$12^{\text {th }}$ International Mathematics Competition for University Students Blagoevgrad, July 22 - July 28, 2005
 First Day

Problem 1. Let A be the $n \times n$ matrix, whose $(i, j)^{\text {th }}$ entry is $i+j$ for all $i, j=1,2, \ldots, n$. What is the rank of A ?
Solution 1. For $n=1$ the rank is 1 . Now assume $n \geq 2$. Since $A=(i)_{i, j=1}^{n}+(j)_{i, j=1}^{n}$, matrix A is the sum of two matrixes of rank 1 . Therefore, the rank of A is at most 2 . The determinant of the top-left 2×2 minor is -1 , so the rank is exactly 2 .

Therefore, the rank of A is 1 for $n=1$ and 2 for $n \geq 2$.
Solution 2. Consider the case $n \geq 2$. For $i=n, n-1, \ldots, 2$, subtract the $(i-1)^{\text {th }}$ row from the $n^{\text {th }}$ row. Then subtract the second row from all lower rows.

$$
\operatorname{rank}\left(\begin{array}{cccc}
2 & 3 & \ldots & n+1 \\
3 & 4 & \ldots & n+2 \\
\vdots & & \ddots & \vdots \\
n+1 & n+2 & \ldots & 2 n
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cccc}
2 & 3 & \ldots & n+1 \\
1 & 1 & \ldots & 1 \\
\vdots & & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
1 & 1 & \ldots & 1 \\
0 & 0 & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)=2 .
$$

Problem 2. For an integer $n \geq 3$ consider the sets

$$
\begin{gathered}
S_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \forall i x_{i} \in\{0,1,2\}\right\} \\
A_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S_{n}: \forall i \leq n-2\left|\left\{x_{i}, x_{i+1}, x_{i+2}\right\}\right| \neq 1\right\}
\end{gathered}
$$

and

$$
B_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S_{n}: \forall i \leq n-1\left(x_{i}=x_{i+1} \Rightarrow x_{i} \neq 0\right)\right\} .
$$

Prove that $\left|A_{n+1}\right|=3 \cdot\left|B_{n}\right|$.
$(|A|$ denotes the number of elements of the set A.)
Solution 1. Extend the definitions also for $n=1,2$. Consider the following sets

$$
\begin{gathered}
A_{n}^{\prime}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A_{n}: x_{n-1}=x_{n}\right\}, \quad A_{n}^{\prime \prime}=A_{n} \backslash A_{n}^{\prime}, \\
B_{n}^{\prime}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in B_{n}: x_{n}=0\right\}, \quad B_{n}^{\prime \prime}=B_{n} \backslash B_{n}^{\prime}
\end{gathered}
$$

and denote $a_{n}=\left|A_{n}\right|, a_{n}^{\prime}=\left|A_{n}^{\prime}\right|, a_{n}^{\prime \prime}=\left|A_{n}^{\prime \prime}\right|, b_{n}=\left|B_{n}\right|, b_{n}^{\prime}=\left|B_{n}^{\prime}\right|, b_{n}^{\prime \prime}=\left|B_{n}^{\prime \prime}\right|$.
It is easy to observe the following relations between the a-sequences

$$
\left\{\begin{array}{rl}
a_{n} & =a_{n}^{\prime}+a_{n}^{\prime \prime} \\
a_{n+1}^{\prime} & =a_{n}^{\prime \prime} \\
a_{n+1}^{\prime \prime} & =2 a_{n}^{\prime}+2 a_{n}^{\prime \prime}
\end{array},\right.
$$

which lead to $a_{n+1}=2 a_{n}+2 a_{n-1}$.
For the b-sequences we have the same relations

$$
\left\{\begin{array}{rl}
b_{n} & =b_{n}^{\prime}+b_{n}^{\prime \prime} \\
b_{n+1}^{\prime} & =b_{n}^{\prime \prime} \\
b_{n+1}^{\prime \prime} & =2 b_{n}^{\prime}+2 b_{n}^{\prime \prime}
\end{array},\right.
$$

therefore $b_{n+1}=2 b_{n}+2 b_{n-1}$.
By computing the first values of $\left(a_{n}\right)$ and $\left(b_{n}\right)$ we obtain

$$
\left\{\begin{array}{ccc}
a_{1}=3, & a_{2}=9, & a_{3}=24 \\
& b_{1}=3, & b_{2}=8
\end{array}\right.
$$

which leads to

$$
\left\{\begin{array}{l}
a_{2}=3 b_{1} \\
a_{3}=3 b_{2}
\end{array}\right.
$$

Now, reasoning by induction, it is easy to prove that $a_{n+1}=3 b_{n}$ for every $n \geq 1$.
Solution 2. Regarding x_{i} to be elements of \mathbb{Z}_{3} and working "modulo 3", we have that

