Chromatic Turán problems and a new upper bound for the Turán density of \mathcal{K}_4^-

John Talbot University College London E-mail: talbot@math.ucl.ac.uk

March 16, 2006

Abstract

We consider a new type of extremal hypergraph problem: given an r-graph \mathcal{F} and an integer $k \geq 2$ determine the maximum number of edges in an \mathcal{F} -free, k-colourable r-graph on n vertices.

Our motivation for studying such problems is that it allows us to give a new upper bound for an old Turán problem. We show that a 3-graph in which any four points span at most two edges has density less than $0.32975 < \frac{1}{3} - \frac{1}{280}$, improving previous bounds of $\frac{1}{3}$ due to de Caen [2], and $\frac{1}{3} - 4.5305 \times 10^{-6}$ due to Mubayi [13].

1 Introduction and main results

Given an r-graph \mathcal{F} the Turán number $ex(n, \mathcal{F})$ is the maximum number of edges in an *n*-vertex *r*-graph not containing a copy of \mathcal{F} . The Turán density of \mathcal{F} is

$$\pi(\mathcal{F}) = \lim_{n \to \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{r}}.$$

For 2-graphs the Turán density is determined completely by the chromatic number but for $r \geq 3$ there are very few *r*-graphs for which $\pi(\mathcal{F})$ is known. (Examples of 3-graphs for which $\pi(\mathcal{F})$ is now known include the Fano plane [3], $\mathcal{F} = \{abc, abd, abe, cde\}$ [12] and $\mathcal{F} = \{abc, abd, cde\}$ [9].)

The two most well-known problems in this area are to determine $\pi(\mathcal{K}_4)$ and $\pi(\mathcal{K}_4^-)$, where $\mathcal{K}_4 = \{abc, abd, acd, bcd\}$ is the complete 3-graph on 4 vertices and $\mathcal{K}_4^- = \{abc, abd, acd\}$ is the complete 3-graph on 4 vertices with an edge removed. For $\pi(\mathcal{K}_4)$ we have the following bounds due to Turán and Chung and Lu [4] respectively

$$\frac{5}{9} \le \pi(\mathcal{K}_4) \le \frac{3 + \sqrt{17}}{12} = 0.59359\dots$$

Although the problem of determining $\pi(\mathcal{K}_4)$ is an extremely natural question in some respects the problem of determining $\pi(\mathcal{K}_4^-)$ is even more basic since \mathcal{K}_4^- is the smallest 3-graph satisfying $\pi(\mathcal{F}) \neq 0$. Note also that the problem of determining $\pi(\mathcal{K}_4^-)$ can be restated as: determine the maximum density of a 3-graph in which any four vertices span less than three edges. (In this last form the problem is a special case of a question due to Brown, Erdős and Sós [1] asking for the maximum number of edges in an *r*-graph of order *n* in which any *v* vertices span less than *e* edges. The case r = e = 3 and v = 6 is the well known (6, 3)-problem, see Ruzsa and Szemerédi [15].)

The problem of determining $\pi(\mathcal{K}_4^-)$ has been considered by many people, including Turán [17], Erdős and Sós [7], Frankl and Füredi [10], de Caen [2] and Mubayi [13]. Previously the best bounds known were

$$\frac{2}{7} \le \pi(\mathcal{K}_4^-) \le \frac{1}{3} - (4.5305 \times 10^{-6}).$$

The upper bound was proved by Mubayi [13], improving on the upper bound $\pi(\mathcal{K}_4^-) \leq 1/3$ due to de Caen [2]. The lower bound follows from the following construction due to Frankl and Füredi [10].

Let \mathcal{S} be the following 3-graph of order 6 with 10 edges

$$S = \{124, 234, 346, 456, 126, 256, 135, 145, 235, 136\}.$$

Let |V| = n and suppose that V is partitioned as $V = V_1 \cup \cdots \cup V_6$. For such a partition we define \mathcal{H}_S to be the "blow-up" of S. So \mathcal{H}_S has vertex set V and edge set

$$\mathcal{H}_{\mathcal{S}} = \{ v_{i_1} v_{i_2} v_{i_3} \mid 1 \le i_1 < i_2 < i_3 \le 6, \ i_1 i_2 i_3 \in \mathcal{S} \text{ and } v_{i_j} \in V_{i_j} \}.$$
(1)

If the vertex classes V_i are taken to be as equal as possible in size then this yields a \mathcal{K}_4^- -free 3-graph with density greater than 5/18. Moreover if \mathcal{R}_S is the 3-graph given by iterating this process, partitioning each V_i and inserting a copy of \mathcal{H}_S repeatedly, then we obtain a \mathcal{K}_4^- -free 3-graph with density approaching 2/7. (See [10] for details.)

Our main aim in this paper is to prove the following theorem, improving the upper bound for $\pi(\mathcal{K}_4^-)$.

Theorem 1 The Turán density of \mathcal{K}_4^- satisfies

$$\frac{2}{7} \le \pi(\mathcal{K}_4^-) < 0.32975 < \frac{1}{3} - \frac{1}{280}.$$

Our approach involves a new type of extremal problem which we call *chro*matic Turán problems. These are questions of the form: given an r-graph \mathcal{F} and an integer $k \geq 2$ determine the maximum number of edges in an \mathcal{F} -free, k-colourable r-graph on n vertices. (Recall that an r-graph is k-colourable iff its vertices can be partitioned into k classes none of which contain an edge.) We denote this quantity by $ex_k(n, \mathcal{F})$.

A simple averaging argument shows that for any r, k, n and \mathcal{F}

$$\frac{\operatorname{ex}_k(n+1,\mathcal{F})}{\binom{n+1}{r}} \le \frac{\operatorname{ex}_k(n,\mathcal{F})}{\binom{n}{r}}$$

and so the corresponding k-chromatic Turán density can defined as the limit

$$\pi_k(\mathcal{F}) = \lim_{n \to \infty} \frac{\operatorname{ex}_k(n, \mathcal{F})}{\binom{n}{r}}.$$

One obvious reason why such problems do not seem to have been previously considered is that for 2-graphs they are rather uninteresting.

If G is a 2-graph then the Erdős-Simonovits-Stone theorem determines not only the ordinary Turán density of G but also all of the chromatic Turán densities of G.

Theorem 2 (Erdős–Simonovits–Stone [5],[8]) If the 2-graph G has chromatic number $\chi(G)$ then

$$\pi(G) = 1 - \frac{1}{\chi(G) - 1}.$$

Corollary 3 If G is a 2-graph and $k \ge 2$ then

$$\pi_k(G) = \begin{cases} 1 - \frac{1}{k}, & k \le \chi(G) - 1, \\ 1 - \frac{1}{\chi(G) - 1}, & k \ge \chi(G). \end{cases}$$

For $r \geq 3$ the problems of determining chromatic and ordinary Turán numbers seem to be genuinely different. An obvious reason for this is that while for a 2-graph H the extremal H-free graphs are not only H-free but also $(\chi(H) - 1)$ colourable this does not seem to be the case in general.

