8) counts a good 4-set A twice for each unordered pair of edges $u v w, x y z$ such that A is either $u v w x, u v w y, u v w z, x y z u, x y z v$ or $x y z w$. If $A=u v w x$ is a good 4 -set with single edge $u v w$ then the number of ways of choosing an unordered pair of edges that count A is simply

$$
d_{x}-\#\{x y z \in \mathcal{F} \mid\{y, z\} \cap\{u, v, w\} \neq \emptyset\}=\frac{\eta n^{2}}{2}+O(n)
$$

using (7). Finally $q_{1}=O\left(n^{4}\right)$ implies that (8) holds.
For the remainder of this section we will attempt to find lower bounds for $q(u v w)$, where $u v w \in \mathcal{F}$, and then use (8) to give a lower bound for q_{1}.

For $x, y \in V$ we let $E_{x y}=\{z \mid x y z \in \mathcal{F}\}$. The following notation and definitions are all relative to some fixed edge $u v w \in \mathcal{F}$. Let

$$
E_{u v w}=E_{u v} \cup E_{u w} \cup E_{v w} \quad \text { and } \quad D_{u v w}=V \backslash E_{u v w}
$$

Let $\left|D_{u v w}\right|=\delta_{u v w} n$. An edge $x y z \in \mathcal{F}$ is internal iff it is contained entirely within either $E_{u v}, E_{u w}$ or $E_{v w}$. We denote the number of such edges by $i_{u v w}$.

We call an edge $x y z \in \mathcal{F}$ bad iff it is not internal and it does not meet $D_{\text {uvw }}$. An edge which is not bad is said to be good. We denote the number of bad edges by $b_{u v w}$. Let $\mathcal{B}_{u v w}$ be the 3 -graph with vertex set $E_{u v w}$ and edge set consisting of all the bad edges of \mathcal{F}.

The relationship between estimating q_{1} and the 3 -chromatic Turán problem enters in our next lemma.

Lemma 8 If $u v w \in \mathcal{F}$ and $\left|D_{u v w}\right|=\delta_{u v w} n$ then $\mathcal{B}_{u v w}$ is 3-colourable with a 3-colouring given by the vertex partition $E_{u v} \dot{\cup} E_{u w} \dot{\cup} E_{v w}$. Hence

$$
\begin{equation*}
b_{u v w} \leq e x_{3}\left(\left(1-\delta_{u v w}\right) n, \mathcal{K}_{4}^{-}\right) \tag{9}
\end{equation*}
$$

Moreover any internal edge $x y z \in \mathcal{F}$ is good and satisfies $q(u v w, x y z) \geq 2$.

Figure 1: The 3-graph \mathcal{F}

Proof: Since $u v w \in \mathcal{F}$ and \mathcal{F} is \mathcal{K}_{4}^{-}-free so $E_{u v} \dot{\cup} E_{u w} \dot{\cup} E_{v w}$ is a partition of $E_{u v w}$. Moreover since no internal edge belongs to $\mathcal{B}_{u v w}$ this partition yields a 3 -colouring of $\mathcal{B}_{u v w}$. Then as $\left|E_{u v w}\right|=\left(1-\delta_{u v w}\right) n$ so (9) holds by definition.

Any internal edge is by definition good so we now need to show that any internal edge $x y z$ satisfies $q(u v w, x y z) \geq 2$.

Let $x y z$ be an internal edge. Without loss of generality we may suppose that $x y z \subseteq E_{u v}$. Now consider the 4-sets $\{x y z u, x y z v, x y z w\}$. Since \mathcal{F} is \mathcal{K}_{4}^{-}-free and $u v x, u v y, u v z \in \mathcal{F}$ we know that $x y u, x y v, x z u, x z v, y z u, y z v \notin \mathcal{F}$. Hence $x y z u$ and $x y z v$ are both good 4 -sets containing the single edge $x y z$ so $q(u v w, x y z) \geq 2$ and the result follows.

For $W \subseteq V$ let $e_{j}(W)$ denote the number of edges in \mathcal{F} which contain exactly j vertices from W. We now give a simple lower bound for $q(u v w)$.

Lemma 9 If $u v w \in \mathcal{F}$ then

$$
q(u v w) \geq 2 i_{u v w}+3 e_{3}\left(D_{u v w}\right)+2 e_{2}\left(D_{u v w}\right)+e_{1}\left(D_{u v w}\right)+O\left(n^{2}\right)
$$

Proof: We saw in Lemma 8 that if $x y z$ is an internal edge then $q(u v w, x y z) \geq$ 2. If $x y z \in \mathcal{F}$ is disjoint from $u v w$ and contains j vertices from $D_{u v w}$ then $q(u v w, x y z) \geq j$, since each vertex in $\{x, y, z\} \cap D_{u v w}$ forms a good 4-set together with uvw. The result then follows since the number of edges meeting $u v w$ is $O\left(n^{2}\right)$.

We require one final lemma
Lemma 10 If $u v w \in \mathcal{F}$ and $\pi_{3}^{\prime}=\pi_{3}+\epsilon$ then

$$
\begin{equation*}
\frac{q(u v w)}{m} \geq 2-2 \gamma+3 \mu \delta_{u v w}+O\left(n^{-1}\right) \tag{10}
\end{equation*}
$$

where $\gamma=\pi_{3}^{\prime} / \eta$ and

$$
\mu=\gamma-\sqrt{1-\frac{2 \gamma}{3}-\frac{\gamma^{2}}{3}}
$$

Proof: We will give two lower bounds for $q(u v w) / m$. The first bound (12) is always valid while the second bound (16) is valid only if $\delta_{u v w} \leq 99 / 100$.

