Invariance under twisting

Javier López Peña

Algebra Department
University of Granada (Spain)

“New techniques in Hopf Algebras and Graded Ring Theory”
Brussels, September 19th–23rd 2006
Based on a joint work with:

- Pascual Jara,
- Florin Panaite,
- Fred Van Oystaeyen

arxiv.org: math.QA/0511280
Outline

1. The motivation
2. The product
3. The deformation
4. The theorems
Outline

1. The motivation
2. The product
3. The deformation
4. The theorems
Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F\Delta(h)F^{-1}$.
- A an H-module algebra.
- $A_{F^{-1}}$ new algebra with $a \ast a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F-module algebra, and

$$A_{F^{-1}} \# H_F \cong A \# H$$
Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F \Delta(h) F^{-1}$.
- A an H–module algebra.
- $A_{F^{-1}}$ new algebra with $a \ast a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F–module algebra, and

$$A_{F^{-1}} \# H_F \cong A \# H$$
Drinfeld twist

- **H** bialgebra, $F \in H \otimes H$ a 2–cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F \Delta(h) F^{-1}$.
- A an H–module algebra.
- $A_{F^{-1}}$ new algebra with $a \ast a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F–module algebra, and

$$A_{F^{-1}} \# H_F \cong A \# H$$
Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2-cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F\Delta(h)F^{-1}$.
- A an H–module algebra.
- $A_{F^{-1}}$ new algebra with $a \ast a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F–module algebra, and

$$A_{F^{-1}} \# H_F \cong A \# H$$
Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2–cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F\Delta(h)F^{-1}$.
- A an H–module algebra.

- $A_{F^{-1}}$ new algebra with $a \ast a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F–module algebra, and

$$A_{F^{-1}} \# H_F \cong A \# H$$
Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2–cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F\Delta(h)F^{-1}$.
- A an H–module algebra.
- $A_{F^{-1}}$ new algebra with $a \star a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F–module algebra, and

$$A_{F^{-1}} # H_F \cong A # H$$
Drinfeld twist

- H bialgebra, $F \in H \otimes H$ a 2–cocycle.
- H_F new bialgebra:
 - Same algebra structure as H,
 - Comultiplication $\Delta_F(h) := F\Delta(h)F^{-1}$.
- A an H–module algebra.
- $A_{F^{-1}}$ new algebra with $a \ast a' := (G^1 \cdot a)(G^2 \cdot a')$ (being $F^{-1} := G^1 \otimes G^2$).

Theorem (Majid, 1997)

$A_{F^{-1}}$ is an H_F–module algebra, and

$$A_{F^{-1}} \# H_F \cong A \# H$$
Drinfeld Double

- \((H, r = r^1 \otimes r^2)\) a f. dim. quasitriangular Hopf algebra.
- \(D(H)\) the Drinfeld double of \(H\):
 - \(D(H) = H^\text{coop} \otimes H\) as a coalgebra.
 - Product \((p \otimes h)(p' \otimes h') := p(h^1 \rightarrow p' \leftarrow S^{-1}(h^3)) \otimes h_2 h'\) (where \(\rightarrow\) and \(\leftarrow\) are the regular actions)
- \(H^*\) a left \(H\)-module algebra structure in \(H^*\) given by
 \[
 h \cdot \varphi := h^1 \rightarrow \varphi \leftarrow S^{-1}(h^2) \\
 \varphi \ast \varphi' := (\varphi \leftarrow S^{-1}(r^1))(r^2_1 \rightarrow \varphi' \leftarrow S^{-1}(r^2_2))
 \]

Theorem (Majid, 1991)

The Drinfeld double is isomorphic to an smash product:

\[
D(H) \cong H^* \# H
\]
Drinfeld Double

- \((H, r = r^1 \otimes r^2)\) a f. dim. quasitriangular Hopf algebra.
- \(D(H)\) the Drinfeld double of \(H\):
 - \(D(H) = H^\ast \otimes \text{coop} \otimes H\) as a coalgebra.
 - Product \((p \otimes h)(p' \otimes h') := p(h_1 \rightarrow p' \leftarrow S^{-1}(h_3)) \otimes h_2 h'\)
 (where \(\rightarrow\) and \(\leftarrow\) are the regular actions)
- \(H^*\) a left \(H\)-module algebra structure in \(H^*\) given by
 \[h \cdot \varphi := h_1 \rightarrow \varphi \leftarrow S^{-1}(h_2) \]
 \[\varphi \ast \varphi' := (\varphi \leftarrow S^{-1}(r^1))(r^2_1 \rightarrow \varphi' \leftarrow S^{-1}(r^2_2)) \]

Theorem (Majid, 1991)
The Drinfeld double is isomorphic to an smash product:

\[
D(H) \cong H^* \# H
\]
Drinfeld Double

- \((H, r = r^1 \otimes r^2)\) a f. dim. quasitriangular Hopf algebra.
- \(\mathcal{D}(H)\) the Drinfeld double of \(H\):
 - \(\mathcal{D}(H) = \mathcal{H}^{\text{coop}} \otimes H\) as a coalgebra.
 - Product \((p \otimes h)(p' \otimes h') := p(h_1 \rightarrow p' \leftarrow S^{-1}(h_3)) \otimes h_2 h'\) (where \(\rightarrow\) and \(\leftarrow\) are the regular actions)
- \(H^*\) a left \(H\)-module algebra structure in \(H^*\) given by
 \[
 h \cdot \phi := h_1 \rightarrow \phi \leftarrow S^{-1}(h_2)
 \]
 \[
 \phi \ast \phi' := (\phi \leftarrow S^{-1}(r^1))(r^2_1 \rightarrow \phi' \leftarrow S^{-1}(r^2_2))
 \]