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A_{n} \Rightarrow\left(x_{1}+1, x_{2}+1, \ldots, x_{n}+1\right) \in A_{n},\left(x_{1}+2, x_{2}+2, \ldots, x_{n}+2\right) \in A_{n}
$$

which means that $1 / 3$ of the elements of A_{n} start with 0 . We establish a bijection between the subset of all the vectors in A_{n+1} which start with 0 and the set B_{n} by

$$
\begin{gathered}
\left(0, x_{1}, x_{2}, \ldots, x_{n}\right) \in A_{n+1} \longmapsto\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in B_{n} \\
y_{1}=x_{1}, y_{2}=x_{2}-x_{1}, y_{3}=x_{3}-x_{2}, \ldots, y_{n}=x_{n}-x_{n-1}
\end{gathered}
$$

(if $y_{k}=y_{k+1}=0$ then $x_{k}-x_{k-1}=x_{k+1}-x_{k}=0$ (where $x_{0}=0$), which gives $x_{k-1}=x_{k}=x_{k+1}$, which is not possible because of the definition of the sets A_{p}; therefore, the definition of the above function is correct).

The inverse is defined by

$$
\begin{aligned}
& \left(y_{1}, y_{2}, \ldots, y_{n}\right) \in B_{n} \longmapsto\left(0, x_{1}, x_{2}, \ldots, x_{n}\right) \in A_{n+1} \\
& x_{1}=y_{1}, x_{2}=y_{1}+y_{2}, \ldots, x_{n}=y_{1}+y_{2}+\cdots+y_{n}
\end{aligned}
$$

Problem 3. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be a continuously differentiable function. Prove that

$$
\left|\int_{0}^{1} f^{3}(x) d x-f^{2}(0) \int_{0}^{1} f(x) d x\right| \leq \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|\left(\int_{0}^{1} f(x) d x\right)^{2}
$$

Solution 1. Let $M=\max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|$. By the inequality $-M \leq f^{\prime}(x) \leq M, x \in[0,1]$ it follows:

$$
-M f(x) \leq f(x) f^{\prime}(x) \leq M f(x), x \in[0,1] .
$$

By integration

$$
\begin{gathered}
-M \int_{0}^{x} f(t) d t \leq \frac{1}{2} f^{2}(x)-\frac{1}{2} f^{2}(0) \leq M \int_{0}^{x} f(t) d t, x \in[0,1] \\
-M f(x) \int_{0}^{x} f(t) d t \leq \frac{1}{2} f^{3}(x)-\frac{1}{2} f^{2}(0) f(x) \leq M f(x) \int_{0}^{x} f(t) d t, x \in[0,1] .
\end{gathered}
$$

Integrating the last inequality on $[0,1]$ it follows that

$$
\begin{gathered}
-M\left(\int_{0}^{1} f(x) d x\right)^{2} \leq \int_{0}^{1} f^{3}(x) d x-f^{2}(0) \int_{0}^{1} f(x) d x \leq M\left(\int_{0}^{1} f(x) d x\right)^{2} \Leftrightarrow \\
\left|\int_{0}^{1} f^{3}(x) d x-f^{2}(0) \int_{0}^{1} f(x) d x\right| \leq M\left(\int_{0}^{1} f(x) d x\right)^{2}
\end{gathered}
$$

Solution 2. Let $M=\max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|$ and $F(x)=-\int_{x}^{1} f ;$ then $F^{\prime}=f, F(0)=-\int_{0}^{1} f$ and $F(1)=0$. Integrating by parts,

$$
\begin{gathered}
\int_{0}^{1} f^{3}=\int_{0}^{1} f^{2} \cdot F^{\prime}=\left[f^{2} F\right]_{0}^{1}-\int_{0}^{1}\left(f^{2}\right)^{\prime} F= \\
=f^{2}(1) F(1)-f^{2}(0) F(0)-\int_{0}^{1} 2 F f f^{\prime}=f^{2}(0) \int_{0}^{1} f-\int_{0}^{1} 2 F f f^{\prime} .
\end{gathered}
$$

Then
$\left|\int_{0}^{1} f^{3}(x) d x-f^{2}(0) \int_{0}^{1} f(x) d x\right|=\left|\int_{0}^{1} 2 F f f^{\prime}\right| \leq \int_{0}^{1} 2 F f\left|f^{\prime}\right| \leq M \int_{0}^{1} 2 F f=M \cdot\left[F^{2}\right]_{0}^{1}=M\left(\int_{0}^{1} f\right)^{2}$.

Problem 4. Find all polynomials $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}\left(a_{n} \neq 0\right)$ satisfying the following two conditions:
(i) $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ is a permutation of the numbers $(0,1, \ldots, n)$
and
(ii) all roots of $P(x)$ are rational numbers.

