$12^{\text {th }}$ International Mathematics Competition for University Students

Blagoevgrad, July 22 - July 28, 2005
Second Day

Problem 1. Let $f(x)=x^{2}+b x+c$, where b and c are real numbers, and let

$$
M=\{x \in \mathbb{R}:|f(x)|<1\} .
$$

Clearly the set M is either empty or consists of disjoint open intervals. Denote the sum of their lengths by $|M|$. Prove that

$$
|M| \leq 2 \sqrt{2} .
$$

Solution. Write $f(x)=\left(x+\frac{b}{2}\right)^{2}+d$ where $d=c-\frac{b^{2}}{4}$. The absolute minimum of f is d.
If $d \geq 1$ then $f(x) \geq 1$ for all $x, M=\emptyset$ and $|M|=0$.
If $-1<d<1$ then $f(x)>-1$ for all x,

$$
-1<\left(x+\frac{b}{2}\right)^{2}+d<1 \quad \Longleftrightarrow \quad\left|x+\frac{b}{2}\right|<\sqrt{1-d}
$$

so

$$
M=\left(-\frac{b}{2}-\sqrt{1-d},-\frac{b}{2}+\sqrt{1-d}\right)
$$

and

$$
|M|=2 \sqrt{1-d}<2 \sqrt{2} .
$$

If $d \leq-1$ then

$$
-1<\left(x+\frac{b}{2}\right)^{2}+d<1 \quad \Longleftrightarrow \quad \sqrt{|d|-1}<\left|x+\frac{b}{2}\right|<\sqrt{|d|+1}
$$

so

$$
M=(-\sqrt{|d|+1},-\sqrt{|d|-1}) \cup(\sqrt{|d|-1}, \sqrt{|d|+1})
$$

and

$$
|M|=2(\sqrt{|d|+1}-\sqrt{|d|-1})=2 \frac{(|d|+1)-(|d|-1)}{\sqrt{|d|+1}+\sqrt{|d|-1}} \leq 2 \frac{2}{\sqrt{1+1}+\sqrt{1-0}}=2 \sqrt{2} .
$$

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $(f(x))^{n}$ is a polynomial for every $n=2,3, \ldots$. Does it follow that f is a polynomial?
Solution 1. Yes, it is even enough to assume that f^{2} and f^{3} are polynomials.
Let $p=f^{2}$ and $q=f^{3}$. Write these polynomials in the form of

$$
p=a \cdot p_{1}^{a_{1}} \cdot \ldots \cdot p_{k}^{a_{k}}, \quad q=b \cdot q_{1}^{b_{1}} \cdot \ldots \cdot q_{l}^{b_{l}},
$$

where $a, b \in \mathbb{R}, a_{1}, \ldots, a_{k}, b_{1}, \ldots b_{l}$ are positive integers and $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l}$ are irreducible polynomials with leading coefficients 1 . For $p^{3}=q^{2}$ and the factorisation of $p^{3}=q^{2}$ is unique we get that $a^{3}=b^{2}, k=l$ and for some $\left(i_{1}, \ldots, i_{k}\right)$ permutation of $(1, \ldots, k)$ we have $p_{1}=q_{i_{1}}, \ldots, p_{k}=q_{i_{k}}$ and $3 a_{1}=2 b_{i_{1}}, \ldots, 3 a_{k}=2 b_{i_{k}}$. Hence b_{1}, \ldots, b_{l} are divisible by 3 let $r=b^{1 / 3} \cdot q_{1}^{b_{1} / 3} \cdot \ldots \cdot q_{l}^{b_{l} / 3}$ be a polynomial. Since $r^{3}=q=f^{3}$ we have $f=r$.
Solution 2. Let $\frac{p}{q}$ be the simplest form of the rational function $\frac{f^{3}}{f^{2}}$. Then the simplest form of its square is $\frac{p^{2}}{q^{2}}$. On the other hand $\frac{p^{2}}{q^{2}}=\left(\frac{f^{3}}{f^{2}}\right)^{2}=f^{2}$ is a polynomial therefore q must be a constant and so $f=\frac{f^{3}}{f^{2}}=\frac{p}{q}$ is a polynomial.

Problem 3. In the linear space of all real $n \times n$ matrices, find the maximum possible dimension of a linear subspace V such that

$$
\forall X, Y \in V \quad \operatorname{trace}(X Y)=0
$$

(The trace of a matrix is the sum of the diagonal entries.)
Solution. If A is a nonzero symmetric matrix, then $\operatorname{trace}\left(A^{2}\right)=\operatorname{trace}\left(A^{t} A\right)$ is the sum of the squared entries of A which is positive. So V cannot contain any symmetric matrix but 0 .