The particular chromatic Turán problems which we will consider are those of determining $\pi_2(\mathcal{K}_4^-)$ and $\pi_3(\mathcal{K}_4^-)$. We obtain the following bounds.

Theorem 4 There exists $\omega_2 > 0$ such that the 2-chromatic Turán density $\pi_2(\mathcal{K}_4^-)$ satisfies

$$0.25682 < \pi_2(\mathcal{K}_4^-) < \frac{3}{10} - \omega_2.$$

Theorem 5 There exists $\omega_3 > 0$ such that the 3-chromatic Turán density $\pi_3(\mathcal{K}_4^-)$ satisfies

$$\frac{5}{18} \le \pi_3(\mathcal{K}_4^-) < \frac{3 + \sqrt{11/3}}{15} - \omega_3.$$

In the next section we will introduce the key ideas linking ordinary and chromatic Turán densities. In the third section we will prove Theorems 4 and 5. In the final section we prove Theorem 1.

Throughout the remainder of this paper we will write $\pi = \pi(\mathcal{K}_4^-)$, $\pi_2 = \pi_2(\mathcal{K}_4^-)$ and $\pi_3 = \pi_3(\mathcal{K}_4^-)$. For a 3-graph \mathcal{G} with vertex set V and $A \subseteq V$ we let e(A) denote the number of edges of \mathcal{G} contained in A. The degree of a vertex $x \in V$ is denoted by $d_x = \#\{yz \mid xyz \in \mathcal{G}\}$ while the degree of a pair of vertices x, y is denoted by $d_{xy} = \#\{z \mid xyz \in \mathcal{G}\}$.

We will let \mathcal{F} denote a \mathcal{K}_4^- -free 3-graph with vertex set V of order n and with $\operatorname{ex}(n, \mathcal{K}_4^-) = m = \eta \binom{n}{3}$ edges. Similarly \mathcal{F}_k , k = 2, 3, will denote a k-colourable \mathcal{K}_4^- -free 3-graph with vertex set V of order n and with $m_k = \operatorname{ex}_k(n, \mathcal{K}_4^-)$ edges.

We take ϵ to denote an arbitrary small positive constant (we will assume $\epsilon < 10^{-10}$). We suppose that n is always sufficiently large that whenever $s \ge n/100$ we have $\exp(s, \mathcal{K}_4^-) \le (\pi_k + \epsilon) {s \choose 3}$ (for k = 2, 3) and $\exp(s, \mathcal{K}_4^-) \le (\pi + \epsilon) {s \choose 3}$.

For any value a > 0 we will use a' to denote $a + \epsilon$.

2 Ordinary and chromatic Turán densities

Let \mathcal{F} be a \mathcal{K}_4^- -free 3-graph with vertex set V of order n and with $ex(n, \mathcal{K}_4^-) = m = \eta\binom{n}{3}$ edges, as defined above. We count edges in subsets of the vertices of \mathcal{F} of size four. If

$$q_i = \#\{A \in V^{(4)} \mid e(A) = i\}$$

then as \mathcal{F} is \mathcal{K}_4^- -free we have

$$m(n-3) = q_1 + 2q_2$$

and

$$q_2 = \sum_{xy \in V^{(2)}} \binom{d_{xy}}{2}$$

Using the following identity (which holds since every edge contains three pairs of vertices)

x

$$\sum_{y \in V^{(2)}} d_{xy} = 3m \tag{2}$$

we obtain

$$mn = q_1 + \sum_{xy \in V^{(2)}} d_{xy}^2.$$
(3)

Convexity of $f(x) = x^2$ and (2) then imply that

$$mn \ge q_1 + \frac{9m^2}{\binom{n}{2}}.\tag{4}$$

Now $q_1 \ge 0$ yields

$$m \le \frac{n^2(n-1)}{18}.$$
 (5)

Dividing by $\binom{n}{3}$ and taking the limit as $n \to \infty$ gives de Caen's bound $\pi(\mathcal{K}_4^-) \le 1/3$.

Mubayi's improved upper bound for $\pi(\mathcal{K}_4^-)$ [13] follows from (4) by using supersaturation to give a lower bound for q_1 . He used a result of Frankl and Füredi [10] characterizing 3-graphs in which every four points span exactly 0 or 2 edges.

Our improved upper bound for π is achieved by an entirely different approach, although we will also implicitly make use of supersaturation at one point.

Our aim in this section is to prove Lemma 6, giving a lower bound on q_1 in terms of the 3-chromatic Turán density π_3 . We will say that $A \in V^{(4)}$ is a good 4-set iff A spans exactly one edge. Recall that $\eta = m/\binom{n}{3}$.

Lemma 6 If $\pi > \pi_3$ then for ϵ sufficiently small and $\pi'_3 = \pi_3 + \epsilon$ the number of good 4-sets in \mathcal{F} satisfies

$$q_1 \ge \frac{2mn(1-\gamma)}{3(2-\mu)} + O(n^3).$$
(6)

where $\gamma = \pi'_3/\eta$ and

$$\mu = \gamma - \sqrt{1 - \frac{2\gamma}{3} - \frac{\gamma^2}{3}}.$$

We will assume for the remainder of this section that $\pi > \pi_3$ and that ϵ is sufficiently small that $\gamma = \pi'_3/\eta \le (\pi_3 + \epsilon)/\pi < 1$.

We start with some simple observations. As before \mathcal{F} is a \mathcal{K}_4^- -free 3-graph on n vertices with $m = \eta \binom{n}{3} = \exp(n, \mathcal{K}_4^-)$ edges.

We may assume that for any pair of vertices $x, y \in V$ we have $d_x - d_y \leq n-2$, since if this does not hold then by deleting y and duplicating x we obtain a new \mathcal{K}_4^- -free 3-graph on n vertices with at least

$$m + d_x - d_y - (n-2) > \exp(n, \mathcal{K}_4^-)$$

edges. Since

$$\sum_{x \in V} d_x = 3m = 3\eta \binom{n}{3}$$

this implies that if $x \in V$ then

$$d_x = \frac{\eta n^2}{2} + O(n). \tag{7}$$

We count q_1 , the number of good 4-sets, by considering pairs of disjoint edges $uvw, xyz \in \mathcal{F}$. For two such edges define

 $q(uvw, xyz) = \#\{\text{good 4-sets amongst } uvwx, uvwy, uvwz, xyzu, xyzv, xyzw\}.$

For an edge $uvw \in \mathcal{F}$ we then define

$$q(uvw) = \sum_{xyz \in \mathcal{F}} q(uvw, xyz).$$

The following lemma shows how this can be used to count the number of good 4-sets in \mathcal{F} .

