$10^{\text {th }}$ International Mathematical Competition for University Students Cluj-Napoca, July 2003

Day 1

1. (a) Let a_{1}, a_{2}, \ldots be a sequence of real numbers such that $a_{1}=1$ and $a_{n+1}>\frac{3}{2} a_{n}$ for all n. Prove that the sequence

$$
\frac{a_{n}}{\left(\frac{3}{2}\right)^{n-1}}
$$

has a finite limit or tends to infinity. (10 points)
(b) Prove that for all $\alpha>1$ there exists a sequence a_{1}, a_{2}, \ldots with the same properties such that

$$
\lim \frac{a_{n}}{\left(\frac{3}{2}\right)^{n-1}}=\alpha
$$

(10 points)
Solution. (a) Let $b_{n}=\frac{a_{n}}{\left(\frac{3}{2}\right)^{n-1}}$. Then $a_{n+1}>\frac{3}{2} a_{n}$ is equivalent to $b_{n+1}>b_{n}$, thus the sequence $\left(b_{n}\right)$ is strictly increasing. Each increasing sequence has a finite limit or tends to infinity.
(b) For all $\alpha>1$ there exists a sequence $1=b_{1}<b_{2}<\ldots$ which converges to α. Choosing $a_{n}=\left(\frac{3}{2}\right)^{n-1} b_{n}$, we obtain the required sequence $\left(a_{n}\right)$.
2. Let $a_{1}, a_{2} \ldots, a_{51}$ be non-zero elements of a field. We simultaneously replace each element with the sum of the 50 remaining ones. In this way we get a sequence $b_{1} \ldots, b_{51}$. If this new sequence is a permutation of the original one, what can be the characteristic of the field? (The characteristic of a field is p, if p is the smallest positive integer such that $\underbrace{x+x+\ldots+x}_{p}=0$ for any element x of the field. If there exists no such p, the characteristic is 0.) (20 points)
Solution. Let $S=a_{1}+a_{2}+\cdots+a_{51}$. Then $b_{1}+b_{2}+\cdots+b_{51}=50 S$. Since $b_{1}, b_{2}, \cdots, b_{51}$ is a
permutation of $a_{1}, a_{2}, \cdots, a_{51}$, we get $50 S=S$, so $49 S=0$. Assume that the characteristic of the field is not equal to 7 . Then $49 S=0$ implies that $S=0$. Therefore $b_{i}=-a_{i}$ for $i=1,2, \cdots, 51$. On the other hand, $b_{i}=a_{\varphi(i)}$, where $\varphi \in S_{51}$. Therefore, if the characteristic is not 2 , the sequence $a_{1}, a_{2}, \cdots, a_{51}$ can be partitioned into pairs $\left\{a_{i}, a_{\varphi(i)}\right\}$ of additive inverses. But this is impossible, since 51 is an odd number. It follows that the characteristic of the field is 7 or 2.

The characteristic can be either 2 or 7 . For the case of $7, x_{1}=\ldots=x_{51}=1$ is a possible choice. For the case of 2 , any elements can be chosen such that $S=0$, since then $b_{i}=-a_{i}=a_{i}$.
3. Let A be an $n \times n$ real matrix such that $3 A^{3}=A^{2}+A+I$ (I is the identity matrix). Show that the sequence A^{k} converges to an idempotent matrix. (A matrix B is called idempotent if $B^{2}=B$.) (20 points)

Solution. The minimal polynomial of A is a divisor of $3 x^{3}-x^{2}-x-1$. This polynomial has three different roots. This implies that A is diagonalizable: $A=C^{-1} D C$ where D is a diagonal matrix. The eigenvalues of the matrices A and D are all roots of polynomial $3 x^{3}-x^{2}-x-1$. One of the three roots is 1 , the remaining two roots have smaller absolute value than 1 . Hence, the diagonal elements of D^{k}, which are the k th powers of the eigenvalues, tend to either 0 or 1 and the limit $M=\lim D^{k}$ is idempotent. Then $\lim A^{k}=C^{-1} M C$ is idempotent as well.
4. Determine the set of all pairs (a, b) of positive integers for which the set of positive integers can be decomposed into two sets A and B such that $a \cdot A=b \cdot B$. (20 points)
Solution. Clearly a and b must be different since A and B are disjoint.

