$10^{\text {th }}$ International Mathematical Competition for University Students Cluj-Napoca, July 2003

Day 2

1. Let A and B be $n \times n$ real matrices such that $A B+A+B=0$. Prove that $A B=B A$.

Solution. Since $(A+I)(B+I)=A B+A+B+I=I(I$ is the identity matrix), matrices $A+I$ and $B+I$ are inverses of each other. Then $(A+I)(B+I)=(B+I)(A+I)$ and $A B+B A$.
2. Evaluate the limit

$$
\lim _{x \rightarrow 0+} \int_{x}^{2 x} \frac{\sin ^{m} t}{t^{n}} d t \quad(m, n \in \mathbb{N})
$$

Solution. We use the fact that $\frac{\sin t}{t}$ is decreasing in the interval $(0, \pi)$ and $\lim _{t \rightarrow 0+0} \frac{\sin t}{t}=1$. For all $x \in\left(0, \frac{\pi}{2}\right)$ and $t \in[x, 2 x]$ we have $\frac{\sin 2 x}{2} x<\frac{\sin t}{t}<1$, thus

$$
\begin{gathered}
\left(\frac{\sin 2 x}{2 x}\right)^{m} \int_{x}^{2 x} \frac{t^{m}}{t^{n}}<\int_{x}^{2 x} \frac{\sin ^{m} t}{t^{n}} d t<\int_{x}^{2 x} \frac{t^{m}}{t^{n}} d t \\
\int_{x}^{2 x} \frac{t^{m}}{t^{n}} d t=x^{m-n+1} \int_{1}^{2} u^{m-n} d u
\end{gathered}
$$

The factor $\left(\frac{\sin 2 x}{2 x}\right)^{m}$ tends to 1. If $m-n+1<0$, the limit of x^{m-n+1} is infinity; if $m-n+1>0$ then 0 . If $m-n+1=0$ then $x^{m-n+1} \int_{1}^{2} u^{m-n} d u=\ln 2$. Hence,

$$
\lim _{x \rightarrow 0+0} \int_{x}^{2 x} \frac{\sin ^{m} t}{t^{n}} d t=\left\{\begin{array}{ll}
0, & m \geq n \\
\ln 2, & n-m=1 \\
+\infty, & n-m>1
\end{array} .\right.
$$

3. Let A be a closed subset of \mathbb{R}^{n} and let B be the set of all those points $b \in \mathbb{R}^{n}$ for which there exists exactly one point $a_{0} \in A$ such that

$$
\left|a_{0}-b\right|=\inf _{a \in A}|a-b| .
$$

Prove that B is dense in \mathbb{R}^{n}; that is, the closure of B is \mathbb{R}^{n}.
Solution. Let $b_{0} \notin A$ (otherwise $b_{0} \in A \subset B$), $\varrho=\inf _{a \in A}\left|a-b_{0}\right|$. The intersection of the ball of radius $\varrho+1$ with centre b_{0} with set A is compact and there exists $a_{0} \in A:\left|a_{0}-b_{0}\right|=\varrho$.

Denote by $\mathbf{B}_{r}(a)=\left\{x \in R^{n}:|x-a| \leq r\right\}$ and $\partial \mathbf{B}_{r}(a)=\left\{x \in R^{n}:|x-a|=r\right\}$ the ball and the sphere of center a and radius r, respectively.

If a_{0} is not the unique nearest point then for any point a on the open line segment $\left(a_{0}, b_{0}\right)$ we have $\mathbf{B}_{\left|a-a_{0}\right|}(a) \subset \mathbf{B}_{\varrho}\left(b_{0}\right)$ and $\partial \mathbf{B}_{\left|a-a_{0}\right|}(a) \bigcap \partial \mathbf{B}_{\varrho}\left(b_{0}\right)=\left\{a_{0}\right\}$, therefore $\left(a_{0}, b_{0}\right) \subset B$ and b_{0} is an accumulation point of set B.
4. Find all positive integers n for which there exists a family \mathcal{F} of three-element subsets of $S=\{1,2, \ldots, n\}$ satisfying the following two conditions:
(i) for any two different elements $a, b \in S$, there exists exactly one $A \in \mathcal{F}$ containing both a, b;
(ii) if a, b, c, x, y, z are elements of S such that if $\{a, b, x\},\{a, c, y\},\{b, c, z\} \in \mathcal{F}$, then $\{x, y, z\} \in \mathcal{F}$.