Lemma 7 If \mathcal{F} is as above then

$$\sum_{uvw\in\mathcal{F}}q(uvw) = \eta n^2 q_1 + O(n^5).$$
(8)

Proof: The LHS of (8) counts a good 4-set A twice for each unordered pair of edges uvw, xyz such that A is either uvwx, uvwy, uvwz, xyzu, xyzv or xyzw. If A = uvwx is a good 4-set with single edge uvw then the number of ways of choosing an unordered pair of edges that count A is simply

$$d_x - \#\{xyz \in \mathcal{F} \mid \{y, z\} \cap \{u, v, w\} \neq \emptyset\} = \frac{\eta n^2}{2} + O(n)$$

using (7). Finally $q_1 = O(n^4)$ implies that (8) holds.

For the remainder of this section we will attempt to find lower bounds for q(uvw), where $uvw \in \mathcal{F}$, and then use (8) to give a lower bound for q_1 .

For $x, y \in V$ we let $E_{xy} = \{z \mid xyz \in \mathcal{F}\}$. The following notation and definitions are all relative to some fixed edge $uvw \in \mathcal{F}$. Let

$$E_{uvw} = E_{uv} \cup E_{uw} \cup E_{vw}$$
 and $D_{uvw} = V \setminus E_{uvw}$.

Let $|D_{uvw}| = \delta_{uvw}n$. An edge $xyz \in \mathcal{F}$ is *internal* iff it is contained entirely within either E_{uv}, E_{uw} or E_{vw} . We denote the number of such edges by i_{uvw} .

We call an edge $xyz \in \mathcal{F}$ bad iff it is not internal and it does not meet D_{uvw} . An edge which is not bad is said to be *good*. We denote the number of bad edges by b_{uvw} . Let \mathcal{B}_{uvw} be the 3-graph with vertex set E_{uvw} and edge set consisting of all the bad edges of \mathcal{F} .

The relationship between estimating q_1 and the 3-chromatic Turán problem enters in our next lemma.

Lemma 8 If $uvw \in \mathcal{F}$ and $|D_{uvw}| = \delta_{uvw}n$ then \mathcal{B}_{uvw} is 3-colourable with a 3-colouring given by the vertex partition $E_{uv} \dot{\cup} E_{uw} \dot{\cup} E_{vw}$. Hence

$$b_{uvw} \le ex_3((1 - \delta_{uvw})n, \mathcal{K}_4^-).$$
(9)

Moreover any internal edge $xyz \in \mathcal{F}$ is good and satisfies $q(uvw, xyz) \geq 2$.

Figure 1: The 3-graph \mathcal{F}

Proof: Since $uvw \in \mathcal{F}$ and \mathcal{F} is \mathcal{K}_4^- -free so $E_{uv} \cup E_{uw} \cup E_{vw}$ is a partition of E_{uvw} . Moreover since no internal edge belongs to \mathcal{B}_{uvw} this partition yields a 3-colouring of \mathcal{B}_{uvw} . Then as $|E_{uvw}| = (1 - \delta_{uvw})n$ so (9) holds by definition.

Any internal edge is by definition good so we now need to show that any internal edge xyz satisfies $q(uvw, xyz) \ge 2$.

Let xyz be an internal edge. Without loss of generality we may suppose that $xyz \subseteq E_{uv}$. Now consider the 4-sets $\{xyzu, xyzv, xyzw\}$. Since \mathcal{F} is \mathcal{K}_4^- -free and $uvx, uvy, uvz \in \mathcal{F}$ we know that $xyu, xyv, xzu, xzv, yzu, yzv \notin \mathcal{F}$. Hence xyzu and xyzv are both good 4-sets containing the single edge xyz so $q(uvw, xyz) \geq 2$ and the result follows.

For $W \subseteq V$ let $e_j(W)$ denote the number of edges in \mathcal{F} which contain exactly j vertices from W. We now give a simple lower bound for q(uvw).

Lemma 9 If $uvw \in \mathcal{F}$ then

$$q(uvw) \ge 2i_{uvw} + 3e_3(D_{uvw}) + 2e_2(D_{uvw}) + e_1(D_{uvw}) + O(n^2).$$

Proof: We saw in Lemma 8 that if xyz is an internal edge then $q(uvw, xyz) \geq 2$. If $xyz \in \mathcal{F}$ is disjoint from uvw and contains j vertices from D_{uvw} then $q(uvw, xyz) \geq j$, since each vertex in $\{x, y, z\} \cap D_{uvw}$ forms a good 4-set together with uvw. The result then follows since the number of edges meeting uvw is $O(n^2)$.

We require one final lemma

Lemma 10 If $uvw \in \mathcal{F}$ and $\pi'_3 = \pi_3 + \epsilon$ then

$$\frac{q(uvw)}{m} \ge 2 - 2\gamma + 3\mu\delta_{uvw} + O\left(n^{-1}\right),\tag{10}$$

where $\gamma = \pi'_3/\eta$ and

$$\mu = \gamma - \sqrt{1 - \frac{2\gamma}{3} - \frac{\gamma^2}{3}}.$$

Proof: We will give two lower bounds for q(uvw)/m. The first bound (12) is always valid while the second bound (16) is valid only if $\delta_{uvw} \leq 99/100$.

Lemma 9 tells us that

$$q(uvw) \geq 3e_3(D_{uvw}) + 2e_2(D_{uvw}) + e_1(D_{uvw}) + O(n^2) = \sum_{x \in D_{uvw}} d_x + O(n^2).$$
(11)

Thus for any value of δ_{uvw} , (11), (7) and $|D_{uvw}| = \delta_{uvw}n$ imply that

$$\frac{q(uvw)}{m} \ge 3\delta_{uvw} + O\left(n^{-1}\right). \tag{12}$$

Since

$$m = i_{uvw} + b_{uvw} + e_1(D_{uvw}) + e_2(D_{uvw}) + e_3(D_{uvw})$$

Lemma 9 implies that

$$q(uvw) \ge 2(m - b_{uvw}) + e_3(D_{uvw}) - e_1(D_{uvw}) + O(n^2).$$
(13)

Now (9) together with our assumption that $ex_3(s, \mathcal{K}_4^-) \leq \pi'_3\binom{s}{3}$ for $s \geq n/100$ imply that if $\delta_{uvw} < 99/100$ then

$$b_{uvw} \le \pi'_3 \binom{(1 - \delta_{uvw})n}{3}.$$
(14)