Let $\{a, b\}$ be a solution and consider the sets A, B such that $a \cdot A=b \cdot B$. Denoting $d=(a, b)$ the greatest common divisor of a and b, we have $a=d \cdot a_{1}, b=d \cdot b_{1},\left(a_{1}, b_{1}\right)=1$ and $a_{1} \cdot A=b_{1} \cdot B$. Thus $\left\{a_{1}, b_{1}\right\}$ is a solution and it is enough to determine the solutions $\{a, b\}$ with $(a, b)=1$.

If $1 \in A$ then $a \in a \cdot A=b \cdot B$, thus b must be a divisor of a. Similarly, if $1 \in B$, then a is a divisor of b. Therefore, in all solutions, one of numbers a, b is a divisor of the other one.

Now we prove that if $n \geq 2$, then $(1, n)$ is a solution. For each positive integer k, let $f(k)$ be the largest non-negative integer for which $n^{f(k)} \mid k$. Then let $A=\{k: f(k)$ is odd $\}$ and $B=\{k: f(k)$ is even $\}$. This is a decomposition of all positive integers such that $A=n \cdot B$.
5. Let $g:[0,1] \rightarrow \mathbb{R}$ be a continuous function and let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be a sequence of functions defined by $f_{0}(x)=g(x)$ and

$$
f_{n+1}(x)=\frac{1}{x} \int_{0}^{x} f_{n}(t) d t \quad(x \in(0,1], n=0,1,2, \ldots) .
$$

Determine $\lim _{n \rightarrow \infty} f_{n}(x)$ for every $x \in(0,1]$. (20 points)
B. We shall prove in two different ways that $\lim _{n \rightarrow \infty} f_{n}(x)=g(0)$ for every $x \in(0,1]$. (The second one is more lengthy but it tells us how to calculate f_{n} directly from g.)

Proof I. First we prove our claim for non-decreasing g. In this case, by induction, one can easily see that

1. each f_{n} is non-decrasing as well, and
2. $g(x)=f_{0}(x) \geq f_{1}(x) \geq f_{2}(x) \geq \ldots \geq g(0) \quad(x \in(0,1])$.

Then (2) implies that there exists

$$
h(x)=\lim _{n \rightarrow \infty} f_{n}(x) \quad(x \in(0,1]) .
$$

Clearly h is non-decreasing and $g(0) \leq h(x) \leq f_{n}(x)$ for any $x \in(0,1], n=0,1,2, \ldots$. Therefore to show that $h(x)=g(0)$ for any $x \in(0,1]$, it is enough to prove that $h(1)$ cannot be greater than $g(0)$.

Suppose that $h(1)>g(0)$. Then there exists a $0<\delta<1$ such that $h(1)>g(\delta)$. Using the definition, (2) and (1) we get

$$
f_{n+1}(1)=\int_{0}^{1} f_{n}(t) d t \leq \int_{0}^{\delta} g(t) d t+\int_{\delta}^{1} f_{n}(t) d t \leq \delta g(\delta)+(1-\delta) f_{n}(1)
$$

Hence

$$
f_{n}(1)-f_{n+1}(1) \geq \delta\left(f_{n}(1)-g(\delta)\right) \geq \delta(h(1)-g(\delta))>0
$$

so $f_{n}(1) \rightarrow-\infty$, which is a contradiction.
Similarly, we can prove our claim for non-increasing continuous functions as well.
Now suppose that g is an arbitrary continuous function on $[0,1]$. Let

$$
M(x)=\sup _{t \in[0, x]} g(t), \quad m(x)=\inf _{t \in[0, x]} g(t) \quad(x \in[0,1])
$$

Then on $[0,1] m$ is non-increasing, M is non-decreasing, both are continuous, $m(x) \leq g(x) \leq M(x)$ and $M(0)=m(0)=g(0)$. Define the sequences of functions $M_{n}(x)$ and $m_{n}(x)$ in the same way as f_{n} is defined but starting with $M_{0}=M$ and $m_{0}=m$.