Solution. The condition (i) of the problem allows us to define a (well-defined) operation * on the set S given by

$$
a * b=c \text { if and only if }\{a, b, c\} \in F \text {, where } a \neq b \text {. }
$$

We note that this operation is still not defined completely (we need to define $a * a$), but nevertheless let us investigate its features. At first, due to (i), for $a \neq b$ the operation obviously satisfies the following three conditions:
(a) $a \neq a * b \neq b$;
(b) $a * b=b * a$;
(c) $a *(a * b)=b$.

What does the condition (ii) give? It claims that
$(\mathrm{e}) x *(a * c)=x * y=z=b * c=(x * a) * c$
for any three different x, a, c, i.e. that the operation is associative if the arguments are different. Now we can complete the definition of $*$. In order to save associativity for nondifferent arguments, i.e. to make $b=a *(a * b)=(a * a) * b$ hold, we will add to S an extra element, call it 0 , and define
(d) $a * a=0$ and $a * 0=0 * a=a$.

Now it is easy to check that, for any $a, b, c \in S \cup\{0\}$, (a),(b),(c) and (d), still hold, and
(e) $a * b * c:=(a * b) * c=a *(b * c)$.

We have thus obtained that $(S \cup\{0\}, *)$ has the structure of a finite Abelian group, whose elements are all of order two. Since the order of every such group is a power of 2 , we conclude that $|S \cup\{0\}|=n+1=2^{m}$ and $n=2^{m}-1$ for some integer $m \geq 1$.

Given $n=2^{m}-1$, according to what we have proven till now, we will construct a family of three-element subsets of S satisfying (i) and (ii). Let us define the operation $*$ in the following manner:
if $a=a_{0}+2 a_{1}+\ldots+2^{m-1} a_{m-1}$ and $b=b_{0}+2 b_{1}+\ldots+2^{m-1} b_{m-1}$, where a_{i}, b_{i} are either 0 or 1 , we put $a * b=\left|a_{0}-b_{0}\right|+2\left|a_{1}-b_{1}\right|+\ldots+2^{m-1}\left|a_{m-1}-b_{m-1}\right|$.

It is simple to check that this $*$ satisfies (a),(b),(c) and (e'). Therefore, if we include in F all possible triples $a, b, a * b$, the condition (i) follows from (a),(b) and (c), whereas the condition (ii) follows from (e^{\prime})

The answer is: $n=2^{m}-1$.
5. (a) Show that for each function $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{R}$ there exists a function $g: \mathbb{Q} \rightarrow \mathbb{R}$ such that $f(x, y) \leq g(x)+g(y)$ for all $x, y \in \mathbb{Q}$.
(b) Find a function $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ for which there is no function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y) \leq g(x)+g(y)$ for all $x, y \in \mathbb{R}$.

Solution. a) Let $\varphi: \mathbb{Q} \rightarrow \mathbb{N}$ be a bijection. Define $g(x)=\max \{|f(s, t)|: s, t \in \mathbb{Q}, \varphi(s) \leq$ $\varphi(x), \varphi(t) \leq \varphi(x)\}$. We have $f(x, y) \leq \max \{g(x), g(y)\} \leq g(x)+g(y)$.
b) We shall show that the function defined by $f(x, y)=\frac{1}{|x-y|}$ for $x \neq y$ and $f(x, x)=0$ satisfies the problem. If, by contradiction there exists a function g as above, it results, that $g(y) \geq \frac{1}{|x-y|}-f(x)$ for $x, y \in \mathbb{R}, x \neq y$; one obtains that for each $x \in \mathbb{R}, \lim _{y \rightarrow x} g(y)=\infty$. We show, that there exists no function g having an infinite limit at each point of a bounded and closed interval $[a, b]$.