Also (7) implies that

$$e_1(D) \le \sum_{x \in D_{uvw}} d_x = \frac{\eta n^3 \delta_{uvw}}{2} + O(n^2).$$
 (15)

Let $\gamma = \pi'_3/\eta$. If $\delta_{uvw} \leq 99/100$ then (13), (14) and (15) imply that

$$\frac{q(uvw)}{m} \ge 2 - 2\gamma(1 - \delta_{uvw})^3 - 3\delta_{uvw} + O\left(n^{-1}\right).$$

Expanding we obtain

$$\frac{q(uvw)}{m} \ge 2 - 2\gamma + 3\delta_{uvw} \left(2\gamma - 1 - 2\gamma\delta_{uvw} + \frac{2\gamma\delta_{uvw}^2}{3}\right) + O\left(n^{-1}\right).$$
(16)

If

$$\delta_1 = \frac{2(1-\gamma)}{3(1-\mu)}$$

and $\delta_{uvw} \geq \delta_1$ then (12) implies that (10) holds so we may suppose that $\delta_{uvw} \leq \delta_1$. It is easy to check that $\delta_1 \leq 2/3 < 99/100$ and so (16) holds.

To show that (10) holds in this case we need to check that for $\delta_{uvw} \leq \delta_1$ the following inequality holds

$$2\gamma - 1 - 2\gamma \delta_{uvw} + \frac{2\gamma \delta_{uvw}^2}{3} \ge \mu.$$
(17)

This is straightforward. Since the LHS of (17) is decreasing in δ_{uvw} it is sufficient to check that

$$2\gamma - 1 - 2\gamma\delta_1 = \mu.$$

Hence (10) holds for all edges $uvw \in \mathcal{F}$.

Proof of Lemma 6: Let $uvw \in \mathcal{F}$. Since

$$D_{uvw} = \{ x \in V \mid x \notin E_{uv} \cup E_{uw} \cup E_{vw} \}$$

and $\delta_{uvw}n = |D_{uvw}|$ we have

$$q_1 = \sum_{uvw \in \mathcal{F}} \delta_{uvw} n. \tag{18}$$

The bound on q_1 in (6) now follows directly from (10) and (8).

3 Bounds for chromatic Turán problems

Our aim in this section is to give bounds on the chromatic Turán densities of \mathcal{K}_4^- . We start by considering the 2-chromatic case. *Proof of Theorem 4:* Let \mathcal{F}_2 be a 2-colourable \mathcal{K}_4^- -free 3-graph of order n with m_2 edges. Let the two vertex classes of \mathcal{F}_2 be A and B, with $|A| = \alpha n$ and $|B| = (1 - \alpha)n$. We may suppose that $|A| \leq |B|$ and so $\alpha \leq 1/2$.

Counting edges in 4-sets we obtain an analogous equality to (3)

$$nm_2 = q_1 + \sum_{xy \in A^{(2)} \cup B^{(2)}} d_{xy}^2 + \sum_{xy \in A \times B} d_{xy}^2,$$

where, as previously, q_1 is the number of good 4-sets (that is the number of 4-sets containing exactly one edge). Since neither A nor B contain any edges we have the following two identities

$$\sum_{xy \in A^{(2)} \cup B^{(2)}} d_{xy} = m_2 \quad \text{and} \quad \sum_{xy \in A \times B} d_{xy} = 2m_2.$$

Thus convexity implies that

$$nm_2 \ge q_1 + \frac{m_2^2}{\binom{\alpha n}{2} + \binom{(1-\alpha)n}{2}} + \frac{4m_2^2}{\alpha(1-\alpha)n^2}.$$

Writing $\alpha = (1 - \beta)/2$ and using the fact that $q_1 \ge 0$, this implies that $m_2 \le \frac{n^3}{2f(\beta)}$, where

$$\begin{split} f(\beta) &= \frac{4}{(1-\beta)^2 + (1+\beta)^2} + \frac{8}{1-\beta^2} \\ &= \frac{4}{1-\beta^4} + \frac{6}{1-\beta^2} \\ &\geq 10. \end{split}$$

Thus we have

$$m_2 \le \frac{n^3}{20}.$$

Hence dividing by $\binom{n}{3}$ and taking the limit $n \to \infty$ we obtain $\pi_2 \leq 3/10$.

To see that this may be improved to $\pi_2 < 3/10 - \omega_2$ for some $\omega_2 > 0$ we note that we assumed in the above argument that $q_1 = 0$. We can use a supersaturation argument (analogous to that given in [13]) to show that a positive proportion of 4-sets contribute to q_1 . (In fact with a little work one can take $\omega_2 > 10^{-4}$ although we will only require $\omega_2 > 0$ in the sequel.) This completes the proof of the upper bound.

For the lower bound we use the following construction. Let \mathcal{G}_8 be the 2colourable \mathcal{K}_4^- -free 3-graph of order 8 with the following edges

$$\mathcal{G}_8 = \{125, 135, 145, 126, 136, 246, 346, 456, 127, 237, \\247, 357, 457, 367, 138, 238, 348, 258, 268, 178, 478\}$$

Form a blow-up of this 3-graph to give $\mathcal{G}_8(n)$ a 3-graph of order n with vertex classes V_1, V_2, \ldots, V_8 of sizes a_1n, a_2n, \ldots, a_8n (so $\sum a_i = 1$) and edges given by

$$\mathcal{G}_8(n) = \{ v_{i_1} v_{i_2} v_{i_3} \mid 1 \le i_1 < i_2 < i_3 \le 8, i_1 i_2 i_3 \in \mathcal{G}_8 \text{ and } v_{i_j} \in V_{i_j} \}.$$

Now $\mathcal{G}_8(n)$ is clearly still 2-colourable and \mathcal{K}_4^- -free. Moreover for the correct choice of a_1, \ldots, a_8 and n large it has density greater than 0.25682. (To be precise we can take $a_1 = 0.1608, a_2 = 0.1882, a_3 = 0.1868, a_4 = a_5 = 0.0379, a_6 = 0.1086, a_7 = 0.1437, a_8 = 0.1361$. Such an "optimal" blow-up is found by calculating the Lagrangian of \mathcal{G}_8 , see for example [11].)

Turán originally conjectured that $\pi = 1/4$. This was disproved by Frankl and Füredi [10] with their construction of a \mathcal{K}_4^- -free 3-graph with $\left(\frac{2}{7} + o(n)\right) \binom{n}{3}$ edges. It is interesting to note that even with the seemingly much stronger condition that \mathcal{F}_2 is \mathcal{K}_4^- -free and 2-colourable \mathcal{F}_2 can still have density greater than 1/4.