Lemma 9 tells us that

$$
\begin{align*}
q(u v w) & \geq 3 e_{3}\left(D_{u v w}\right)+2 e_{2}\left(D_{u v w}\right)+e_{1}\left(D_{u v w}\right)+O\left(n^{2}\right) \\
& =\sum_{x \in D_{u v w}} d_{x}+O\left(n^{2}\right) \tag{11}
\end{align*}
$$

Thus for any value of $\delta_{u v w},(11),(7)$ and $\left|D_{u v w}\right|=\delta_{u v w} n$ imply that

$$
\begin{equation*}
\frac{q(u v w)}{m} \geq 3 \delta_{u v w}+O\left(n^{-1}\right) \tag{12}
\end{equation*}
$$

Since

$$
m=i_{u v w}+b_{u v w}+e_{1}\left(D_{u v w}\right)+e_{2}\left(D_{u v w}\right)+e_{3}\left(D_{u v w}\right)
$$

Lemma 9 implies that

$$
\begin{equation*}
q(u v w) \geq 2\left(m-b_{u v w}\right)+e_{3}\left(D_{u v w}\right)-e_{1}\left(D_{u v w}\right)+O\left(n^{2}\right) \tag{13}
\end{equation*}
$$

Now (9) together with our assumption that $\operatorname{ex}_{3}\left(s, \mathcal{K}_{4}^{-}\right) \leq \pi_{3}^{\prime}\binom{s}{3}$ for $s \geq n / 100$ imply that if $\delta_{u v w}<99 / 100$ then

$$
\begin{equation*}
b_{u v w} \leq \pi_{3}^{\prime}\binom{\left(1-\delta_{u v w}\right) n}{3} \tag{14}
\end{equation*}
$$

Also (7) implies that

$$
\begin{equation*}
e_{1}(D) \leq \sum_{x \in D_{u v w}} d_{x}=\frac{\eta n^{3} \delta_{u v w}}{2}+O\left(n^{2}\right) \tag{15}
\end{equation*}
$$

Let $\gamma=\pi_{3}^{\prime} / \eta$. If $\delta_{u v w} \leq 99 / 100$ then (13), (14) and (15) imply that

$$
\frac{q(u v w)}{m} \geq 2-2 \gamma\left(1-\delta_{u v w}\right)^{3}-3 \delta_{u v w}+O\left(n^{-1}\right)
$$

Expanding we obtain

$$
\begin{equation*}
\frac{q(u v w)}{m} \geq 2-2 \gamma+3 \delta_{u v w}\left(2 \gamma-1-2 \gamma \delta_{u v w}+\frac{2 \gamma \delta_{u v w}^{2}}{3}\right)+O\left(n^{-1}\right) \tag{16}
\end{equation*}
$$

If

$$
\delta_{1}=\frac{2(1-\gamma)}{3(1-\mu)}
$$

and $\delta_{u v w} \geq \delta_{1}$ then (12) implies that (10) holds so we may suppose that $\delta_{u v w} \leq$ δ_{1}. It is easy to check that $\delta_{1} \leq 2 / 3<99 / 100$ and so (16) holds.

To show that (10) holds in this case we need to check that for $\delta_{u v w} \leq \delta_{1}$ the following inequality holds

$$
\begin{equation*}
2 \gamma-1-2 \gamma \delta_{u v w}+\frac{2 \gamma \delta_{u v w}^{2}}{3} \geq \mu \tag{17}
\end{equation*}
$$

This is straightforward. Since the LHS of (17) is decreasing in $\delta_{u v w}$ it is sufficient to check that

$$
2 \gamma-1-2 \gamma \delta_{1}=\mu
$$

Hence (10) holds for all edges $u v w \in \mathcal{F}$.
Proof of Lemma 6: Let $u v w \in \mathcal{F}$. Since

$$
D_{u v w}=\left\{x \in V \mid x \notin E_{u v} \cup E_{u w} \cup E_{v w}\right\}
$$

and $\delta_{u v w} n=\left|D_{u v w}\right|$ we have

$$
\begin{equation*}
q_{1}=\sum_{u v w \in \mathcal{F}} \delta_{u v w} n \tag{18}
\end{equation*}
$$

The bound on q_{1} in (6) now follows directly from (10) and (8).

3 Bounds for chromatic Turán problems

Our aim in this section is to give bounds on the chromatic Turán densities of \mathcal{K}_{4}^{-}. We start by considering the 2 -chromatic case. Proof of Theorem 4: Let \mathcal{F}_{2} be a 2 -colourable \mathcal{K}_{4}^{-}-free 3 -graph of order n with m_{2} edges. Let the two vertex classes of \mathcal{F}_{2} be A and B, with $|A|=\alpha n$ and $|B|=(1-\alpha) n$. We may suppose that $|A| \leq|B|$ and so $\alpha \leq 1 / 2$.

Counting edges in 4 -sets we obtain an analogous equality to (3)

$$
n m_{2}=q_{1}+\sum_{x y \in A^{(2)} \cup B^{(2)}} d_{x y}^{2}+\sum_{x y \in A \times B} d_{x y}^{2},
$$

where, as previously, q_{1} is the number of good 4 -sets (that is the number of 4 -sets containing exactly one edge). Since neither A nor B contain any edges we have the following two identities

$$
\sum_{x y \in A^{(2)} \cup B^{(2)}} d_{x y}=m_{2} \quad \text { and } \quad \sum_{x y \in A \times B} d_{x y}=2 m_{2}
$$

Thus convexity implies that

$$
n m_{2} \geq q_{1}+\frac{m_{2}^{2}}{\binom{\alpha n}{2}+\binom{1-\alpha) n}{2}}+\frac{4 m_{2}^{2}}{\alpha(1-\alpha) n^{2}}
$$

