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Day 2

1. Let A and B be n× n real matrices such that AB + A + B = 0. Prove that AB = BA.

Solution. Since (A+ I)(B + I) = AB +A+B + I = I (I is the identity matrix), matrices
A + I and B + I are inverses of each other. Then (A + I)(B + I) = (B + I)(A + I) and
AB + BA.

2. Evaluate the limit

lim
x→0+

∫ 2x

x

sinm t

tn
dt (m, n ∈ N).

Solution. We use the fact that
sin t

t
is decreasing in the interval (0, π) and lim

t→0+0

sin t

t
= 1.

For all x ∈ (0, π
2
) and t ∈ [x, 2x] we have

sin 2x

2
x <

sin t

t
< 1, thus(

sin 2x

2x

)m ∫ 2x

x

tm

tn
<

∫ 2x

x

sinm t

tn
dt <

∫ 2x

x

tm

tn
dt,

∫ 2x

x

tm

tn
dt = xm−n+1

∫ 2

1

um−ndu.

The factor

(
sin 2x

2x

)m

tends to 1. If m − n + 1 < 0, the limit of xm−n+1 is infinity; if

m− n + 1 > 0 then 0. If m− n + 1 = 0 then xm−n+1
∫ 2

1
um−ndu = ln 2. Hence,

lim
x→0+0

2x∫
x

sinm t

tn
dt =


0, m ≥ n

ln 2, n−m = 1

+∞, n−m > 1.

.

3. Let A be a closed subset of Rn and let B be the set of all those points b ∈ Rn for which
there exists exactly one point a0 ∈ A such that

|a0 − b| = inf
a∈A

|a− b|.

Prove that B is dense in Rn; that is, the closure of B is Rn.

Solution. Let b0 /∈ A (otherwise b0 ∈ A ⊂ B), % = inf
a∈A

|a−b0|. The intersection of the ball

of radius % + 1 with centre b0 with set A is compact and there exists a0 ∈ A: |a0− b0| = %.
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Denote by Br(a) = {x ∈ Rn : |x− a| ≤ r} and ∂Br(a) = {x ∈ Rn : |x− a| = r} the
ball and the sphere of center a and radius r, respectively.

If a0 is not the unique nearest point then for any point a on the open line segment (a0, b0)
we have B|a−a0|(a) ⊂ B%(b0) and ∂B|a−a0|(a)

⋂
∂B%(b0) = {a0}, therefore (a0, b0) ⊂ B and

b0 is an accumulation point of set B.

4. Find all positive integers n for which there exists a family F of three-element subsets
of S = {1, 2, . . . , n} satisfying the following two conditions:

(i) for any two different elements a, b ∈ S, there exists exactly one A ∈ F containing
both a, b;

(ii) if a, b, c, x, y, z are elements of S such that if {a, b, x}, {a, c, y}, {b, c, z} ∈ F , then
{x, y, z} ∈ F .

Solution. The condition (i) of the problem allows us to define a (well-defined) operation
∗ on the set S given by

a ∗ b = c if and only if {a, b, c} ∈ F, where a 6= b.

We note that this operation is still not defined completely (we need to define a ∗ a), but
nevertheless let us investigate its features. At first, due to (i), for a 6= b the operation
obviously satisfies the following three conditions:

(a) a 6= a ∗ b 6= b;
(b) a ∗ b = b ∗ a;
(c) a ∗ (a ∗ b) = b.

What does the condition (ii) give? It claims that
(e’) x ∗ (a ∗ c) = x ∗ y = z = b ∗ c = (x ∗ a) ∗ c

for any three different x, a, c, i.e. that the operation is associative if the arguments are
different. Now we can complete the definition of ∗. In order to save associativity for non-
different arguments, i.e. to make b = a ∗ (a ∗ b) = (a ∗ a) ∗ b hold, we will add to S an extra
element, call it 0, and define

(d) a ∗ a = 0 and a ∗ 0 = 0 ∗ a = a.
Now it is easy to check that, for any a, b, c ∈ S ∪{0}, (a),(b),(c) and (d), still hold, and

(e) a ∗ b ∗ c := (a ∗ b) ∗ c = a ∗ (b ∗ c).
We have thus obtained that (S ∪ {0}, ∗) has the structure of a finite Abelian group,

whose elements are all of order two. Since the order of every such group is a power of 2,
we conclude that |S ∪ {0}| = n + 1 = 2m and n = 2m − 1 for some integer m ≥ 1.