We now turn to the the 3-chromatic case and the proof of Theorem 5. This will follow directly from Theorem 4 and the following lemma.

Lemma 11 The 3-chromatic Turán density of \mathcal{K}_4^- is bounded above by the larger root of

$$243x^2 - 18x(8\pi_2 + 3) + 64\pi_2^2 = 0.$$
⁽¹⁹⁾

Proof of Theorem 5: The lower bound for π_3 is given by \mathcal{H}_S the 3-graph constructed by Frankl and Füredi which we met earlier (1). Since \mathcal{H}_S is the blow-up of

$$S = \{124, 234, 346, 456, 126, 256, 135, 145, 235, 136\}$$

a 3-colouring of S yields a 3-colouring of \mathcal{H}_S in the obvious way. The vertices of \mathcal{H}_S consist of six classes corresponding to the six vertices of S. All the vertices in a single class V_i inherit the colour of the corresponding vertex $i \in V(S)$. A 3-colouring of S is given by partitioning the vertices as $\{1,2\} \cup \{3,4\} \cup \{5,6\}$. Hence \mathcal{H}_S is 3-colourable and \mathcal{K}_4^- -free. It is straightforward to check that it has density at least 5/18.

The upper bound follows by substituting $\pi_2 < 3/10 - \omega_2$ from Theorem 4 into (19) and solving. (It is easy to check that since the bound $\pi_2 \leq 3/10$ yields $\pi_3 \leq (3 + \sqrt{11/3})/15$ so the bound $\pi_2 < 3/10 - \omega_2$ yields $\pi_3 < (3 + \sqrt{11/3})/15 - \omega_3$ for some $\omega_3 > 0$.)

We note that in this case, unlike the 2-chromatic case, the lower bound could well be the true value.

Using convexity we are able to give a simple lower bound for $\sum d_{xy}^2$ since this is minimized (for $\sum d_{xy}$ constant) by taking all of the degrees to be equal. Our next lemma will allow us to improve this lower bound when some of the pairs $xy \in V^{(2)}$ have smaller than average degree. Lemma 13 then provides a collection of pairs of small degree to which we may apply this result.

Lemma 12 If $X \subseteq V^{(2)}$, $|X| \ge t$, $\sum_{xy \in V^{(2)}} d_{xy} = S$ and

$$\frac{1}{|X|} \sum_{xy \in X} d_{xy} \le \theta \le \frac{S}{\binom{n}{2}}$$

then

$$\sum_{y \in V^{(2)}} d_{xy}^2 \ge \theta^2 t + \frac{(S - t\theta)^2}{\binom{n}{2} - t}$$

Proof: Suppose that $|X| = u \ge t$ and

x

$$\frac{1}{|X|} \sum_{xy \in X} d_{xy} = \kappa \le \theta$$

By the convexity of x^2 we have

$$\sum_{xy \in V^{(2)}} d_{xy}^2 = \sum_{xy \in X} d_{xy}^2 + \sum_{xy \in V^{(2)} \setminus X} d_{xy}^2$$

$$\geq u\kappa^2 + \frac{(S - \kappa u)^2}{\binom{n}{2} - u}.$$
(20)

Now the RHS of (20) is increasing in u and decreasing in κ (for $u \ge t$ and $\kappa \le \theta$). Hence it is minimized when $\kappa = \theta$ and u = t. The result follows. \Box

Lemma 13 Let $\pi'_2 = \pi_2 + \epsilon$. If \mathcal{F}_3 is a \mathcal{K}_4^- -free 3-colourable 3-graph of order n with 3-colouring given by the partition $V = A \dot{\cup} B \dot{\cup} C$ and $X = A^{(2)} \cup B^{(2)} \cup C^{(2)}$ then

$$\frac{1}{n|X|} \sum_{xy \in X} d_{xy} \le \frac{8\pi_2'}{9} + O(n^{-1}).$$
(21)

Proof: Recall our assumption that n is sufficiently large so that any \mathcal{K}_4^- -free 2-colourable 3-graph of order $s \ge n/100$ has at most $\pi'_2\binom{s}{3}$ edges. Let \mathcal{F}_3 be as above with 3-colouring given by the partition $V = A \dot{\cup} B \dot{\cup} C$, and $|A| \ge |B| \ge |C|$.

We first deal with the case that $|B \cup C|$ is small. So suppose that $|B \cup C| \leq n/100$. In this case we have $|X| \geq |A^{(2)}| \geq \binom{99n/100}{2}$. Since \mathcal{F}_3 is 3-colourable no edge contains more than one pair from X (otherwise there would be an edge contained in A, B or C) and hence using de Caen's bound (5) we have

$$\frac{1}{n|X|} \sum_{xy \in X} d_{xy} \leq \frac{n^2(n-1)}{18n\binom{99n/100}{2}} < \frac{1}{5}.$$

So in this case (21) holds since $8\pi'_2/9 > 8\pi_2/9 > 2/9 > 1/5$, by Theorem 4.

We now consider the case that all unions of pairs of vertex classes are reasonably large, so $|B \cup C| \ge n/100$. Let $|A| = \alpha n$, $|B| = \beta n$ so $|C| = (1 - \alpha - \beta)n$. We have $99/100 \ge \alpha + \beta \ge 2/3$.

Considering edges containing pairs of vertices from X we obtain

$$\frac{1}{n|X|} \sum_{xy \in X} d_{xy} \leq \frac{\pi'_2 \left(\binom{(\alpha+\beta)n}{3} + \binom{(1-\alpha)n}{3} + \binom{(1-\beta)n}{3} \right)}{n \left(\binom{\alpha n}{2} + \binom{\beta n}{2} + \binom{(1-\alpha-\beta)n}{2} \right)} \\ \leq \frac{\pi'_2 ((\alpha+\beta)^3 + (1-\alpha)^3 + (1-\beta)^3)}{3(\alpha^2 + \beta^2 + (1-\alpha-\beta)^2)} + O(n^{-1})$$

Thus it is sufficient to prove that

$$\frac{(\alpha+\beta)^3 + (1-\alpha)^3 + (1-\beta)^3}{\alpha^2 + \beta^2 + (1-\alpha-\beta)^2} \le \frac{8}{3}.$$
(22)

This is straightforward. Writing $\xi = \alpha + \beta$ and $\rho = \alpha - \beta$ we see that (22) holds iff the following inequality holds

$$0 \le 8 - 28\xi + 30\xi^2 - 9\xi^3 + \rho^2(9\xi - 2).$$

Now $\xi = \alpha + \beta \ge 2/3$ so $9\xi - 2 \ge 4$ and it is sufficient to check that the following inequality holds

$$0 \le 8 - 28\xi + 30\xi^2 - 9\xi^3 + 4\rho^2.$$
⁽²³⁾

The RHS of (23) is clearly increasing in ρ and also in ξ (for $2/3 \le \xi \le 1$). Hence it is minimized at $\rho = 0$ and $\xi = 2/3$ when (23) holds with equality.