Writing $\alpha=(1-\beta) / 2$ and using the fact that $q_{1} \geq 0$, this implies that $m_{2} \leq$ $\frac{n^{3}}{2 f(\beta)}$, where

$$
\begin{aligned}
f(\beta) & =\frac{4}{(1-\beta)^{2}+(1+\beta)^{2}}+\frac{8}{1-\beta^{2}} \\
& =\frac{4}{1-\beta^{4}}+\frac{6}{1-\beta^{2}} \\
& \geq 10 .
\end{aligned}
$$

Thus we have

$$
m_{2} \leq \frac{n^{3}}{20}
$$

Hence dividing by $\binom{n}{3}$ and taking the limit $n \rightarrow \infty$ we obtain $\pi_{2} \leq 3 / 10$.
To see that this may be improved to $\pi_{2}<3 / 10-\omega_{2}$ for some $\omega_{2}>0$ we note that we assumed in the above argument that $q_{1}=0$. We can use a supersaturation argument (analogous to that given in [13]) to show that a positive proportion of 4 -sets contribute to q_{1}. (In fact with a little work one can take $\omega_{2}>10^{-4}$ although we will only require $\omega_{2}>0$ in the sequel.) This completes the proof of the upper bound.

For the lower bound we use the following construction. Let \mathcal{G}_{8} be the 2 colourable \mathcal{K}_{4}^{-}-free 3 -graph of order 8 with the following edges

$$
\begin{aligned}
& \mathcal{G}_{8}=\{125,135,145,126,136,246,346,456,127,237, \\
&247,357,457,367,138,238,348,258,268,178,478\}
\end{aligned}
$$

Form a blow-up of this 3-graph to give $\mathcal{G}_{8}(n)$ a 3 -graph of order n with vertex classes $V_{1}, V_{2}, \ldots, V_{8}$ of sizes $a_{1} n, a_{2} n, \ldots, a_{8} n$ (so $\sum a_{i}=1$) and edges given by

$$
\mathcal{G}_{8}(n)=\left\{v_{i_{1}} v_{i_{2}} v_{i_{3}} \mid 1 \leq i_{1}<i_{2}<i_{3} \leq 8, i_{1} i_{2} i_{3} \in \mathcal{G}_{8} \text { and } v_{i_{j}} \in V_{i_{j}}\right\}
$$

Now $\mathcal{G}_{8}(n)$ is clearly still 2 -colourable and \mathcal{K}_{4}^{-}-free. Moreover for the correct choice of a_{1}, \ldots, a_{8} and n large it has density greater than 0.25682 . (To be precise we can take $a_{1}=0.1608, a_{2}=0.1882, a_{3}=0.1868, a_{4}=a_{5}=0.0379, a_{6}=$ $0.1086, a_{7}=0.1437, a_{8}=0.1361$. Such an "optimal" blow-up is found by calculating the Lagrangian of \mathcal{G}_{8}, see for example [11].)

Turán originally conjectured that $\pi=1 / 4$. This was disproved by Frankl and Füredi [10] with their construction of a \mathcal{K}_{4}^{-}-free 3 -graph with $\left(\frac{2}{7}+o(n)\right)\binom{n}{3}$ edges. It is interesting to note that even with the seemingly much stronger condition that \mathcal{F}_{2} is \mathcal{K}_{4}^{-}-free and 2-colourable \mathcal{F}_{2} can still have density greater than $1 / 4$.

We now turn to the the 3-chromatic case and the proof of Theorem 5. This will follow directly from Theorem 4 and the following lemma.

Lemma 11 The 3-chromatic Turán density of \mathcal{K}_{4}^{-}is bounded above by the larger root of

$$
\begin{equation*}
243 x^{2}-18 x\left(8 \pi_{2}+3\right)+64 \pi_{2}^{2}=0 \tag{19}
\end{equation*}
$$

Proof of Theorem 5: The lower bound for π_{3} is given by $\mathcal{H}_{\mathcal{S}}$ the 3 -graph constructed by Frankl and Füredi which we met earlier (1). Since $\mathcal{H}_{\mathcal{S}}$ is the blow-up of

$$
\mathcal{S}=\{124,234,346,456,126,256,135,145,235,136\}
$$

a 3 -colouring of \mathcal{S} yields a 3 -colouring of $\mathcal{H}_{\mathcal{S}}$ in the obvious way. The vertices of $\mathcal{H}_{\mathcal{S}}$ consist of six classes corresponding to the six vertices of \mathcal{S}. All the vertices in a single class V_{i} inherit the colour of the corresponding vertex $i \in V(\mathcal{S})$. A 3 -colouring of \mathcal{S} is given by partitioning the vertices as $\{1,2\} \cup\{3,4\} \cup\{5,6\}$. Hence $\mathcal{H}_{\mathcal{S}}$ is 3 -colourable and \mathcal{K}_{4}^{-}-free. It is straightforward to check that it has density at least $5 / 18$.

The upper bound follows by substituting $\pi_{2}<3 / 10-\omega_{2}$ from Theorem 4 into (19) and solving. (It is easy to check that since the bound $\pi_{2} \leq 3 / 10$ yields $\pi_{3} \leq$ $(3+\sqrt{11 / 3}) / 15$ so the bound $\pi_{2}<3 / 10-\omega_{2}$ yields $\pi_{3}<(3+\sqrt{11 / 3}) / 15-\omega_{3}$ for some $\omega_{3}>0$.)

We note that in this case, unlike the 2-chromatic case, the lower bound could well be the true value.

Using convexity we are able to give a simple lower bound for $\sum d_{x y}^{2}$ since this is minimized (for $\sum d_{x y}$ constant) by taking all of the degrees to be equal. Our next lemma will allow us to improve this lower bound when some of the pairs $x y \in V^{(2)}$ have smaller than average degree. Lemma 13 then provides a collection of pairs of small degree to which we may apply this result.