Theorem (Majid, 1991)

The Drinfeld double is isomorphic to an smash product:

\[
\mathcal{D}(H) \cong H^* \# H
\]
Drinfeld Double

- \((H, r = r^1 \otimes r^2)\) a f. dim. quasitriangular Hopf algebra.
- \(\mathcal{D}(H)\) the Drinfeld double of \(H\):
 - \(\mathcal{D}(H) = H^{*\text{coop}} \otimes H\) as a coalgebra.
 - Product \((p \otimes h)(p' \otimes h') := p(h_1 \rightarrow p' \leftarrow S^{-1}(h_3)) \otimes h_2 h'\) (where \(\rightarrow\) and \(\leftarrow\) are the regular actions)

- \(H^{*}\) a left \(H\)-module algebra structure in \(H^{*}\) given by

\[
 h \cdot \varphi := h_1 \rightarrow \varphi \leftarrow S^{-1}(h_2)
\]

\[
 \varphi \ast \varphi' := (\varphi \leftarrow S^{-1}(r^1))(r^2_1 \rightarrow \varphi' \leftarrow S^{-1}(r^2_2))
\]

Theorem (Majid, 1991)

The Drinfeld double is isomorphic to an smash product:

\[
\mathcal{D}(H) \cong H^{*} \# H
\]
Drinfeld Double

- $(H, r = r^1 \otimes r^2)$ a f. dim. quasitriangular Hopf algebra.
- $\mathcal{D}(H)$ the Drinfeld double of H:
 - $\mathcal{D}(H) = H^{*\text{coop}} \otimes H$ as a coalgebra.
 - Product $(p \otimes h)(p' \otimes h') := p(h_1 \rightarrow p' \leftarrow S^{-1}(h_3)) \otimes h_2 h'$
 (where \rightarrow and \leftarrow are the regular actions)
- H^* a left H-module algebra structure in H^* given by
 - $h \cdot \varphi := h_1 \rightarrow \varphi \leftarrow S^{-1}(h_2)$
 - $\varphi \ast \varphi' := (\varphi \leftarrow S^{-1}(r^1))(r^2_1 \rightarrow \varphi' \leftarrow S^{-1}(r^2_2))$

Theorem (Majid, 1991)

The Drinfeld double is isomorphic to an smash product:

$$\mathcal{D}(H) \cong H^* \# H$$
Drinfeld Double

- \((H, r = r^1 \otimes r^2)\) a f. dim. quasitriangular Hopf algebra.
- \(D(H)\) the Drinfeld double of \(H\):
 - \(D(H) = H^{\text{coop}} \otimes H\) as a coalgebra.
 - Product \((p \otimes h)(p' \otimes h') := p(h_1 \rightarrow p' \leftarrow S^{-1}(h_3)) \otimes h_2 h'\)
 (where \(\rightarrow\) and \(\leftarrow\) are the regular actions)
- \(H^*\) a left \(H\)-module algebra structure in \(H^*\) given by
 \[
 h \cdot \varphi := h_1 \rightarrow \varphi \leftarrow S^{-1}(h_2) \\
 \varphi \ast \varphi' := (\varphi \leftarrow S^{-1}(r^1))(r^2 \rightarrow \varphi' \leftarrow S^{-1}(r^2))
 \]

Theorem (Majid, 1991)

The Drinfeld double is isomorphic to an smash product:
\[D(H) \cong H^* \# H\]
"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^+, H^- \leq H$ Hopf subalgebras with $r \in H^+ \otimes H^-$
- B a right H^+-mod alg. C a right H^--mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto br^1 \otimes cr^2$
- $\pi : H^+ \# B \rightarrow B$ alg map with $\pi(1 \# b) = b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta : C \rightarrow B \otimes C$ given by $\theta(c) := \pi(r^1 \# 1) \otimes cr^2$ is an alg. map from C to $B \otimes C$ and $B \otimes C \cong B \otimes C$.
“Unbraiding” of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^+, H^- \leq H$ Hopf subalgebras with $r \in H^+ \otimes H^-$
- B a right H^+-mod alg. C a right H^--mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto br^1 \otimes cr^2$
- $\pi : H^+ \# B \rightarrow B$ alg map with $\pi(1\#b) = b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta : C \rightarrow B \otimes C$ given by $\theta(c) := \pi(r^1 \# 1) \otimes cr^2$ is an alg. map from C to $B \otimes C$ and $B \otimes C \cong B \otimes C$.
The motivation

The product

The deformation

The theorems

“Unbraiding” of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^+, H^- \leq H$ Hopf subalgebras with $r \in H^+ \otimes H^-$
- B a right H^+-mod alg. C a right H^--mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto br^1 \otimes cr^2$
- $\pi : H^+ \# B \to B$ alg map with $\pi(1 \# b) = b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta : C \to B \otimes C$ given by $\theta(c) := \pi(r^1 \# 1) \otimes cr^2$ is an alg. map from C to $B \otimes C$ and $B \otimes C \cong B \otimes C$.
"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^+, H^- \leq H$ Hopf subalgebras with $r \in H^+ \otimes H^-$
- B a right H^+-mod alg. C a right H^--mod alg.
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto br^1 \otimes cr^2$
- $\pi : H^+ \# B \rightarrow B$ alg map with $\pi(1\#b) = b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta : C \rightarrow B \otimes C$ given by $\theta(c) := \pi(r^1 \# 1) \otimes cr^2$ is an alg. map from C to $B \otimes C$ and $B \otimes C \simeq B \otimes C$.
"Unbraiding" of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^+, H^- \leq H$ Hopf subalgebras with $r \in H^+ \otimes H^-$
- B a right H^+–mod alg. C a right $H^-\text{–mod alg.}$
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto br^1 \otimes cr^2$
- $\pi : H^+ \# B \rightarrow B$ alg map with $\pi(1\# b) = b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta : C \rightarrow B \otimes C$ given by $\theta(c) := \pi(r^1 \# 1) \otimes cr^2$ is an alg. map from C to $B \otimes C$ and $B \otimes C \cong B \otimes C$.
``“Unbraiding” of braid product