Proof of Lemma 11: Let $\pi'_2 = \pi_2 + \epsilon$ and \mathcal{F}_3 be a 3-colourable \mathcal{K}_4^- -free 3-graph with vertex set V of order n = 3k and of maximum size $m_3 = \exp_3(\mathcal{K}_4^-, n) = \eta_3\binom{n}{3}$. (So $\eta_3 \ge \pi_3$.) Let a 3-colouring of \mathcal{F}_3 be given by the partition $V = A \dot{\cup} B \dot{\cup} C$ with $|A| = \alpha n$, $|B| = \beta n$ and $|C| = (1 - \alpha - \beta)n$. We may suppose that $|A| \ge |B| \ge |C|$ and hence $2/3 \le \alpha + \beta \le 1$.

We will wish to consider sums over pairs of vertices and so define

$$X = A^{(2)} \cup B^{(2)} \cup C^{(2)}.$$

Note that |X| is minimized when A, B and C are as equal as possible in size. Hence

$$|X| \ge 3\binom{n/3}{2}.$$

Counting edges in 4-sets we obtain an analogous equality to (3)

$$nm_3 = q_1 + \sum_{xy \in X} d_{xy}^2 + \sum_{xy \in V^{(2)} \setminus X} d_{xy}^2, \tag{24}$$

where, as previously, q_1 is the number of good 4-sets (that is the number of 4-sets containing exactly one edge).

Letting $\pi'_3 = \pi_3 + \epsilon$ and noting that $\pi'_2 \leq \pi'_3$, Lemma 13 says precisely that the average degree of pairs of vertices from X is at most

$$\frac{8\pi'_2 n}{9} + O(1) \le \frac{8\pi'_3 n}{9} + O(1) < \eta_3 (n-2),$$

for n large (since $\epsilon < 10^{-10}$).

Hence the average degree of pairs of vertices from X is strictly less than the average degree of pairs of vertices from V. (The average degree of pairs of vertices from V being $\eta_3(n-2)$.)

Using $q_1 \ge 0$, n = 3k, (24) and Lemma 12 with $\theta = 8\pi'_2 n/9 + O(1)$ and $t = 3\binom{k}{2}$ we obtain

$$3km_3 \ge 3\binom{k}{2} \left(\frac{8\pi'_2 k}{3}\right)^2 + \frac{(3m_3 - 8\pi'_2 k\binom{k}{2})^2}{\binom{3k}{2} - 3\binom{k}{2}} + O(k^3).$$

Dividing by $\frac{k}{18}\binom{3k}{3}$ and rearranging we obtain

$$0 \ge 243\eta_3^2 - 18\eta_3(8\pi_2' + 3) + 64(\pi_2')^2 + O(k^{-1}).$$

Since $\pi_3 \leq \eta_3$ and this last inequality holds for all ϵ sufficiently small and n = 3k sufficiently large, the result follows.

4 A new upper bound for the Turán density of \mathcal{K}_4^-

For Theorem 1 we need to show that $\pi < 0.32975$. This will require another new idea, enabling us to not only give a lower bound for q_1 but also to show that if π is close to 1/3 then the degrees of pairs of vertices in an extremal \mathcal{K}_4^- -free 3-graph will not all be equal. To be precise we will show that if π is close to 1/3 then we can find a collection of pairs of vertices which have lower than average degree and then appeal to Lemma 12 to improve our lower bound for $\sum d_{xy}^2$.

We define $\pi_0 = 1 - 3\pi > 0$. Our next lemma tells us that if π_0 is small (so π is close to 1/3) then we can find an edge uvw such that the degrees of pairs of vertices from $E_{uv}^{(2)} \cup E_{uw}^{(2)} \cup E_{vw}^{(2)}$ are small.

Lemma 14 Let $\pi'_0 = \pi_0 + \epsilon$ and $\pi'_2 = \pi_2 + \epsilon$. There is an edge $uvw \in \mathcal{F}$ such that if $X_{uvw} = E_{uv}^{(2)} \cup E_{uw}^{(2)} \cup E_{vw}^{(2)}$ then

$$\frac{1}{n|X_{uvw}|} \sum_{xy \in X_{uvw}} d_{xy} \le \frac{8\pi_2'}{9} + \nu_0 + O(n^{-1}), \tag{25}$$

where

$$\nu_0 = \frac{(2 - 8\pi_2'/9)\pi_0'}{1 - 2\pi_0'}.$$
(26)

Furthermore $\delta_{uvw} = |D_{uvw}|/n$ satisfies $\delta_{uvw} \leq \delta_0$ where

$$\delta_0 = \frac{\pi'_0}{(1 - 2\pi'_0)} \left(1 + \frac{3}{(1 - 16\pi'_2/9)} \right).$$
⁽²⁷⁾

Proof: Recall our assumption that n is sufficiently large that any 2-colourable \mathcal{K}_4^- -free 3-graph of order $s \ge n/100$ has at most $\pi'_2 \binom{s}{3}$ edges, where $\pi'_2 = \pi_2 + \epsilon$. Let $uvw \in \mathcal{F}$ and $X_{uvw} = E_{uv}^{(2)} \cup E_{uw}^{(2)} \cup E_{vw}^{(2)}$. As in Section 2 let

$$D_{uvw} = V \setminus (E_{uv} \cup E_{uw} \cup E_{vw}),$$
$$i_{uvw} = \# \{ xyz \in \mathcal{F} \mid xyz \subset E_{uv} \text{ or } xyz \subset E_{uw} \text{ or } xyz \subset E_{vw} \}$$

(that is i_{uvw} is the number of internal edges) and $|D_{uvw}| = \delta_{uvw}n$. For i = 0, 1 let e_i denote the number of edges in \mathcal{F} meeting D_{uvw} in exactly *i* vertices and containing exactly one pair from X_{uvw} .

Considering the different types of edges containing a pair of vertices from X_{uvw} we obtain the following identity (see Figure 4)

$$\sum_{xy \in X_{uvw}} d_{xy} = e_0 + e_1 + 3i_{uvw}.$$
 (28)

We now need to identify a particular choice of edge $uvw \in \mathcal{F}$.

Figure 2: The edges counted by $\sum_{xy \in X_{uvw}} d_{xy}$.