Lemma 12 If $X \subseteq V^{(2)},|X| \geq t, \sum_{x y \in V^{(2)}} d_{x y}=S$ and

$$
\frac{1}{|X|} \sum_{x y \in X} d_{x y} \leq \theta \leq \frac{S}{\binom{n}{2}}
$$

then

$$
\sum_{x y \in V^{(2)}} d_{x y}^{2} \geq \theta^{2} t+\frac{(S-t \theta)^{2}}{\binom{n}{2}-t}
$$

Proof: Suppose that $|X|=u \geq t$ and

$$
\frac{1}{|X|} \sum_{x y \in X} d_{x y}=\kappa \leq \theta
$$

By the convexity of x^{2} we have

$$
\begin{align*}
\sum_{x y \in V^{(2)}} d_{x y}^{2} & =\sum_{x y \in X} d_{x y}^{2}+\sum_{x y \in V^{(2)} \backslash X} d_{x y}^{2} \\
& \geq u \kappa^{2}+\frac{(S-\kappa u)^{2}}{\binom{n}{2}-u} . \tag{20}
\end{align*}
$$

Now the RHS of (20) is increasing in u and decreasing in κ (for $u \geq t$ and $\kappa \leq \theta)$. Hence it is minimized when $\kappa=\theta$ and $u=t$. The result follows.

Lemma 13 Let $\pi_{2}^{\prime}=\pi_{2}+\epsilon$. If \mathcal{F}_{3} is a \mathcal{K}_{4}^{-}-free 3-colourable 3-graph of order n with 3-colouring given by the partition $V=A \dot{\cup} B \dot{\cup} C$ and $X=A^{(2)} \cup B^{(2)} \cup C^{(2)}$ then

$$
\begin{equation*}
\frac{1}{n|X|} \sum_{x y \in X} d_{x y} \leq \frac{8 \pi_{2}^{\prime}}{9}+O\left(n^{-1}\right) \tag{21}
\end{equation*}
$$

Proof: Recall our assumption that n is sufficiently large so that any \mathcal{K}_{4}^{-}-free 2-colourable 3 -graph of order $s \geq n / 100$ has at most $\pi_{2}^{\prime}\binom{s}{3}$ edges. Let \mathcal{F}_{3} be as above with 3 -colouring given by the partition $V=A \dot{\cup} B \dot{\cup} C$, and $|A| \geq|B| \geq$ $|C|$.

We first deal with the case that $|B \cup C|$ is small. So suppose that $|B \cup C| \leq$ $n / 100$. In this case we have $|X| \geq\left|A^{(2)}\right| \geq\binom{ 99 n / 100}{2}$. Since \mathcal{F}_{3} is 3-colourable no edge contains more than one pair from X (otherwise there would be an edge contained in A, B or C) and hence using de Caen's bound (5) we have

$$
\begin{aligned}
\frac{1}{n|X|} \sum_{x y \in X} d_{x y} & \leq \frac{n^{2}(n-1)}{18 n\binom{99 n / 100}{2}} \\
& <\frac{1}{5}
\end{aligned}
$$

So in this case (21) holds since $8 \pi_{2}^{\prime} / 9>8 \pi_{2} / 9>2 / 9>1 / 5$, by Theorem 4 .
We now consider the case that all unions of pairs of vertex classes are reasonably large, so $|B \cup C| \geq n / 100$. Let $|A|=\alpha n,|B|=\beta n$ so $|C|=(1-\alpha-\beta) n$. We have $99 / 100 \geq \alpha+\beta \geq 2 / 3$.

Considering edges containing pairs of vertices from X we obtain

$$
\begin{aligned}
\frac{1}{n|X|} \sum_{x y \in X} d_{x y} & \leq \frac{\pi_{2}^{\prime}\left(\binom{(\alpha+\beta) n}{3}+\binom{(1-\alpha) n}{3}+\binom{(1-\beta) n}{3}\right)}{n\left(\binom{\alpha n}{2}+\binom{\beta n}{2}+\binom{(1-\alpha-\beta) n}{2}\right)} \\
& \leq \frac{\pi_{2}^{\prime}\left((\alpha+\beta)^{3}+(1-\alpha)^{3}+(1-\beta)^{3}\right)}{3\left(\alpha^{2}+\beta^{2}+(1-\alpha-\beta)^{2}\right)}+O\left(n^{-1}\right)
\end{aligned}
$$

Thus it is sufficient to prove that

$$
\begin{equation*}
\frac{(\alpha+\beta)^{3}+(1-\alpha)^{3}+(1-\beta)^{3}}{\alpha^{2}+\beta^{2}+(1-\alpha-\beta)^{2}} \leq \frac{8}{3} \tag{22}
\end{equation*}
$$

This is straightforward. Writing $\xi=\alpha+\beta$ and $\rho=\alpha-\beta$ we see that (22) holds iff the following inequality holds

$$
0 \leq 8-28 \xi+30 \xi^{2}-9 \xi^{3}+\rho^{2}(9 \xi-2)
$$

Now $\xi=\alpha+\beta \geq 2 / 3$ so $9 \xi-2 \geq 4$ and it is sufficient to check that the following inequality holds

$$
\begin{equation*}
0 \leq 8-28 \xi+30 \xi^{2}-9 \xi^{3}+4 \rho^{2} \tag{23}
\end{equation*}
$$

The RHS of (23) is clearly increasing in ρ and also in ξ (for $2 / 3 \leq \xi \leq 1$). Hence it is minimized at $\rho=0$ and $\xi=2 / 3$ when (23) holds with equality.