- (H, r) a quasitriangular Hopf algebra
- $H^+, H^- \leq H$ Hopf subalgebras with $r \in H^+ \otimes H^-$
- $B \otimes C$ their braided product wrt $c \otimes b \mapsto br^1 \otimes cr^2$
- $\pi : H^+ \# B \to B$ alg map with $\pi(1 \# b) = b$

Theorem (Fiore-Steinacker-Wess, 2003)

The map $\theta : C \to B \otimes C$ given by $\theta(c) := \pi(r^1 \# 1) \otimes cr^2$ is an alg. map from C to $B \otimes C$ and $B \otimes C \cong B \otimes C.$```
A trivial smash product

- H a Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi : A\#H \to A$ alg map such that $\varphi(a\#1) = a$

Theorem (Fiore, 2002)

The map $\theta : H \to A \otimes H$, $\theta(h) := \varphi(1\#S(h_1)) \otimes h_2$ is an alg map from H to $A\#H$ and

$$A\#H \cong A \otimes H$$
A trivial smash product

- H a Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi : A\#H \to A$ alg map such that $\varphi(a\#1) = a$

Theorem (Fiore, 2002)

The map $\theta : H \to A \otimes H$, $\theta(h) := \varphi(1\#S(h_1)) \otimes h_2$ is an alg map from H to $A\#H$ and

$$A\#H \cong A \otimes H$$
A trivial smash product

- H a Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi : A \# H \to A$ alg map such that $\varphi(a \# 1) = a$

Theorem (Fiore, 2002)

The map $\theta : H \to A \otimes H$, $\theta(h) := \varphi(1 \# S(h_1)) \otimes h_2$ is an alg map from H to $A \# H$ and

\[A \# H \cong A \otimes H \]
A trivial smash product

- H a Hopf algebra with antipode S
- A a left H-mod algebra
- $\varphi : A\#H \rightarrow A$ alg map such that $\varphi(a\#1) = a$

Theorem (Fiore, 2002)

The map $\theta : H \rightarrow A \otimes H$, $\theta(h) := \varphi(1\#S(h_1)) \otimes h_2$ is an alg map from H to $A\#H$ and

$$A\#H \cong A \otimes H$$
What have these results in common?

\[A_{F^{-1}} \# H_F \cong A \# H \]
\[B \otimes C \cong B \otimes C \]
\[\mathcal{D}(H) \cong H^* \# H \]
\[A \# H \cong A \otimes H \]

- Two algebras \(X \) and \(Y \)
- A “product” \(Z \) of \(X \) and \(Y \)
- A “deformation” \(\tilde{X} \) of \(X \)
- A “product” \(\tilde{Z} \) of \(\tilde{X} \) and \(Y \)
- An algebra isomorphism \(X \cong \tilde{X} \)
What have these results in common?

\[A_{F^{-1}} \# H_F \cong A \# H \]
\[D(H) \cong H^* \# H \]
\[B \otimes C \cong B \otimes C \]
\[A \# H \cong A \otimes H \]

- Two algebras \(X \) and \(Y \)
- A “product” \(Z \) of \(X \) and \(Y \)
- A “deformation” \(\widetilde{X} \) of \(X \)
- A “product” \(\widetilde{Z} \) of \(\widetilde{X} \) and \(Y \)
- An algebra isomorphism \(X \cong \widetilde{X} \)
What have these results in common?

\[A_{F^{-1}} \# H_F \cong A \# H \]
\[\mathcal{D}(H) \cong H^* \# H \]
\[B \otimes C \cong B \otimes C \]
\[A \# H \cong A \otimes H \]

- Two algebras \(X \) and \(Y \)
- A “product” \(Z \) of \(X \) and \(Y \)
- A “deformation” \(\tilde{X} \) of \(X \)
- A “product” \(\tilde{Z} \) of \(\tilde{X} \) and \(Y \)
- An algebra isomorphism \(X \cong \tilde{X} \)
What have these results in common?

\[
A_{F^{-1}} \# H_F \cong A \# H \\
B \otimes C \cong B \otimes C \\
D(H) \cong H^* \# H \\
A \# H \cong A \otimes H
\]

- Two algebras \(X\) and \(Y\)
- A “product” \(Z\) of \(X\) and \(Y\)
- A “deformation” \(\bar{X}\) of \(X\)
- A “product” \(\bar{Z}\) of \(\bar{X}\) and \(Y\)
- An algebra isomorphism \(X \cong \bar{X}\)
What have these results in common?

\[A_{F^{-1}} \# H_F \cong A \# H \]
\[D(H) \cong H^* \# H \]
\[B \otimes C \cong B \otimes C \]
\[A \# H \cong A \otimes H \]

- Two algebras \(X \) and \(Y \)
- A “product” \(Z \) of \(X \) and \(Y \)
- A “deformation” \(\tilde{X} \) of \(X \)
- A “product” \(\tilde{Z} \) of \(\tilde{X} \) and \(Y \)
- An algebra isomorphism \(X \cong \tilde{X} \)
What have these results in common?

\[A_{F^{-1}} # H_F \cong A # H \]
\[D(H) \cong H^* # H \]
\[B \otimes C \cong B \otimes C \]
\[A # H \cong A \otimes H \]

- Two algebras \(X \) and \(Y \)
- A “product” \(Z \) of \(X \) and \(Y \)
- A “deformation” \(\tilde{X} \) of \(X \)
- A “product” \(\tilde{Z} \) of \(\tilde{X} \) and \(Y \)
- An algebra isomorphism \(X \cong \tilde{X} \)
The Question

A natural question arises:

Question

Is it possible to find a general result giving us all the former isomorphisms?