Let
$$\tau = 1/2 - 8\pi_2'/9$$
, $\iota_{uvw} = i_{uvw}/m$ and
$$\int \iota_{ruz}$$

$$\chi_0 = \min_{xyz \in \mathcal{F}} \left\{ \frac{\iota_{xyz}}{(1 - \delta_{xyz})^2} + \tau \delta_{xyz} \right\}.$$

We claim that

$$\chi_0 \le \frac{(2 - 8\pi_2'/9)\pi_0'}{1 - 2\pi_0'},\tag{29}$$

where $\pi'_0 = \pi_0 + \epsilon$.

To see this recall Lemma 9 and (7). These imply that for any edge $uvw \in \mathcal{F}$ we have

$$q(uvw) \geq 2i_{uvw} + \sum_{x \in D_{uvw}} d_x$$
$$\geq 2i_{uvw} + 3m\delta_{uvw} + O(n^2).$$

Hence we obtain

$$\frac{q(uvw)}{m} \ge 2\iota_{uvw} + 3\delta_{uvw} + O(n^{-1}).$$

Now for any $uvw \in \mathcal{F}$ the definition of χ_0 implies that

$$2\iota_{uvw} \ge 2(\chi_0 - \tau \delta_{uvw})(1 - 2\delta_{uvw}).$$

Hence

$$\frac{q(uvw)}{m} \ge 2\chi_0 + \sigma \delta_{uvw} + O(n^{-1}), \tag{30}$$

where $\sigma = 3 - 4\chi_0 - 2\tau$. Lemma 7 tells us that

$$\sum_{uvw \in \mathcal{F}} \frac{q(uvw)}{m} = \frac{6q_1}{n} + O(n^2),$$

while we also have the identity (18)

$$q_1 = \sum_{uvw \in \mathcal{F}} \delta_{uvw} n.$$

Hence (30) implies that

$$q_1 \ge \frac{2\chi_0 mn}{6-\sigma} + O(n^3).$$

Thus (4)

$$mn \ge q_1 + \frac{9m^2}{\binom{n}{2}},$$

implies that for n sufficiently large

$$\frac{2\chi_0}{6-\sigma} \le \pi_0'.$$

Rearranging this yields (29) proving the claim.

We now choose $uvw \in \mathcal{F}$ such that

$$\frac{\iota_{uvw}}{(1-\delta_{uvw})^2} + \tau \delta_{uvw} = \chi_0. \tag{31}$$

Since $\iota_{uvw} \ge 0$ we have

$$\delta_{uvw}\tau \le \frac{(2 - 8\pi_2'/9)\pi_0'}{1 - 2\pi_0'}$$

Dividing by $\tau = 1/2 - 8\pi'_2/9$ this implies that $\delta_{uvw} \leq \delta_0$, where δ_0 is given by (27). Moreover since $\pi'_0 < 1/20$ (as $\pi \geq 2/7$) and $\pi'_2 < 3/10$ (by Theorem 4) it is easy to check that $\delta_0 < 1/2$.

We now revisit (28), for which we wish to find an upper bound in the case of $uvw \in \mathcal{F}$ chosen to satisfy (31).

For any vertex $t \in D_{uvw}$ we know that E_t (the neighbourhood of t) is a triangle-free 2-graph. Hence, by Turán's theorem, we have

$$\frac{e_1}{|X_{uvw}|} \le \frac{\delta_{uvw}n}{2} + O(1).$$

Since e_0 counts the number of edges in a 3-colourable \mathcal{K}_4^- -free 3-graph of order $n(1 - \delta_{uvw})$ with two vertices in a single vertex class we can bound $e_0/|X_{uvw}|$ using Lemma 13 which implies (since $\delta_{uvw} \leq \delta_0 < 1/2$) that

$$\frac{e_0}{n|X_{uvw}|} \le \frac{8\pi'_2}{9}(1-\delta_{uvw}) + O(n^{-1}).$$

Since $\tau = 1/2 - 8\pi'_2/9$ and $\iota_{uvw} = i_{uvw}/m$, (28) yields

$$\frac{1}{n|X_{uvw}|} \sum_{xy \in X_{uvw}} d_{xy} \le \frac{8\pi'_2}{9} + \tau \delta_{uvw} + \frac{3m\iota_{uvw}}{n|X_{uvw}|} + O(n^{-1}).$$

Now

$$|X_{uvw}| = \binom{|E_{uv}|}{2} + \binom{|E_{uw}|}{2} + \binom{|E_{vw}|}{2}$$

$$\geq 3\binom{n(1-\delta_{uvw})/3}{2} = \frac{n^2(1-\delta_{uvw})^2}{6} + O(n).$$

By de Caen's bound $m < n^3/18$. So we have

$$\frac{1}{n|X_{uvw}|} \sum_{xy \in X_{uvw}} d_{xy} \le \frac{8\pi'_2}{9} + \tau \delta_{uvw} + \frac{\iota_{uvw}}{(1 - \delta_{uvw})^2} + O(n^{-1}).$$

Using (29) and (31) this implies that (25) holds.

Our next lemma tells us that either π_0 is large or there is a non-trivial lower bound for $\sum d_{xy}^2$.

Lemma 15 Let \mathcal{F} be as before, with $m = \eta \binom{n}{3}$ then either $\pi_0 = 1 - 3\pi \ge 1/33$ or

$$\sum_{xy\in V^{(2)}} d_{xy}^2 \ge n^2 \binom{n}{2} \left(\eta^2 + \frac{\lambda_0^2 x_0}{1 - x_0}\right) + O(n^3).$$
(32)

Where $\lambda_0 = \eta - \nu_0 - 8\pi'_2/9$, ν_0 is given by (26) and

$$x_0 = \frac{(1 - \delta_0)^2}{3},$$

with δ_0 given by (27).

Proof: Let $uvw \in \mathcal{F}$ be an edge given by Lemma 14. If $X = X_{uvw} = E_{uvw}^{(2)} \cup E_{uw}^{(2)} \cup E_{vw}^{(2)}$ then $|X| \ge x_0 {n \choose 2} + O(n)$ and

$$\frac{1}{|X|} \sum_{xy \in X} d_{xy} \le (\eta - \lambda_0)(n-2) + O(1).$$

If $\lambda_0 > 0$ then we can apply Lemma 12 with $\theta = (\eta - \lambda_0)(n-2) + O(1), t = x_0 {n \choose 2}$ and $S = 3m = 3\eta {n \choose 3}$ to yield (32). It remains to show that $\lambda_0 > 0$.

Since $\pi \leq \eta$ it is easy to check that $\lambda_0 > 0$ if the following inequality holds

$$\pi(1 - 2\pi'_0) - 2\pi'_0 > \frac{8\pi'_2}{9}(1 - 3\pi'_0).$$

Now since $\pi_0 = 1 - 3\pi$ and $\pi'_2 < 3/10$ (by Theorem 4) this will hold if

$$10(\pi_0')^2 - 33\pi_0' + 1 > 0.$$

This last inequality certainly holds if $\pi_0 \leq 1/33$ and ϵ is sufficiently small. \Box

We are now ready to prove Theorem 1.