Proof of Lemma 11: Let $\pi_{2}^{\prime}=\pi_{2}+\epsilon$ and \mathcal{F}_{3} be a 3-colourable \mathcal{K}_{4}^{-}-free 3-graph with vertex set V of order $n=3 k$ and of maximum size $m_{3}=\operatorname{ex}_{3}\left(\mathcal{K}_{4}^{-}, n\right)=$ $\eta_{3}\binom{n}{3}$: (So $\eta_{3} \geq \pi_{3}$.) Let a 3-colouring of \mathcal{F}_{3} be given by the partition $V=$ $A \dot{\cup} B \dot{\cup} C$ with $|A|=\alpha n,|B|=\beta n$ and $|C|=(1-\alpha-\beta) n$. We may suppose that $|A| \geq|B| \geq|C|$ and hence $2 / 3 \leq \alpha+\beta \leq 1$.

We will wish to consider sums over pairs of vertices and so define

$$
X=A^{(2)} \cup B^{(2)} \cup C^{(2)}
$$

Note that $|X|$ is minimized when A, B and C are as equal as possible in size. Hence

$$
|X| \geq 3\binom{n / 3}{2}
$$

Counting edges in 4 -sets we obtain an analogous equality to (3)

$$
\begin{equation*}
n m_{3}=q_{1}+\sum_{x y \in X} d_{x y}^{2}+\sum_{x y \in V^{(2)} \backslash X} d_{x y}^{2}, \tag{24}
\end{equation*}
$$

where, as previously, q_{1} is the number of good 4 -sets (that is the number of 4 -sets containing exactly one edge).

Letting $\pi_{3}^{\prime}=\pi_{3}+\epsilon$ and noting that $\pi_{2}^{\prime} \leq \pi_{3}^{\prime}$, Lemma 13 says precisely that the average degree of pairs of vertices from X is at most

$$
\begin{aligned}
\frac{8 \pi_{2}^{\prime} n}{9}+O(1) & \leq \frac{8 \pi_{3}^{\prime} n}{9}+O(1) \\
& <\eta_{3}(n-2)
\end{aligned}
$$

for n large (since $\epsilon<10^{-10}$).
Hence the average degree of pairs of vertices from X is strictly less than the average degree of pairs of vertices from V. (The average degree of pairs of vertices from V being $\eta_{3}(n-2)$.)

Using $q_{1} \geq 0, n=3 k$, (24) and Lemma 12 with $\theta=8 \pi_{2}^{\prime} n / 9+O(1)$ and $t=3\binom{k}{2}$ we obtain

$$
3 k m_{3} \geq 3\binom{k}{2}\left(\frac{8 \pi_{2}^{\prime} k}{3}\right)^{2}+\frac{\left(3 m_{3}-8 \pi_{2}^{\prime} k\binom{k}{2}\right)^{2}}{\binom{3 k}{2}-3\binom{k}{2}}+O\left(k^{3}\right) .
$$

Dividing by $\frac{k}{18}\binom{3 k}{3}$ and rearranging we obtain

$$
0 \geq 243 \eta_{3}^{2}-18 \eta_{3}\left(8 \pi_{2}^{\prime}+3\right)+64\left(\pi_{2}^{\prime}\right)^{2}+O\left(k^{-1}\right)
$$

Since $\pi_{3} \leq \eta_{3}$ and this last inequality holds for all ϵ sufficiently small and $n=3 k$ sufficiently large, the result follows.

4 A new upper bound for the Turán density of \mathcal{K}_{4}^{-}

For Theorem 1 we need to show that $\pi<0.32975$. This will require another new idea, enabling us to not only give a lower bound for q_{1} but also to show that if π is close to $1 / 3$ then the degrees of pairs of vertices in an extremal \mathcal{K}_{4}^{-}-free 3 -graph will not all be equal. To be precise we will show that if π is close to $1 / 3$ then we can find a collection of pairs of vertices which have lower than average degree and then appeal to Lemma 12 to improve our lower bound for $\sum d_{x y}^{2}$.

We define $\pi_{0}=1-3 \pi>0$. Our next lemma tells us that if π_{0} is small (so π is close to $1 / 3$) then we can find an edge $u v w$ such that the degrees of pairs of vertices from $E_{u v}^{(2)} \cup E_{u w}^{(2)} \cup E_{v w}^{(2)}$ are small.

Lemma 14 Let $\pi_{0}^{\prime}=\pi_{0}+\epsilon$ and $\pi_{2}^{\prime}=\pi_{2}+\epsilon$. There is an edge uvw $\in \mathcal{F}$ such that if $X_{u v w}=E_{u v}^{(2)} \cup E_{u w}^{(2)} \cup E_{v w}^{(2)}$ then

$$
\begin{equation*}
\frac{1}{n\left|X_{u v w}\right|} \sum_{x y \in X_{u v w}} d_{x y} \leq \frac{8 \pi_{2}^{\prime}}{9}+\nu_{0}+O\left(n^{-1}\right) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu_{0}=\frac{\left(2-8 \pi_{2}^{\prime} / 9\right) \pi_{0}^{\prime}}{1-2 \pi_{0}^{\prime}} \tag{26}
\end{equation*}
$$

Furthermore $\delta_{u v w}=\left|D_{u v w}\right| / n$ satisfies $\delta_{u v w} \leq \delta_{0}$ where

$$
\begin{equation*}
\delta_{0}=\frac{\pi_{0}^{\prime}}{\left(1-2 \pi_{0}^{\prime}\right)}\left(1+\frac{3}{\left(1-16 \pi_{2}^{\prime} / 9\right)}\right) \tag{27}
\end{equation*}
$$