Solution 1. Note that $P(x)$ does not have any positive root because $P(x)>0$ for every $x>0$. Thus, we can represent them in the form $-\alpha_{i}, i=1,2, \ldots, n$, where $\alpha_{i} \geq 0$. If $a_{0} \neq 0$ then there is a $k \in \mathbb{N}, 1 \leq k \leq n-1$, with $a_{k}=0$, so using Viete's formulae we get

$$
\alpha_{1} \alpha_{2} \ldots \alpha_{n-k-1} \alpha_{n-k}+\alpha_{1} \alpha_{2} \ldots \alpha_{n-k-1} \alpha_{n-k+1}+\ldots+\alpha_{k+1} \alpha_{k+2} \ldots \alpha_{n-1} \alpha_{n}=\frac{a_{k}}{a_{n}}=0
$$

which is impossible because the left side of the equality is positive. Therefore $a_{0}=0$ and one of the roots of the polynomial, say α_{n}, must be equal to zero. Consider the polynomial $Q(x)=a_{n} x^{n-1}+a_{n-1} x^{n-2}+\ldots+a_{1}$. It has zeros $-\alpha_{i}, i=1,2, \ldots, n-1$. Again, Viete's formulae, for $n \geq 3$, yield:

$$
\begin{gather*}
\alpha_{1} \alpha_{2} \ldots \alpha_{n-1}=\frac{a_{1}}{a_{n}} \tag{1}\\
\alpha_{1} \alpha_{2} \ldots \alpha_{n-2}+\alpha_{1} \alpha_{2} \ldots \alpha_{n-3} \alpha_{n-1}+\ldots+\alpha_{2} \alpha_{3} \ldots \alpha_{n-1}=\frac{a_{2}}{a_{n}} \tag{2}\\
\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n-1}=\frac{a_{n-1}}{a_{n}} \tag{3}
\end{gather*}
$$

Dividing (2) by (1) we get

$$
\begin{equation*}
\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}+\ldots+\frac{1}{\alpha_{n-1}}=\frac{a_{2}}{a_{1}} . \tag{4}
\end{equation*}
$$

From (3) and (4), applying the AM-HM inequality we obtain

$$
\frac{a_{n-1}}{(n-1) a_{n}}=\frac{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n-1}}{n-1} \geq \frac{n-1}{\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}+\ldots+\frac{1}{\alpha_{n-1}}}=\frac{(n-1) a_{1}}{a_{2}}
$$

therefore $\frac{a_{2} a_{n-1}}{a_{1} a_{n}} \geq(n-1)^{2}$. Hence $\frac{n^{2}}{2} \geq \frac{a_{2} a_{n-1}}{a_{1} a_{n}} \geq(n-1)^{2}$, implying $n \leq 3$. So, the only polynomials possibly satisfying (i) and (ii) are those of degree at most three. These polynomials can easily be found and they are $P(x)=x, P(x)=x^{2}+2 x, P(x)=2 x^{2}+x, P(x)=x^{3}+3 x^{2}+2 x$ and $P(x)=2 x^{3}+3 x^{2}+x$.

Solution 2. Consider the prime factorization of P in the ring $\mathbb{Z}[x]$. Since all roots of P are rational, P can be written as a product of n linear polynomials with rational coefficients. Therefore, all prime factor of P are linear and P can be written as

$$
P(x)=\prod_{k=1}^{n}\left(b_{k} x+c_{k}\right)
$$

where the coefficients b_{k}, c_{k} are integers. Since the leading coefficient of P is positive, we can assume $b_{k}>0$ for all k. The coefficients of P are nonnegative, so P cannot have a positive root. This implies $c_{k} \geq 0$. It is not possible that $c_{k}=0$ for two different values of k, because it would imply $a_{0}=a_{1}=0$. So $c_{k}>0$ in at least $n-1$ cases.

Now substitute $x=1$.

$$
P(1)=a_{n}+\cdots+a_{0}=0+1+\cdots+n=\frac{n(n+1)}{2}=\prod_{k=1}^{n}\left(b_{k}+c_{k}\right) \geq 2^{n-1} ;
$$

therefore it is necessary that $2^{n-1} \leq \frac{n(n+1)}{2}$, therefore $n \leq 4$. Moreover, the number $\frac{n(n+1)}{2}$ can be written as a product of $n-1$ integers greater than 1 .

If $n=1$, the only solution is $P(x)=1 x+0$.
If $n=2$, we have $P(1)=3=1 \cdot 3$, so one factor must be x, the other one is $x+2$ or $2 x+1$. Both $x(x+2)=1 x^{2}+2 x+0$ and $x(2 x+1)=2 x^{2}+1 x+0$ are solutions.