The Answer: Yes, but first, we should clarify what do we mean by “product” and “deformation”...
A natural question arises:

Question

Is it possible to find a general result giving us all the former isomorphisms?

The Answer: Yes, but first, we should clarify what do we mean by “product” and “deformation”...
A natural question arises:

Question

Is it possible to find a general result giving us all the former isomorphisms?

The Answer: Yes, but first, we should clarify what do we mean by “product” and “deformation”...
Outline

1. The motivation
2. The product
3. The deformation
4. The theorems
What do we mean by “product”?

Definition (Cap-Schichl-Vanžura’94, Van Daele’94, . . .)

Z is a **twisted tensor product** of X and Y if there exist a linear map $R : Y \otimes X \rightarrow X \otimes Y$ such that Z is isomorphic to $X \otimes Y$ endowed with the product

$$\mu_R := (\mu_X \otimes \mu_Y) \circ (X \otimes R \otimes Y)$$

Equiv. to conditions given in prof. Schneider’s talk:

- $i_X : X \hookrightarrow Z$ and $i_Y : Y \hookrightarrow Z$ injective algebra maps.
- The map $x \otimes y \mapsto i_X(x) \cdot i_Y(y)$ is a linear isomorphism.

The origin of the story: “Distributive laws”, by J. Beck
What do we mean by “product”?

Definition (Cap-Schichl-Vanžura’94, Van Daele’94, . . .)

Z is a **twisted tensor product** of X and Y if there exist a linear map $R : Y \otimes X \longrightarrow X \otimes Y$ such that Z is isomorphic to $X \otimes Y$ endowed with the product

$$\mu_R := (\mu_X \otimes \mu_Y) \circ (X \otimes R \otimes Y)$$

Equiv. to conditions given in prof. Schneider’s talk:

- $i_X : X \hookrightarrow Z$ and $i_Y : Y \hookrightarrow Z$ injective algebra maps.
- The map $x \otimes y \mapsto i_X(x) \cdot i_Y(y)$ is a linear isomorphism.

The origin of the story: “Distributive laws”, by J. Beck
What do we mean by “product”?

Definition (Cap-Schichl-Vanžura’94, Van Daele’94, …)

Z is a **twisted tensor product** of X and Y if there exist a linear map $R : Y \otimes X \longrightarrow X \otimes Y$ such that Z is isomorphic to $X \otimes Y$ endowed with the product

$$\mu_R := (\mu_X \otimes \mu_Y) \circ (X \otimes R \otimes Y)$$

Equiv. to conditions given in prof. Schneider’s talk:

- $i_X : X \hookrightarrow Z$ and $i_Y : Y \hookrightarrow Z$ injective algebra maps.
- The map $x \otimes y \longmapsto i_X(x) \cdot i_Y(y)$ is a linear isomorphism.

The origin of the story: “Distributive laws”, by J. Beck
The maps for our examples

All the algebras in our examples are twisted tensor products:

Drinfeld twist \(A \# H = A \otimes_R H \) with \(R(h \otimes a) := h_1 \cdot a \otimes h_2 \).

Drinfeld double \(\mathcal{D}(H) = H^* \otimes_R H \) with
\[
R(h \otimes \varphi) := (h_1 \rightarrow \varphi \leftarrow S^{-1}(h_3)) \otimes h_2
\]

Braided product \(B \Box C = B \otimes_R C \) with
\[
R(c \otimes b) := b \cdot r^1 \otimes c \cdot r^2
\]

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.
The maps for our examples

All the algebras in our examples are twisted tensor products:

Drinfeld twist $A \# H = A \otimes_R H$ with $R(h \otimes a) := h_1 \cdot a \otimes h_2$.

Drinfeld double $\mathcal{D}(H) = H^* \otimes_R H$ with $R(h \otimes \varphi) := (h_1 \rightarrow \varphi \leftarrow S^{-1}(h_3)) \otimes h_2$

Braided product $B \underline{\otimes} C = B \otimes_R C$ with $R(c \otimes b) := b \cdot r^1 \otimes c \cdot r^2$

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.
The maps for our examples

All the algebras in our examples are twisted tensor products:

Drinfeld twist \(A \# H = A \otimes_R H \) with \(R(h \otimes a) := h_1 \cdot a \otimes h_2 \).

Drinfeld double \(D(H) = H^* \otimes_R H \) with
\[
R(h \otimes \varphi) := (h_1 \rightarrow \varphi \leftarrow S^{-1}(h_3)) \otimes h_2
\]

Braided product \(B \boxtimes C = B \otimes_R C \) with
\[
R(c \otimes b) := b \cdot r^1 \otimes c \cdot r^2
\]

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.
All the algebras in our examples are twisted tensor products:

Drinfeld twist \(A \# H = A \otimes_R H \) with \(R(h \otimes a) := h_1 \cdot a \otimes h_2 \).