Proof: Recall our assumption that n is sufficiently large that any 2-colourable \mathcal{K}_{4}^{-}-free 3 -graph of order $s \geq n / 100$ has at most $\pi_{2}^{\prime}\binom{s}{3}$ edges, where $\pi_{2}^{\prime}=\pi_{2}+\epsilon$. Let $u v w \in \mathcal{F}$ and $X_{u v w}=E_{u v}^{(2)} \cup E_{u w}^{(2)} \cup E_{v w}^{(2)}$. As in Section 2 let

$$
\begin{gathered}
D_{u v w}=V \backslash\left(E_{u v} \cup E_{u w} \cup E_{v w}\right) \\
i_{u v w}=\#\left\{x y z \in \mathcal{F} \mid x y z \subset E_{u v} \text { or } x y z \subset E_{u w} \text { or } x y z \subset E_{v w}\right\}
\end{gathered}
$$

(that is $i_{u v w}$ is the number of internal edges) and $\left|D_{u v w}\right|=\delta_{u v w} n$. For $i=0,1$ let e_{i} denote the number of edges in \mathcal{F} meeting $D_{\text {uvw }}$ in exactly i vertices and containing exactly one pair from $X_{u v w}$.

Considering the different types of edges containing a pair of vertices from $X_{u v w}$ we obtain the following identity (see Figure 4)

$$
\begin{equation*}
\sum_{x y \in X_{u v w}} d_{x y}=e_{0}+e_{1}+3 i_{u v w} \tag{28}
\end{equation*}
$$

We now need to identify a particular choice of edge $u v w \in \mathcal{F}$.

Figure 2: The edges counted by $\sum_{x y \in X_{u v w}} d_{x y}$.

Let $\tau=1 / 2-8 \pi_{2}^{\prime} / 9, \iota_{u v w}=i_{u v w} / m$ and

$$
\chi_{0}=\min _{x y z \in \mathcal{F}}\left\{\frac{\iota_{x y z}}{\left(1-\delta_{x y z}\right)^{2}}+\tau \delta_{x y z}\right\}
$$

We claim that

$$
\begin{equation*}
\chi_{0} \leq \frac{\left(2-8 \pi_{2}^{\prime} / 9\right) \pi_{0}^{\prime}}{1-2 \pi_{0}^{\prime}} \tag{29}
\end{equation*}
$$

where $\pi_{0}^{\prime}=\pi_{0}+\epsilon$.
To see this recall Lemma 9 and (7). These imply that for any edge $u v w \in \mathcal{F}$ we have

$$
\begin{aligned}
q(u v w) & \geq 2 i_{u v w}+\sum_{x \in D_{u v w}} d_{x} \\
& \geq 2 i_{u v w}+3 m \delta_{u v w}+O\left(n^{2}\right)
\end{aligned}
$$

Hence we obtain

$$
\frac{q(u v w)}{m} \geq 2 \iota_{u v w}+3 \delta_{u v w}+O\left(n^{-1}\right)
$$

Now for any $u v w \in \mathcal{F}$ the definition of χ_{0} implies that

$$
2 \iota_{u v w} \geq 2\left(\chi_{0}-\tau \delta_{u v w}\right)\left(1-2 \delta_{u v w}\right)
$$

Hence

$$
\begin{equation*}
\frac{q(u v w)}{m} \geq 2 \chi_{0}+\sigma \delta_{u v w}+O\left(n^{-1}\right) \tag{30}
\end{equation*}
$$

where $\sigma=3-4 \chi_{0}-2 \tau$. Lemma 7 tells us that

$$
\sum_{u v w \in \mathcal{F}} \frac{q(u v w)}{m}=\frac{6 q_{1}}{n}+O\left(n^{2}\right)
$$

while we also have the identity (18)

$$
q_{1}=\sum_{u v w \in \mathcal{F}} \delta_{u v w} n
$$

Hence (30) implies that

$$
q_{1} \geq \frac{2 \chi_{0} m n}{6-\sigma}+O\left(n^{3}\right)
$$

Thus (4)

$$
m n \geq q_{1}+\frac{9 m^{2}}{\binom{n}{2}}
$$

implies that for n sufficiently large

$$
\frac{2 \chi_{0}}{6-\sigma} \leq \pi_{0}^{\prime}
$$

Rearranging this yields (29) proving the claim.
We now choose $u v w \in \mathcal{F}$ such that

$$
\begin{equation*}
\frac{\iota_{u v w}}{\left(1-\delta_{u v w}\right)^{2}}+\tau \delta_{u v w}=\chi_{0} . \tag{31}
\end{equation*}
$$

Since $\iota_{u v w} \geq 0$ we have

$$
\delta_{u v w} \tau \leq \frac{\left(2-8 \pi_{2}^{\prime} / 9\right) \pi_{0}^{\prime}}{1-2 \pi_{0}^{\prime}}
$$

Dividing by $\tau=1 / 2-8 \pi_{2}^{\prime} / 9$ this implies that $\delta_{u v w} \leq \delta_{0}$, where δ_{0} is given by (27). Moreover since $\pi_{0}^{\prime}<1 / 20$ (as $\pi \geq 2 / 7$) and $\pi_{2}^{\prime}<3 / 10$ (by Theorem 4) it is easy to check that $\delta_{0}<1 / 2$.