For each $k \in \mathbb{N}^{+}$denote $A_{k}=\{x \in[a, b]:|g(x)| \leq k\}$.
We have obviously $[a, b]=\cup_{k=1}^{\infty} A_{k}$. The set $[a, b]$ is uncountable, so at least one of the sets A_{k} is infinite (in fact uncountable). This set A_{k} being infinite, there exists a sequence in A_{k} having distinct terms. This sequence will contain a convergent subsequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ convergent to a point $x \in[a, b]$. But $\lim _{y \rightarrow x} g(y)=\infty$ implies that $g\left(x_{n}\right) \rightarrow \infty$, a contradiction because $\left|g\left(x_{n}\right)\right| \leq k, \forall n \in \mathbb{N}$.

Second solution for part (b). Let S be the set of all sequences of real numbers. The cardinality of S is $|S|=|\mathbb{R}|^{\aleph_{0}}=2^{\aleph_{0}^{2}}=2^{\aleph_{0}}=|\mathbb{R}|$. Thus, there exists a bijection $h: \mathbb{R} \rightarrow S$. Now define the function f in the following way. For any real x and positive integer n, let $f(x, n)$ be the nth element of sequence $h(x)$. If y is not a positive integer then let $f(x, y)=0$. We prove that this function has the required property.

Let g be an arbitrary $\mathbb{R} \rightarrow \mathbb{R}$ function. We show that there exist real numbers x, y such that $f(x, y)>g(x)+g(y)$. Consider the sequence $(n+g(n))_{n=1}^{\infty}$. This sequence is an element of S, thus $(n+g(n))_{n=1}^{\infty}=h(x)$ for a certain real x. Then for an arbitrary positive integer $n, f(x, n)$ is the nth element, $f(x, n)=n+g(n)$. Choosing n such that $n>g(x)$, we obtain $f(x, n)=n+g(n)>g(x)+g(n)$.
6. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be the sequence defined by

$$
a_{0}=1, a_{n+1}=\frac{1}{n+1} \sum_{k=0}^{n} \frac{a_{k}}{n-k+2} .
$$

Find the limit

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{a_{k}}{2^{k}},
$$

if it exists.
Solution. Consider the generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. By induction $0<a_{n} \leq 1$, thus this series is absolutely convergent for $|x|<1, f(0)=1$ and the function is positive in the interval $[0,1)$. The goal is to compute $f\left(\frac{1}{2}\right)$.

By the recurrence formula,

$$
\begin{aligned}
f^{\prime}(x) & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}=\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{a_{k}}{n-k+2} x^{n}= \\
= & \sum_{k=0}^{\infty} a_{k} x^{k} \sum_{n=k}^{\infty} \frac{x^{n-k}}{n-k+2}=f(x) \sum_{m=0}^{\infty} \frac{x^{m}}{m+2} .
\end{aligned}
$$

Then

$$
\begin{gathered}
\ln f(x)=\ln f(x)-\ln f(0)=\int_{0}^{x} \frac{f^{\prime}}{f}=\sum_{m=0}^{\infty} \frac{x^{m+1}}{(m+1)(m+2)}= \\
=\sum_{m=0}^{\infty}\left(\frac{x^{m+1}}{(m+1)}-\frac{x^{m+1}}{(m+2)}\right)=1+\left(1-\frac{1}{x}\right) \sum_{m=0}^{\infty} \frac{x^{m+1}}{(m+1)}=1+\left(1-\frac{1}{x}\right) \ln \frac{1}{1-x}, \\
\ln f\left(\frac{1}{2}\right)=1-\ln 2,
\end{gathered}
$$

and thus $f\left(\frac{1}{2}\right)=\frac{e}{2}$.