Given n = 2m−1, according to what we have proven till now, we will construct a family
of three-element subsets of S satisfying (i) and (ii). Let us define the operation ∗ in the
following manner:

if a = a0 + 2a1 + . . . + 2m−1am−1 and b = b0 + 2b1 + . . . + 2m−1bm−1, where ai, bi

are either 0 or 1, we put a ∗ b = |a0 − b0|+ 2|a1 − b1|+ . . . + 2m−1|am−1 − bm−1|.
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It is simple to check that this ∗ satisfies (a),(b),(c) and (e’). Therefore, if we include in
F all possible triples a, b, a ∗ b, the condition (i) follows from (a),(b) and (c), whereas the
condition (ii) follows from (e’)

The answer is: n = 2m − 1.

5. (a) Show that for each function f : Q×Q → R there exists a function g : Q → R such
that f(x, y) ≤ g(x) + g(y) for all x, y ∈ Q.

(b) Find a function f : R× R → R for which there is no function g : R → R such that
f(x, y) ≤ g(x) + g(y) for all x, y ∈ R.

Solution. a) Let ϕ : Q → N be a bijection. Define g(x) = max{|f(s, t)| : s, t ∈ Q, ϕ(s) ≤
ϕ(x), ϕ(t) ≤ ϕ(x)}. We have f(x, y) ≤ max{g(x), g(y)} ≤ g(x) + g(y).

b) We shall show that the function defined by f(x, y) = 1
|x−y| for x 6= y and f(x, x) = 0

satisfies the problem. If, by contradiction there exists a function g as above, it results, that
g(y) ≥ 1

|x−y| − f(x) for x, y ∈ R, x 6= y; one obtains that for each x ∈ R, lim
y→x

g(y) = ∞.

We show, that there exists no function g having an infinite limit at each point of a bounded
and closed interval [a, b].

For each k ∈ N+ denote Ak = {x ∈ [a, b] : |g(x)| ≤ k}.
We have obviously [a, b] = ∪∞k=1Ak. The set [a, b] is uncountable, so at least one of the

sets Ak is infinite (in fact uncountable). This set Ak being infinite, there exists a sequence
in Ak having distinct terms. This sequence will contain a convergent subsequence (xn)n∈N
convergent to a point x ∈ [a, b]. But lim

y→x
g(y) = ∞ implies that g(xn) →∞, a contradiction

because |g(xn)| ≤ k, ∀n ∈ N.

Second solution for part (b). Let S be the set of all sequences of real numbers. The
cardinality of S is |S| = |R|ℵ0 = 2ℵ

2
0 = 2ℵ0 = |R|. Thus, there exists a bijection h : R → S.

Now define the function f in the following way. For any real x and positive integer n,
let f(x, n) be the nth element of sequence h(x). If y is not a positive integer then let
f(x, y) = 0. We prove that this function has the required property.

Let g be an arbitrary R → R function. We show that there exist real numbers x, y
such that f(x, y) > g(x) + g(y). Consider the sequence (n + g(n))∞n=1. This sequence is an
element of S, thus (n+ g(n))∞n=1 = h(x) for a certain real x. Then for an arbitrary positive
integer n, f(x, n) is the nth element, f(x, n) = n + g(n). Choosing n such that n > g(x),
we obtain f(x, n) = n + g(n) > g(x) + g(n).

6. Let (an)n∈N be the sequence defined by

a0 = 1, an+1 =
1

n + 1

n∑
k=0

ak

n− k + 2
.

Find the limit

lim
n→∞

n∑
k=0

ak

2k
,
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if it exists.

Solution. Consider the generating function f(x) =
∑∞

n=0 anx
n. By induction 0 < an ≤ 1,

thus this series is absolutely convergent for |x| < 1, f(0) = 1 and the function is positive
in the interval [0, 1). The goal is to compute f(1

2
).

By the recurrence formula,

f ′(x) =
∞∑

n=0

(n + 1)an+1x
n =

∞∑
n=0

n∑
k=0

ak

n− k + 2
xn =

=
∞∑

k=0

akx
k

∞∑
n=k

xn−k

n− k + 2
= f(x)

∞∑
m=0

xm

m + 2
.

Then

ln f(x) = ln f(x)− ln f(0) =

∫ x

0

f ′

f
=

∞∑
m=0

xm+1

(m + 1)(m + 2)
=

=
∞∑

m=0

(
xm+1

(m + 1)
− xm+1

(m + 2)

)
= 1 +

(
1− 1

x

) ∞∑
m=0

xm+1

(m + 1)
= 1 +

(
1− 1

x

)
ln

1

1− x
,

ln f

(
1

2

)
= 1− ln 2,

and thus f(
1

2
) =

e

2
.
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