Drinfeld double \(\mathcal{D}(H) = H^* \otimes_R H \) with
\[
R(h \otimes \varphi) := (h_1 \rightarrow \varphi \leftarrow S^{-1}(h_3)) \otimes h_2
\]

Braided product \(B \otimes C = B \otimes_R C \) with
\[
R(c \otimes b) := b \cdot r^1 \otimes c \cdot r^2
\]

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.
The maps for our examples

All the algebras in our examples are twisted tensor products:

Drinfeld twist \(A\# H = A \otimes_R H \) with \(R(h \otimes a) := h_1 \cdot a \otimes h_2 \).

Drinfeld double \(\mathcal{D}(H) = H^* \otimes_R H \) with
\[
R(h \otimes \varphi) := (h_1 \mapsto \varphi \leftarrow S^{-1}(h_3)) \otimes h_2
\]

Braided product \(B \boxtimes C = B \otimes_R C \) with
\[
R(c \otimes b) := b \cdot r^1 \otimes c \cdot r^2
\]

All the rest In general, all ordinary tensor products and smash products are twisted tensor products.
Outline

1. The motivation
2. The product
3. The deformation
4. The theorems
What do we mean by “deformation”?

Informal Definition

By a **deformation** of an algebra A we mean:

- Some datum (maps, other algebras, . . .) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

Remark

This is an **inner deformation**, by contrast to **outer deformations** like Gerstenhaber’s formal deformation.
What do we mean by "deformation"?

Informal Definition

By a **deformation** of an algebra A we mean:
- Some datum (maps, other algebras, . . .) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

Remark

This is an *inner deformation*, by contrast to *outer deformations* like Gerstenhaber’s formal deformation.
What do we mean by “deformation”?

Informal Definition

By a *deformation* of an algebra A we mean:

- Some datum (maps, other algebras, . . .) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

Remark

This is an *inner deformation*, by contrast to *outer deformations* like Gerstenhaber’s formal deformation.
What do we mean by “deformation”?

Informal Definition

By a *deformation* of an algebra A we mean:

- Some datum (maps, other algebras, . . .) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

Remark

This is an *inner deformation*, by contrast to *outer deformations* like Gerstenhaber’s formal deformation.
What do we mean by “deformation”?

Informal Definition

By a *deformation* of an algebra A we mean:

- Some datum (maps, other algebras, . . .) associated to A
- A new product defined in A upon this datum.

That is, we build a new product, keeping the old vector space.

Remark

This is an *inner deformation*, by contrast to *outer deformations* like Gerstenhaber’s formal deformation.
Construction of our deformation I

1. **A, B algebras**
2. \(R : B \otimes A \rightarrow A \otimes B \) linear map
3. Linear maps \(\mu : B \otimes A \rightarrow A \) and \(\rho : A \rightarrow A \otimes B \)
4. Define \(* : A \otimes A \rightarrow A \) by \(* := m_A \circ (A \otimes \mu) \circ (\rho \otimes A) \)
5. Assume the (technical and boring) **compatibility conditions**:
 - \(\rho(1) = 1 \otimes 1 \), \(m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A \)
 - \(\mu \circ (B \otimes *) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A) \)
 - \(\rho \circ * = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho) \)

Theorem

*The map \(* \) is an associative product in \(A \).*
Construction of our deformation I

1. A, B algebras
2. $R : B \otimes A \to A \otimes B$ linear map
3. Linear maps $\mu : B \otimes A \to A$ and $\rho : A \to A \otimes B$
4. Define $* : A \otimes A \to A$ by $*: = m_A \circ (A \otimes \mu) \circ (\rho \otimes A)$
5. Assume the (technical and boring) compatibility conditions:
 - $\rho(1) = 1 \otimes 1, m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A$
 - $\mu \circ (B \otimes *) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)$
 - $\rho \circ * = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)$

Theorem

The map $*$ is an associative product in A.
Construction of our deformation I

1. **A, B algebras**

2. **$R : B \otimes A \to A \otimes B$ linear map**

3. **Linear maps $\mu : B \otimes A \to A$ and $\rho : A \to A \otimes B$**

4. **Define $\ast : A \otimes A \to A$ by $\ast := m_A \circ (A \otimes \mu) \circ (\rho \otimes A)$**

5. **Assume the (technical and boring) compatibility conditions:**
 - $\rho(1) = 1 \otimes 1$, $m_A \circ (A \otimes \mu) \circ (\rho \otimes \text{id}_A) = A$
 - $\mu \circ (B \otimes \ast) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)$
 - $\rho \circ \ast = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)$

Theorem

*The map \ast is an associative product in A.***
Construction of our deformation I

1. A, B algebras
2. $R : B \otimes A \rightarrow A \otimes B$ linear map
3. Linear maps $\mu : B \otimes A \rightarrow A$ and $\rho : A \rightarrow A \otimes B$
4. Define $\ast : A \otimes A \rightarrow A$ by $\ast := m_A \circ (A \otimes \mu) \circ (\rho \otimes A)$
5. Assume the (technical and boring) compatibility conditions:
 - $\rho(1) = 1 \otimes 1, m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A$
 - $\mu \circ (B \otimes \ast) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)$
 - $\rho \circ \ast = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)$