If $n=3$, then $P(1)=6=1 \cdot 2 \cdot 3$, so one factor must be x, another one is $x+1$, the third one is again $x+2$ or $2 x+1$. The two polynomials are $x(x+1)(x+2)=1 x^{3}+3 x^{2}+2 x+0$ and $x(x+1)(2 x+1)=2 x^{3}+3 x^{2}+1 x+0$, both have the proper set of coefficients.

In the case $n=4$, there is no solution because $\frac{n(n+1)}{2}=10$ cannot be written as a product of 3 integers greater than 1 .

Altogether we found 5 solutions: $1 x+0,1 x^{2}+2 x+0,2 x^{2}+1 x+0,1 x^{3}+3 x^{2}+2 x+0$ and $2 x^{3}+3 x^{2}+1 x+0$.
Problem 5. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a twice continuously differentiable function such that

$$
\left|f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right| \leq 1
$$

for all x. Prove that $\lim _{x \rightarrow \infty} f(x)=0$.
Solution 1. Let $g(x)=f^{\prime}(x)+x f(x)$; then $f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)=g^{\prime}(x)+x g(x)$.
We prove that if h is a continuously differentiable function such that $h^{\prime}(x)+x h(x)$ is bounded then $\lim _{\infty} h=0$. Applying this lemma for $h=g$ then for $h=f$, the statement follows.

Let M be an upper bound for $\left|h^{\prime}(x)+x h(x)\right|$ and let $p(x)=h(x) e^{x^{2} / 2}$. (The function $e^{-x^{2} / 2}$ is a solution of the differential equation $u^{\prime}(x)+x u(x)=0$.) Then

$$
\left|p^{\prime}(x)\right|=\left|h^{\prime}(x)+x h(x)\right| e^{x^{2} / 2} \leq M e^{x^{2} / 2}
$$

and

$$
|h(x)|=\left|\frac{p(x)}{e^{x^{2} / 2}}\right|=\left|\frac{p(0)+\int_{0}^{x} p^{\prime}}{e^{x^{2} / 2}}\right| \leq \frac{|p(0)|+M \int_{0}^{x} e^{x^{2} / 2} d x}{e^{x^{2} / 2}} .
$$

Since $\lim _{x \rightarrow \infty} e^{x^{2} / 2}=\infty$ and $\lim \frac{\int_{0}^{x} e^{x^{2} / 2} d x}{e^{x^{2} / 2}}=0$ (by L'Hospital's rule), this implies $\lim _{x \rightarrow \infty} h(x)=0$.
Solution 2. Apply L'Hospital rule twice on the fraction $\frac{f(x) e^{x^{2} / 2}}{e^{x^{2} / 2}}$. (Note that L'Hospital rule is valid if the denominator converges to infinity, without any assumption on the numerator.)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{f(x) e^{x^{2} / 2}}{e^{x^{2} / 2}}= & \lim _{x \rightarrow \infty} \frac{\left(f^{\prime}(x)+x f(x)\right) e^{x^{2} / 2}}{x e^{x^{2} / 2}}=\lim _{x \rightarrow \infty} \frac{\left(f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)\right) e^{x^{2} / 2}}{\left(x^{2}+1\right) e^{x^{2} / 2}}= \\
& =\lim _{x \rightarrow \infty} \frac{f^{\prime \prime}(x)+2 x f^{\prime}(x)+\left(x^{2}+1\right) f(x)}{x^{2}+1}=0
\end{aligned}
$$

Problem 6. Given a group G, denote by $G(m)$ the subgroup generated by the $m^{\text {th }}$ powers of elements of G. If $G(m)$ and $G(n)$ are commutative, prove that $G(\operatorname{gcd}(m, n))$ is also commutative. $(\operatorname{gcd}(m, n)$ denotes the greatest common divisor of m and n.)

Solution. Write $d=\operatorname{gcd}(m, n)$. It is easy to see that $\langle G(m), G(n)\rangle=G(d)$; hence, it will suffice to check commutativity for any two elements in $G(m) \cup G(n)$, and so for any two generators a^{m} and b^{n}. Consider their commutator $z=a^{-m} b^{-n} a^{m} b^{n}$; then the relations

$$
z=\left(a^{-m} b a^{m}\right)^{-n} b^{n}=a^{-m}\left(b^{-n} a b^{n}\right)^{m}
$$

show that $z \in G(m) \cap G(n)$. But then z is in the center of $G(d)$. Now, from the relation $a^{m} b^{n}=b^{n} a^{m} z$, it easily follows by induction that

$$
a^{m l} b^{n l}=b^{n l} a^{m l} z^{l^{2}} .
$$

Setting $l=m / d$ and $l=n / d$ we obtain $z^{(m / d)^{2}}=z^{(n / d)^{2}}=e$, but this implies that $z=e$ as well.