Denote by S the linear space of all real $n \times n$ symmetric matrices; $\operatorname{dim} V=\frac{n(n+1)}{2}$. Since $V \cap S=\{0\}$, we have $\operatorname{dim} V+\operatorname{dim} S \leq n^{2}$ and thus $\operatorname{dim} V \leq n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$.

The space of strictly upper triangular matrices has dimension $\frac{n(n-1)}{2}$ and satisfies the condition of the problem.

Therefore the maximum dimension of V is $\frac{n(n-1)}{2}$.
Problem 4. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is three times differentiable, then there exists a real number $\xi \in(-1,1)$ such that

$$
\frac{f^{\prime \prime \prime}(\xi)}{6}=\frac{f(1)-f(-1)}{2}-f^{\prime}(0)
$$

Solution 1. Let

$$
g(x)=-\frac{f(-1)}{2} x^{2}(x-1)-f(0)\left(x^{2}-1\right)+\frac{f(1)}{2} x^{2}(x+1)-f^{\prime}(0) x(x-1)(x+1) .
$$

It is easy to check that $g(\pm 1)=f(\pm 1), g(0)=f(0)$ and $g^{\prime}(0)=f^{\prime}(0)$.
Apply Rolle's theorem for the function $h(x)=f(x)-g(x)$ and its derivatives. Since $h(-1)=h(0)=h(1)=0$, there exist $\eta \in(-1,0)$ and $\vartheta \in(0,1)$ such that $h^{\prime}(\eta)=$ $h^{\prime}(\vartheta)=0$. We also have $h^{\prime}(0)=0$, so there exist $\varrho \in(\eta, 0)$ and $\sigma \in(0, \vartheta)$ such that $h^{\prime \prime}(\varrho)=h^{\prime \prime}(\sigma)=0$. Finally, there exists a $\xi \in(\varrho, \sigma) \subset(-1,1)$ where $h^{\prime \prime \prime}(\xi)=0$. Then

$$
f^{\prime \prime \prime}(\xi)=g^{\prime \prime \prime}(\xi)=-\frac{f(-1)}{2} \cdot 6-f(0) \cdot 0+\frac{f(1)}{2} \cdot 6-f^{\prime}(0) \cdot 6=\frac{f(1)-f(-1)}{2}-f^{\prime}(0)
$$

Solution 2. The expression $\frac{f(1)-f(-1)}{2}-f^{\prime}(0)$ is the divided difference $f[-1,0,0,1]$ and there exists a number $\xi \in(-1,1)$ such that $f[-1,0,0,1]=\frac{f^{\prime \prime \prime}(\xi)}{3!}$.

Problem 5. Find all $r>0$ such that whenever $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function such that $|\operatorname{grad} f(0,0)|=1$ and $|\operatorname{grad} f(u)-\operatorname{grad} f(v)| \leq|u-v|$ for all $u, v \in \mathbb{R}^{2}$, then the maximum of f on the disk $\left\{u \in \mathbb{R}^{2}:|u| \leq r\right\}$ is attained at exactly one point. $\left(\operatorname{grad} f(u)=\left(\partial_{1} f(u), \partial_{2} f(u)\right)\right.$ is the gradient vector of f at the point u. For a vector $u=(a, b),|u|=\sqrt{a^{2}+b^{2}}$.)
Solution. To get an upper bound for r, set $f(x, y)=x-\frac{x^{2}}{2}+\frac{y^{2}}{2}$. This function satisfies the conditions, since $\operatorname{grad} f(x, y)=(1-x, y), \operatorname{grad} f(0,0)=(1,0)$ and $\mid \operatorname{grad} f\left(x_{1}, y_{1}\right)-$ $\operatorname{grad} f\left(x_{2}, y_{2}\right)\left|=\left|\left(x_{2}-x_{1}, y_{1}-y_{2}\right)\right|=\left|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right|\right.$.

In the disk $D_{r}=\left\{(x, y): x^{2}+y^{2} \leq r^{2}\right\}$

$$
f(x, y)=\frac{x^{2}+y^{2}}{2}-\left(x-\frac{1}{2}\right)^{2}+\frac{1}{4} \leq \frac{r^{2}}{2}+\frac{1}{4} .
$$

If $r>\frac{1}{2}$ then the absolute maximum is $\frac{r^{2}}{2}+\frac{1}{4}$, attained at the points $\left(\frac{1}{2}, \pm \sqrt{r^{2}-\frac{1}{4}}\right)$. Therefore, it is necessary that $r \leq \frac{1}{2}$ because if $r>\frac{1}{2}$ then the maximum is attained twice.