Theorem

The map \ast is an associative product in A.
Construction of our deformation I

1. A, B algebras
2. $R : B \otimes A \to A \otimes B$ linear map
3. Linear maps $\mu : B \otimes A \to A$ and $\rho : A \to A \otimes B$
4. Define $* : A \otimes A \to A$ by $* := m_A \circ (A \otimes \mu) \circ (\rho \otimes A)$
5. Assume the (technical and boring) compatibility conditions:
 - $\rho(1) = 1 \otimes 1, m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A$
 - $\mu \circ (B \otimes *) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)$
 - $\rho \circ * = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)$

Theorem

The map $*$ is an associative product in A.
Construction of our deformation I

1. A, B algebras
2. $R : B \otimes A \rightarrow A \otimes B$ linear map
3. Linear maps $\mu : B \otimes A \rightarrow A$ and $\rho : A \rightarrow A \otimes B$
4. Define $* : A \otimes A \rightarrow A$ by $* := m_A \circ (A \otimes \mu) \circ (\rho \otimes A)$
5. Assume the (technical and boring) compatibility conditions:
 - $\rho(1) = 1 \otimes 1$, $m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A$
 - $\mu \circ (B \otimes *) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)$
 - $\rho \circ * = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)$

Theorem

The map $*$ is an associative product in A.
Construction of our deformation I

1. \(A, B\) algebras
2. \(R : B \otimes A \rightarrow A \otimes B\) linear map
3. Linear maps \(\mu : B \otimes A \rightarrow A\) and \(\rho : A \rightarrow A \otimes B\)
4. Define \(\ast : A \otimes A \rightarrow A\) by \(\ast := m_A \circ (A \otimes \mu) \circ (\rho \otimes A)\)
5. Assume the (technical and boring) compatibility conditions:
 - \(\rho(1) = 1 \otimes 1\), \(m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A\)
 - \(\mu \circ (B \otimes \ast) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)\)
 - \(\rho \circ \ast = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)\)

Theorem

The map \(\ast\) is an associative product in \(A\).
Construction of our deformation I

1. A, B algebras
2. $R : B \otimes A \rightarrow A \otimes B$ linear map
3. Linear maps $\mu : B \otimes A \rightarrow A$ and $\rho : A \rightarrow A \otimes B$
4. Define $\ast : A \otimes A \rightarrow A$ by $\ast := m_A \circ (A \otimes \mu) \circ (\rho \otimes A)$
5. Assume the (technical and boring) compatibility conditions:
 - $\rho(1) = 1 \otimes 1$, $m_A \circ (A \otimes \mu) \circ (\rho \otimes u_A) = A$
 - $\mu \circ (B \otimes \ast) = m_A \circ (A \otimes \mu) \circ (A \otimes m_B \otimes A) \circ (R \otimes B \otimes A) \circ (B \otimes \rho \otimes A)$
 - $\rho \circ \ast = (m_A \otimes m_B) \circ (A \otimes R \otimes B) \circ (\rho \otimes \rho)$

Theorem

The map \ast is an associative product in A.
Construction of our deformation II

Remark
Former datum is a generalization of W. Ferrer and B. Torrecillas \textit{left-right twisting datum}.

Our first two examples fit into this deformation scheme:

Drinfeld twist: \[\mu(h \otimes a) := h \cdot a, \quad \rho(a) := G^1 \cdot a \otimes G^2. \]
Associated product is \(a * a' = (G^1 \cdot a)(G^2 \cdot a') \), giving \(A_{F-1} \).

Drinfeld double: \[\mu(h \otimes \varphi) := h_1 \rightarrow \varphi \leftarrow S^{-1}(h_2), \]
\[\rho(\varphi) := \varphi \leftarrow S^{-1}(r^1) \otimes r^2, \] associated product \[\varphi \ast \varphi' = (\varphi \leftarrow S^{-1}(r^1))(r^2 \rightarrow \varphi' \leftarrow S^{-1}(r^2)), \] as in \(H^* \).
Construction of our deformation II

Remark

Former datum is a generalization of W. Ferrer and B. Torrecillas *left-right twisting datum*.

Our first two examples fit into this deformation scheme:

Drinfeld twist: \(\mu(h \otimes a) := h \cdot a, \rho(a) := G^1 \cdot a \otimes G^2 \).

Associated product is \(a \ast a' = (G^1 \cdot a)(G^2 \cdot a') \), giving \(A_{F-1} \).

Drinfeld double: \(\mu(h \otimes \varphi) := h_1 \leftarrow \varphi \leftarrow S^{-1}(h_2), \rho(\varphi) := \varphi \leftarrow S^{-1}(r^1) \otimes r^2, \) associated product \(\varphi \ast \varphi' = (\varphi \leftarrow S^{-1}(r^1))(r^2 \leftarrow \varphi' \leftarrow S^{-1}(r^2)) \), as in \(H^* \).
Construction of our deformation II

Remark

Former datum is a generalization of W. Ferrer and B. Torrecillas \textit{left-right twisting datum}.

Our first two examples fit into this deformation scheme:

\textbf{Drinfeld twist:} \(\mu(h \otimes a) := h \cdot a, \rho(a) := G^1 \cdot a \otimes G^2 \).

Associated product is \(a \ast a' = (G^1 \cdot a)(G^2 \cdot a') \), giving \(A_{F-1} \).

\textbf{Drinfeld double:} \(\mu(h \otimes \varphi) := h_1 \Delta \varphi \leftarrow S^{-1}(h_2) \),

\(\rho(\varphi) := \varphi \leftarrow S^{-1}(r^1) \otimes r^2 \), associated product

\(\varphi \ast \varphi' = (\varphi \leftarrow S^{-1}(r^1))(r^2 \rightarrow \varphi' \leftarrow S^{-1}(r^2)) \), as in \(H^* \).
Construction of our deformation II

Remark

Former datum is a generalization of W. Ferrer and B. Torrecillas left-right twisting datum.