We now revisit (28), for which we wish to find an upper bound in the case of $u v w \in \mathcal{F}$ chosen to satisfy (31)

For any vertex $t \in D_{u v w}$ we know that E_{t} (the neighbourhood of t) is a triangle-free 2-graph. Hence, by Turán's theorem, we have

$$
\frac{e_{1}}{\left|X_{u v w}\right|} \leq \frac{\delta_{u v w} n}{2}+O(1)
$$

Since e_{0} counts the number of edges in a 3 -colourable \mathcal{K}_{4}^{-}-free 3 -graph of order $n\left(1-\delta_{u v w}\right)$ with two vertices in a single vertex class we can bound $e_{0} /\left|X_{u v w}\right|$ using Lemma 13 which implies (since $\delta_{u v w} \leq \delta_{0}<1 / 2$) that

$$
\frac{e_{0}}{n\left|X_{u v w}\right|} \leq \frac{8 \pi_{2}^{\prime}}{9}\left(1-\delta_{u v w}\right)+O\left(n^{-1}\right)
$$

Since $\tau=1 / 2-8 \pi_{2}^{\prime} / 9$ and $\iota_{u v w}=i_{u v w} / m$, (28) yields

$$
\frac{1}{n\left|X_{u v w}\right|} \sum_{x y \in X_{u v w}} d_{x y} \leq \frac{8 \pi_{2}^{\prime}}{9}+\tau \delta_{u v w}+\frac{3 m \iota_{u v w}}{n\left|X_{u v w}\right|}+O\left(n^{-1}\right)
$$

Now

$$
\begin{aligned}
\left|X_{u v w}\right| & =\binom{\left|E_{u v}\right|}{2}+\binom{\left|E_{u w}\right|}{2}+\binom{\left|E_{v w}\right|}{2} \\
& \geq 3\binom{n\left(1-\delta_{u v w}\right) / 3}{2}=\frac{n^{2}\left(1-\delta_{u v w}\right)^{2}}{6}+O(n) .
\end{aligned}
$$

By de Caen's bound $m<n^{3} / 18$. So we have

$$
\frac{1}{n\left|X_{u v w}\right|} \sum_{x y \in X_{u v w}} d_{x y} \leq \frac{8 \pi_{2}^{\prime}}{9}+\tau \delta_{u v w}+\frac{\iota_{u v w}}{\left(1-\delta_{u v w}\right)^{2}}+O\left(n^{-1}\right)
$$

Using (29) and (31) this implies that (25) holds.
Our next lemma tells us that either π_{0} is large or there is a non-trivial lower bound for $\sum d_{x y}^{2}$.

Lemma 15 Let \mathcal{F} be as before, with $m=\eta\binom{n}{3}$ then either $\pi_{0}=1-3 \pi \geq 1 / 33$ or

$$
\begin{equation*}
\sum_{x y \in V^{(2)}} d_{x y}^{2} \geq n^{2}\binom{n}{2}\left(\eta^{2}+\frac{\lambda_{0}^{2} x_{0}}{1-x_{0}}\right)+O\left(n^{3}\right) \tag{32}
\end{equation*}
$$

Where $\lambda_{0}=\eta-\nu_{0}-8 \pi_{2}^{\prime} / 9$, ν_{0} is given by (26) and

$$
x_{0}=\frac{\left(1-\delta_{0}\right)^{2}}{3}
$$

with δ_{0} given by (27).
Proof: Let $u v w \in \mathcal{F}$ be an edge given by Lemma 14. If $X=X_{u v w}=E_{u v w}^{(2)} \cup$ $E_{u w}^{(2)} \cup E_{v w}^{(2)}$ then $|X| \geq x_{0}\binom{n}{2}+O(n)$ and

$$
\frac{1}{|X|} \sum_{x y \in X} d_{x y} \leq\left(\eta-\lambda_{0}\right)(n-2)+O(1)
$$

If $\lambda_{0}>0$ then we can apply Lemma 12 with $\theta=\left(\eta-\lambda_{0}\right)(n-2)+O(1), t=x_{0}\binom{n}{2}$ and $S=3 m=3 \eta\binom{n}{3}$ to yield (32). It remains to show that $\lambda_{0}>0$.

Since $\pi \leq \eta$ it is easy to check that $\lambda_{0}>0$ if the following inequality holds

$$
\pi\left(1-2 \pi_{0}^{\prime}\right)-2 \pi_{0}^{\prime}>\frac{8 \pi_{2}^{\prime}}{9}\left(1-3 \pi_{0}^{\prime}\right) .
$$

Now since $\pi_{0}=1-3 \pi$ and $\pi_{2}^{\prime}<3 / 10$ (by Theorem 4) this will hold if

$$
10\left(\pi_{0}^{\prime}\right)^{2}-33 \pi_{0}^{\prime}+1>0
$$

This last inequality certainly holds if $\pi_{0} \leq 1 / 33$ and ϵ is sufficiently small.
We are now ready to prove Theorem 1.

Proof of Theorem 1: Let $0<\epsilon<\min \left\{10^{-10}, \omega_{2}, \omega_{3}\right\}$ where ω_{2}, ω_{3} are given by Theorems 4 and 5 (so $\pi_{2}^{\prime}<3 / 10$ and $\left.\pi_{3}^{\prime}<(3+\sqrt{11 / 3}) / 15\right)$.

We will suppose, for a contradiction, that $\pi \geq 0.32975$. So certainly $\pi>$ $\pi_{3}^{\prime}>\pi_{3}$ holds. If $\pi_{0} \geq 0.010751-\epsilon$ then $\epsilon<10^{-10}$ implies that $\pi<0.32975$ so we may suppose that $\pi_{0}<0.010751-\epsilon$ (and so $\left.\pi_{0}^{\prime}<0.010751\right)$.