Proof of Theorem 1: Let $0 < \epsilon < \min\{10^{-10}, \omega_2, \omega_3\}$ where ω_2, ω_3 are given by Theorems 4 and 5 (so $\pi'_2 < 3/10$ and $\pi'_3 < (3 + \sqrt{11/3})/15$).

We will suppose, for a contradiction, that $\pi \geq 0.32975$. So certainly $\pi > \pi'_3 > \pi_3$ holds. If $\pi_0 \geq 0.010751 - \epsilon$ then $\epsilon < 10^{-10}$ implies that $\pi < 0.32975$ so we may suppose that $\pi_0 < 0.010751 - \epsilon$ (and so $\pi'_0 < 0.010751$).

From Lemma 6 we have the following lower bound on q_1 (since we are assuming that $\pi > \pi_3$)

$$q_1 \ge \frac{2mn(1-\gamma)}{3(2-\mu)} + O(n^3),$$

where $\gamma = \pi'_3/\eta$ and

$$\mu = \gamma - \sqrt{1 - \frac{2\gamma}{3} - \frac{\gamma^2}{3}}.$$

Now $\eta \ge \pi \ge 0.32975$ and $\pi'_3 < (3 + \sqrt{11/3})/15$ imply that $\gamma < \gamma_0 = 0.9936527$. Moreover it is routine to check that the following function is decreasing in γ

$$f(\gamma) = \frac{1-\gamma}{2-\mu}.$$

Hence

$$q_1 \ge \frac{\eta f(\gamma_0) n^4}{9} + O(n^3). \tag{33}$$

We now consider lower bounds for $\sum d_{xy}^2$. Since $\pi_0 < 1/33$, Lemma 15 implies that (32) holds. The RHS of (32) is increasing in x_0 and λ_0 so we require lower bounds on these quantities.

First consider δ_0 , given by (27). This is increasing in π'_0 and π'_2 . Hence $\pi'_0 < 0.010751$ and $\pi'_2 < 3/10$ imply that $\delta_0 < 0.08162$. Thus

$$x_0 = \frac{(1 - \delta_0)^2}{3} > 0.28114.$$

Writing $\zeta = 8\pi'_2/9$, Lemma 15 and (26) imply that

$$\lambda_0 \ge \pi - \zeta - \frac{(2-\zeta)\pi'_0}{1-2\pi'_0}$$

The RHS of this last inequality is decreasing in ζ and π'_0 . Moreover $\pi'_2 < 3/10$ implies that $\zeta < 4/15$. Together with $\pi'_0 < 0.010751$ this implies that $\lambda_0 > 0.044038$. Hence (32) implies that

$$\sum_{xy \in V^{(2)}} d_{xy}^2 \ge \frac{n^4}{2} \left(\eta^2 + c_0 \right) + O(n^3), \tag{34}$$

where $c_0 = 0.0007584$. We now use (3) which says that

$$mn = q_1 + \sum_{xy \in V^{(2)}} d_{xy}^2.$$

Combining (3), (33) and (34) we obtain

$$0 \ge \frac{n^4 \eta^2}{2} - n^4 \eta \left(\frac{1}{6} - \frac{f(\gamma_0)}{9}\right) + \frac{c_0 n^4}{2} + O(n^3).$$

Dividing by n^4 and evaluating we obtain

$$0 \ge 0.5\eta^2 - 0.1660246\eta + 0.0003792 + O(n^{-1}).$$

But now the RHS of this last inequality is increasing in η , thus $\eta \ge \pi \ge 0.329725$ implies that

$$0 \ge 0.0000001 + O(n^{-1}),$$

which clearly cannot hold for n sufficiently large.

Clearly any improvement in the upper bound for π_2 would directly yield an improvement in the upper bound for π_3 , via Lemma 11.

An improvement in the upper bound for π_3 would also yield an improvement in the upper bound for π , although this is more difficult to quantify. Lemma 6 would allow us to obtain an improved lower bound for q_1 which in turn would improve the upper bound for π . However our argument to bound π also involved finding a non-trivial lower bound for $\sum d_{xy}^2$, which relied directly on our upper bound for π_2 (Lemmas 14 and 15).

In the 2-chromatic case we have no real idea as to the true value of π_2 (the construction we have seems very unlikely to yield the correct answer). However in the 3-chromatic case the lower bound is quite possibly correct and we make the following conjecture which would imply a significantly improved upper bound for π .

Conjecture 1 The 3-chromatic Turán density of \mathcal{K}_4^- is $\frac{5}{18}$.

References

- W.G. Brown, P. Erdős and V.T. Sós, Some extremal problems on r-graphs, New Directions in the Theory of Graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, (1973), 55–63.
- [2] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combinatoria 16 (1983) 5–10.
- [3] D. de Caen and Z. Füredi, The maximum size of 3-uniform hypergraphs not containing a Fano plane, Journal of Combinatorial Theory Series B, 78 (200) 274–276.
- [4] F. Chung and L. Lu, An upper bound for the Turán number $t_3(n, 4)$, Journal of Combinatorial Theory Series A, (1999) 87 381–389.

- [5] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia. Sci. Math. Hungar. 1 (1966) 51–57.
- [6] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983) 181–192.
- [7] P. Erdős and V.T. Sós, On Ramsey–Turán type theorems for hypergraphs, Combinatorica 2 (1982) 289–295.
- [8] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946) 1087–1091.
- [9] P. Frankl and Z. Füredi, A new generalization of the Erdős–Ko–Rado theorem, Combinatorica 3 (1983) 341–349.
- [10] P. Frankl and Z. Füredi, An exact result for 3-graphs, Discrete Math. 50 (1984), no. 2–3, 323–328.
- [11] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of small Witt-designs, Journal of Combinatorial Theory Series A, (1989) 52 129–147.
- [12] Z. Füredi, O. Pikhurko and M. Simonovits, The Turán density of the hypergraph *abc*, *ade*, *bde*, *cde*, Electronic Journal of Combinatorics, 10 (2003) 7pp
- [13] D. Mubayi, On hypergraphs with every four points spanning at most two triples, Electronic Journal of Combinatorics 10 (2003), #N10
- [14] D. Mubayi and V. Rödl, On the Turán number of triple systems, Journal of Combinatorial Theory, Series A 100 (2002) 136–152.
- [15] I.Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Vol II, 939–945.
- [16] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452 [in Hungarian].
- [17] P. Turán, Turán memorial volume, Journal of Graph Theory 1 (2) (1977).