Our first two examples fit into this deformation scheme:

Drinfeld twist:
\[\mu(h \otimes a) := h \cdot a, \quad \rho(a) := G^1 \cdot a \otimes G^2. \]
Associated product is \(a \ast a' = (G^1 \cdot a)(G^2 \cdot a') \), giving \(A_{F^{-1}} \).

Drinfeld double:
\[\mu(h \otimes \varphi) := h_1 \mapsto \varphi \mapsto S^{-1}(h_2), \]
\[\rho(\varphi) := \varphi \mapsto S^{-1}(r^1) \otimes r^2, \]
associated product \(\varphi \ast \varphi' = (\varphi \mapsto S^{-1}(r^1))(r^2 \mapsto \varphi' \mapsto S^{-1}(r^2)) \), as in \(H^* \).
Outline

1. The motivation
2. The product
3. The deformation
4. The theorems
Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda : A \to A \otimes B$ linear map such that
 - $\lambda(1) = 1 \otimes 1$,
 - $\lambda \circ m_A = (m_A \otimes m_B) \circ (A \otimes \lambda \otimes B) \circ (A \otimes R) \circ (\lambda \otimes A)$
 - $(A \otimes m_B) \circ (\lambda \otimes B) \circ \rho = (A \otimes m_B) \circ (\rho \otimes B) \circ \lambda = A \otimes u_B$
- A^d the deformation of A.

Theorem

$R^d := (A^d \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and $(A \otimes m_B) \circ (\rho \otimes B)$ is an algebra isomorphism between $A \otimes_R B$ and $A^d \otimes_{R^d} B$.
Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda : A \to A \otimes B$ linear map such that
 - $\lambda(1) = 1 \otimes 1$,
 - $\lambda \circ m_A = (m_A \otimes m_B) \circ (A \otimes \lambda \otimes B) \circ (A \otimes R) \circ (\lambda \otimes A)$
 - $(A \otimes m_B) \circ (\lambda \otimes B) \circ \rho = (A \otimes m_B) \circ (\rho \otimes B) \circ \lambda = A \otimes u_B$
- A^d the deformation of A.

Theorem

$R^d := (A^d \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and $(A \otimes m_B) \circ (\rho \otimes B)$ is an algebra isomorphism between $A \otimes_R B$ and $A^d \otimes_{R^d} B$.
Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda : A \rightarrow A \otimes B$ linear map such that
 - $\lambda(1) = 1 \otimes 1$,
 - $\lambda \circ m_A = (m_A \otimes m_B) \circ (A \otimes \lambda \otimes B) \circ (A \otimes R) \circ (\lambda \otimes A)$
 - $(A \otimes m_B) \circ (\lambda \otimes B) \circ \rho = (A \otimes m_B) \circ (\rho \otimes B) \circ \lambda = A \otimes u_B$

- A^d the deformation of A.

Theorem

$R^d := (A^d \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and $(A \otimes m_B) \circ (\rho \otimes B)$ is an algebra isomorphism between $A \otimes_R B$ and $A^d \otimes_{R^d} B$.
Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda : A \rightarrow A \otimes B$ linear map such that
 - $\lambda(1) = 1 \otimes 1$,
 - $\lambda \circ m_A = (m_A \otimes m_B) \circ (A \otimes \lambda \otimes B) \circ (A \otimes R) \circ (\lambda \otimes A)$
 - $(A \otimes m_B) \circ (\lambda \otimes B) \circ \rho = (A \otimes m_B) \circ (\rho \otimes B) \circ \lambda = A \otimes u_B$
- A^d the deformation of A.

Theorem

$R^d := (A^d \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and $(A \otimes m_B) \circ (\rho \otimes B)$ is an algebra isomorphism between $A \otimes_R B$ and $A^d \otimes_{R^d} B$.
Invariance under twisting: Theorem I

- A, B algebras,
- (R, μ, ρ) left-right twisting datum with R twisting map.
- $\lambda : A \to A \otimes B$ linear map such that
 - $\lambda(1) = 1 \otimes 1$,
 - $\lambda \circ m_A = (m_A \otimes m_B) \circ (A \otimes \lambda \otimes B) \circ (A \otimes R) \circ (\lambda \otimes A)$
 - $(A \otimes m_B) \circ (\lambda \otimes B) \circ \rho = (A \otimes m_B) \circ (\rho \otimes B) \circ \lambda = A \otimes u_B$
- A^d the deformation of A.

Theorem

$R^d := (A^d \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and $(A \otimes m_B) \circ (\rho \otimes B)$ is an algebra isomorphism between $A \otimes_R B$ and $A^d \otimes_{R^d} B$.
Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples don’t fit.
- The description of the deformation is very complicated.
Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples don’t fit.
- The description of the deformation is very complicated.
Consequences

The strong points of our theorem:

- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...

- Last two examples don’t fit.
- The description of the deformation is very complicated.
Consequences

The strong points of our theorem:
- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...
- Last two examples don’t fit.
- The description of the deformation is very complicated.
Consequences

The strong points of our theorem:
- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...
- Last two examples don’t fit.
- The description of the deformation is very complicated.
Consequences

The strong points of our theorem:
- It recovers the isomorphisms in our first two examples.
- The isomorphism is explicitly given.