From Lemma 6 we have the following lower bound on q_{1} (since we are assuming that $\pi>\pi_{3}$)

$$
q_{1} \geq \frac{2 m n(1-\gamma)}{3(2-\mu)}+O\left(n^{3}\right)
$$

where $\gamma=\pi_{3}^{\prime} / \eta$ and

$$
\mu=\gamma-\sqrt{1-\frac{2 \gamma}{3}-\frac{\gamma^{2}}{3}}
$$

Now $\eta \geq \pi \geq 0.32975$ and $\pi_{3}^{\prime}<(3+\sqrt{11 / 3}) / 15$ imply that $\gamma<\gamma_{0}=0.9936527$. Moreover it is routine to check that the following function is decreasing in γ

$$
f(\gamma)=\frac{1-\gamma}{2-\mu}
$$

Hence

$$
\begin{equation*}
q_{1} \geq \frac{\eta f\left(\gamma_{0}\right) n^{4}}{9}+O\left(n^{3}\right) \tag{33}
\end{equation*}
$$

We now consider lower bounds for $\sum d_{x y}^{2}$. Since $\pi_{0}<1 / 33$, Lemma 15 implies that (32) holds. The RHS of (32) is increasing in x_{0} and λ_{0} so we require lower bounds on these quantities.

First consider δ_{0}, given by (27). This is increasing in π_{0}^{\prime} and π_{2}^{\prime}. Hence $\pi_{0}^{\prime}<0.010751$ and $\pi_{2}^{\prime}<3 / 10$ imply that $\delta_{0}<0.08162$. Thus

$$
x_{0}=\frac{\left(1-\delta_{0}\right)^{2}}{3}>0.28114
$$

Writing $\zeta=8 \pi_{2}^{\prime} / 9$, Lemma 15 and (26) imply that

$$
\lambda_{0} \geq \pi-\zeta-\frac{(2-\zeta) \pi_{0}^{\prime}}{1-2 \pi_{0}^{\prime}}
$$

The RHS of this last inequality is decreasing in ζ and π_{0}^{\prime}. Moreover $\pi_{2}^{\prime}<3 / 10$ implies that $\zeta<4 / 15$. Together with $\pi_{0}^{\prime}<0.010751$ this implies that $\lambda_{0}>$ 0.044038 . Hence (32) implies that

$$
\begin{equation*}
\sum_{x y \in V^{(2)}} d_{x y}^{2} \geq \frac{n^{4}}{2}\left(\eta^{2}+c_{0}\right)+O\left(n^{3}\right) \tag{34}
\end{equation*}
$$

where $c_{0}=0.0007584$. We now use (3) which says that

$$
m n=q_{1}+\sum_{x y \in V^{(2)}} d_{x y}^{2}
$$

Combining (3), (33) and (34) we obtain

$$
0 \geq \frac{n^{4} \eta^{2}}{2}-n^{4} \eta\left(\frac{1}{6}-\frac{f\left(\gamma_{0}\right)}{9}\right)+\frac{c_{0} n^{4}}{2}+O\left(n^{3}\right)
$$

Dividing by n^{4} and evaluating we obtain

$$
0 \geq 0.5 \eta^{2}-0.1660246 \eta+0.0003792+O\left(n^{-1}\right)
$$

But now the RHS of this last inequality is increasing in η, thus $\eta \geq \pi \geq 0.329725$ implies that

$$
0 \geq 0.0000001+O\left(n^{-1}\right)
$$

which clearly cannot hold for n sufficiently large.
Clearly any improvement in the upper bound for π_{2} would directly yield an improvement in the upper bound for π_{3}, via Lemma 11.

An improvement in the upper bound for π_{3} would also yield an improvement in the upper bound for π, although this is more difficult to quantify. Lemma 6 would allow us to obtain an improved lower bound for q_{1} which in turn would improve the upper bound for π. However our argument to bound π also involved finding a non-trivial lower bound for $\sum d_{x y}^{2}$, which relied directly on our upper bound for π_{2} (Lemmas 14 and 15).

In the 2 -chromatic case we have no real idea as to the true value of π_{2} (the construction we have seems very unlikely to yield the correct answer). However in the 3 -chromatic case the lower bound is quite possibly correct and we make the following conjecture which would imply a significantly improved upper bound for π.

Conjecture 1 The 3-chromatic Turán density of \mathcal{K}_{4}^{-}is $\frac{5}{18}$.

References

[1] W.G. Brown, P. Erdős and V.T. Sós, Some extremal problems on r-graphs, New Directions in the Theory of Graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, (1973), 55-63.
[2] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combinatoria 16 (1983) 5-10.
[3] D. de Caen and Z. Füredi, The maximum size of 3-uniform hypergraphs not containing a Fano plane, Journal of Combinatorial Theory Series B, 78 (200) 274-276.
[4] F. Chung and L. Lu, An upper bound for the Turán number $t_{3}(n, 4)$, Journal of Combinatorial Theory Series A, (1999) 87 381-389.
[5] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia. Sci. Math. Hungar. 1 (1966) 51-57.
[6] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983) 181-192.
[7] P. Erdős and V.T. Sós, On Ramsey-Turán type theorems for hypergraphs, Combinatorica 2 (1982) 289-295.
[8] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087-1091.
[9] P. Frankl and Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983) 341-349.
[10] P. Frankl and Z. Füredi, An exact result for 3-graphs, Discrete Math. 50 (1984), no. 2-3, 323-328.
[11] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of small Witt-designs, Journal of Combinatorial Theory Series A, (1989) 52 129-147.
[12] Z. Füredi, O. Pikhurko and M. Simonovits, The Turán density of the hypergraph $a b c, a d e, b d e, c d e$, Electronic Journal of Combinatorics, 10 (2003) 7 pp
[13] D. Mubayi, On hypergraphs with every four points spanning at most two triples, Electronic Journal of Combinatorics 10 (2003), \#N10
[14] D. Mubayi and V. Rödl, On the Turán number of triple systems, Journal of Combinatorial Theory, Series A 100 (2002) 136-152.
[15] I.Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Vol II, 939-945.
[16] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 [in Hungarian].
[17] P. Turán, Turán memorial volume, Journal of Graph Theory 1 (2) (1977).