Suppose now that $r \leq 1 / 2$ and that f attains its maximum on D_{r} at $u, v, u \neq v$. Since $|\operatorname{grad} f(z)-\operatorname{grad} f(0)| \leq r,|\operatorname{grad} f(z)| \geq 1-r>0$ for all $z \in D_{r}$. Hence f may attain its maximum only at the boundary of D_{r}, so we must have $|u|=|v|=r$ and $\operatorname{grad} f(u)=a u$ and $\operatorname{grad} f(v)=b v$, where $a, b \geq 0$. Since $a u=\operatorname{grad} f(u)$ and $b v=\operatorname{grad} f(v)$ belong to the disk D with centre grad $f(0)$ and radius r, they do not belong to the interior of D_{r}. Hence $|\operatorname{grad} f(u)-\operatorname{grad} f(v)|=|a u-b v| \geq|u-v|$ and this inequality is strict since $D \cap D_{r}$ contains no more than one point. But this contradicts the assumption that $|\operatorname{grad} f(u)-\operatorname{grad} f(v)| \leq|u-v|$. So all $r \leq \frac{1}{2}$ satisfies the condition.

Problem 6. Prove that if p and q are rational numbers and $r=p+q \sqrt{7}$, then there exists a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \neq \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ with integer entries and with $a d-b c=1$ such that

$$
\frac{a r+b}{c r+d}=r
$$

Solution. First consider the case when $q=0$ and r is rational. Choose a positive integer t such that $r^{2} t$ is an integer and set

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
1+r t & -r^{2} t \\
t & 1-r t
\end{array}\right) .
$$

Then

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=1 \quad \text { and } \quad \frac{a r+b}{c r+d}=\frac{(1+r t) r-r^{2} t}{t r+(1-r t)}=r
$$

Now assume $q \neq 0$. Let the minimal polynomial of r in $\mathbb{Z}[x]$ be $u x^{2}+v x+w$. The other root of this polynomial is $\bar{r}=p-q \sqrt{7}$, so $v=-u(r+\bar{r})=-2 u p$ and $w=u r \bar{r}=u\left(p^{2}-7 q^{2}\right)$. The discriminant is $v^{2}-4 u w=7 \cdot(2 u q)^{2}$. The left-hand side is an integer, implying that also $\Delta=2 u q$ is an integer.

The equation $\frac{a r+b}{c r+d}=r$ is equivalent to $c r^{2}+(d-a) r-b=0$. This must be a multiple of the minimal polynomial, so we need

$$
c=u t, \quad d-a=v t, \quad-b=w t
$$

for some integer $t \neq 0$. Putting together these equalities with $a d-b c=1$ we obtain that

$$
(a+d)^{2}=(a-d)^{2}+4 a d=4+\left(v^{2}-4 u w\right) t^{2}=4+7 \Delta^{2} t^{2}
$$

Therefore $4+7 \Delta^{2} t^{2}$ must be a perfect square. Introducing $s=a+d$, we need an integer solution (s, t) for the Diophantine equation

$$
\begin{equation*}
s^{2}-7 \Delta^{2} t^{2}=4 \tag{1}
\end{equation*}
$$

such that $t \neq 0$.
The numbers s and t will be even. Then $a+d=s$ and $d-a=v t$ will be even as well and a and d will be really integers.

Let $(8 \pm 3 \sqrt{7})^{n}=k_{n} \pm l_{n} \sqrt{7}$ for each integer n. Then $k_{n}^{2}-7 l_{n}^{2}=\left(k_{n}+l_{n} \sqrt{7}\right)\left(k_{n}-l_{n} \sqrt{7}\right)=$ $\left((8+3 \sqrt{7})^{n}(8-3 \sqrt{7})\right)^{n}=1$ and the sequence $\left(l_{n}\right)$ also satisfies the linear recurrence $l_{n+1}=16 l_{n}-l_{n-1}$. Consider the residue of l_{n} modulo Δ. There are Δ^{2} possible residue pairs for $\left(l_{n}, l_{n+1}\right)$ so some are the same. Starting from such two positions, the recurrence shows that the sequence of residues is periodic in both directions. Then there are infinitely many indices such that $l_{n} \equiv l_{0}=0(\bmod \Delta)$.

Taking such an index n, we can set $s=2 k_{n}$ and $t=2 l_{n} / \Delta$.
Remarks. 1. It is well-known that if $D>0$ is not a perfect square then the Pell-like Diophantine equation

$$
x^{2}-D y^{2}=1
$$

has infinitely many solutions. Using this fact the solution can be generalized to all quadratic algebraic numbers.
2. It is also known that the continued fraction of a real number r is periodic from a certain point if and only if r is a root of a quadratic equation. This fact can lead to another solution.