And the weak ones...
- Last two examples don’t fit.
- The description of the deformation is very complicated.
Invariance under twisting: Theorem II

- $A \otimes_R B$ a twisted tensor product
- A' another algebra structure on A
- $\rho : A' \rightarrow A \otimes_R B$ an algebra map
- $\lambda : A \rightarrow A \otimes B$ linear map as before

Theorem

The map $R' := (A' \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and we have an algebra isomorphism

$$A' \otimes_{R'} B \cong A \otimes_R B$$

given by $(A \otimes m_B) \circ (\rho \otimes B)$
Invariance under twisting: Theorem II

- $A \otimes_R B$ a twisted tensor product
- A' another algebra structure on A
- $\rho : A' \to A \otimes_R B$ an algebra map
- $\lambda : A \to A \otimes B$ linear map as before

Theorem

The map $R' := (A' \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and we have an algebra isomorphism

$$A' \otimes_{R'} B \cong A \otimes_R B$$

given by $(A \otimes m_B) \circ (\rho \otimes B)$
Invariance under twisting: Theorem II

- \(A \otimes_R B \) a twisted tensor product
- \(A' \) another algebra structure on \(A \)
- \(\rho : A' \to A \otimes_R B \) an algebra map
- \(\lambda : A \to A \otimes B \) linear map as before

Theorem

The map \(R' := (A' \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho) \) is a twisting map, and we have an algebra isomorphism

\[
A' \otimes_{R'} B \cong A \otimes_R B
\]

given by \((A \otimes m_B) \circ (\rho \otimes B) \)
Invariance under twisting: Theorem II

- $A \otimes_R B$ a twisted tensor product
- A' another algebra structure on A
- $\rho : A' \to A \otimes_R B$ an algebra map
- $\lambda : A \to A \otimes B$ linear map as before

Theorem

The map $R' := (A' \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and we have an algebra isomorphism

$$A' \otimes_{R'} B \cong A \otimes_R B$$

given by $(A \otimes m_B) \circ (\rho \otimes B)$
Invariance under twisting: Theorem II

- $A \otimes_R B$ a twisted tensor product
- A' another algebra structure on A
- $\rho : A' \to A \otimes_R B$ an algebra map
- $\lambda : A \to A \otimes B$ linear map as before

Theorem

The map $R' := (A' \otimes m_B) \circ (\lambda \otimes m_B) \circ (R \otimes B) \circ (B \otimes \rho)$ is a twisting map, and we have an algebra isomorphism $A' \otimes_{R'} B \cong A \otimes_R B$

given by $(A \otimes m_B) \circ (\rho \otimes B)$
Invariance Theorem II

- This theorem generalizes the former one
- It also contains the last two examples:

 Unbraiding: $\lambda(c) := \pi(u^1 \# 1) \otimes c \cdot u^2,$
 $\rho(c) := \pi(r^1 \# 1) \otimes c \cdot r^2$

 Trivial smash: $\rho(h) = \varphi(1 \# S(h_1)) \otimes h_2,$
 $\lambda(h) = \varphi(1 \# h_1) \otimes h_2$

 (In this cases, there is no deformation)
Invariance Theorem II

- This theorem generalizes the former one.
- It also contains the last two examples:

 Unbraiding:
 \[
 \lambda(c) := \pi(u^1 \# 1) \otimes c \cdot u^2, \\
 \rho(c) := \pi(r^1 \# 1) \otimes c \cdot r^2
 \]

 Trivial smash:
 \[
 \rho(h) = \varphi(1 \# S(h_1)) \otimes h_2, \\
 \lambda(h) = \varphi(1 \# h_1) \otimes h_2
 \]

 (In this case, there is no deformation)
Invariance Theorem II

- This theorem generalizes the former one
- It also contains the last two examples:

 Unbraiding: \(\lambda(c) := \pi(u^1 \# 1) \otimes c \cdot u^2, \)
 \[\rho(c) := \pi(r^1 \# 1) \otimes c \cdot r^2 \]

 Trivial smash: \(\rho(h) = \varphi(1 \# S(h_1)) \otimes h_2, \)
 \[\lambda(h) = \varphi(1 \# h_1) \otimes h_2 \]

 (In this cases, there is no deformation)
Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures.
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. Could be used to replace a complicated twisting map by a simpler one.
Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products.
 Could help with the classification, up to isomorphism, of factorization structures.

- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one.
 Could be used to replace a complicated twisting map by a simpler one.
Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures.

- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. Could be used to replace a complicated twisting map by a simpler one.
Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures.

- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. Could be used to replace a complicated twisting map by a simpler one.
Can this theorem be of any use?

Possible ways of taking advantage of the Invariance Theorem:

- Use it to relate two different twisted tensor products. Could help with the classification, up to isomorphism, of factorization structures.
- Explicitly build a deformation in the terms of the theorem in order to build a new object isomorphic to the original one. Could be used to replace a complicated twisting map by a simpler one.
Final remarks

1. Most of the results can be translated to (strict) monoidal categories.

2. Under suitable conditions, the Invariance Theorem can be iterated (cf (JLPVO)).

Moral

The study of twisted tensor products allows us to unify apparently unrelated results, proving to be a useful tool in Hopf algebra theory.
Final remarks

1. Most of the results can be translated to (strict) monoidal categories.

2. Under suitable conditions, the Invariance Theorem can be iterated (cf (JLPVO)).

Moral

The study of twisted tensor products allows us to unify apparently unrelated results, proving to be a useful tool in Hopf algebra theory.
Final remarks

1. Most of the results can be translated to (strict) monoidal categories.
2. Under suitable conditions, the Invariance Theorem can be iterated (cf (JLPVO)).

Moral
The study of twisted tensor products allows us to unify apparently unrelated results, proving to be a useful tool in Hopf algebra theory.