Then one can easily see by induction that $m_{n}(x) \leq f_{n}(x) \leq M_{n}(x)$. By the first part of the proof, $\lim _{n} m_{n}(x)=m(0)=g(0)=M(0)=\lim _{n} M_{n}(x)$ for any $x \in(0,1]$. Therefore we must have $\lim _{n} f_{n}(x)=g(0)$.

Proof II. To make the notation clearer we shall denote the variable of f_{j} by x_{j}. By definition (and Fubini theorem) we get that

$$
\begin{aligned}
f_{n+1}\left(x_{n+1}\right) & =\frac{1}{x_{n+1}} \int_{0}^{x_{n+1}} \frac{1}{x_{n}} \int_{0}^{x_{n}} \frac{1}{x_{n-1}} \int_{0}^{x_{n-1}} \cdots \int_{0}^{x_{2}} \frac{1}{x_{1}} \int_{0}^{x_{1}} g\left(x_{0}\right) d x_{0} d x_{1} \ldots d x_{n} \\
& =\frac{1}{x_{n+1}} \iint_{0 \leq x_{0} \leq x_{1} \leq \ldots \leq x_{n} \leq x_{n+1}} g\left(x_{0}\right) \frac{d x_{0} d x_{1} \ldots d x_{n}}{x_{1} \ldots x_{n}} \\
& =\frac{1}{x_{n+1}} \int_{0}^{x_{n+1}} g\left(x_{0}\right)\left(\iint_{x_{0} \leq x_{1} \leq \ldots \leq x_{n} \leq x_{n+1}} \frac{d x_{1} \ldots d x_{n}}{x_{1} \ldots x_{n}}\right) d x_{0} .
\end{aligned}
$$

Therefore with the notation

$$
h_{n}(a, b)=\iint_{a \leq x_{1} \leq \ldots \leq x_{n} \leq b} \frac{d x_{1} \ldots d x_{n}}{x_{1} \ldots x_{n}}
$$

and $x=x_{n+1}, t=x_{0}$ we have

$$
f_{n+1}(x)=\frac{1}{x} \int_{0}^{x} g(t) h_{n}(t, x) d t
$$

Using that $h_{n}(a, b)$ is the same for any permutation of x_{1}, \ldots, x_{n} and the fact that the integral is 0 on any hyperplanes $\left(x_{i}=x_{j}\right)$ we get that

$$
\begin{aligned}
n!h_{n}(a, b) & =\iint_{a \leq x_{1}, \ldots, x_{n} \leq b} \frac{d x_{1} \ldots d x_{n}}{x_{1} \ldots x_{n}}=\int_{a}^{b} \ldots \int_{a}^{b} \frac{d x_{1} \ldots d x_{n}}{x_{1} \ldots x_{n}} \\
& =\left(\int_{a}^{b} \frac{d x}{x}\right)^{n}=(\log (b / a))^{n} .
\end{aligned}
$$

Therefore

$$
f_{n+1}(x)=\frac{1}{x} \int_{0}^{x} g(t) \frac{(\log (x / t))^{n}}{n!} d t .
$$

Note that if g is constant then the definition gives $f_{n}=g$. This implies on one hand that we must have

$$
\frac{1}{x} \int_{0}^{x} \frac{(\log (x / t))^{n}}{n!} d t=1
$$

and on the other hand that, by replacing g by $g-g(0)$, we can suppose that $g(0)=0$.
Let $x \in(0,1]$ and $\varepsilon>0$ be fixed. By continuity there exists a $0<\delta<x$ and an M such that $|g(t)|<\varepsilon$ on $[0, \delta]$ and $|g(t)| \leq M$ on $[0,1]$. Since

$$
\lim _{n \rightarrow \infty} \frac{(\log (x / \delta))^{n}}{n!}=0
$$

there exists an n_{0} sucht that $\left.\log (x / \delta)\right)^{n} / n!<\varepsilon$ whenever $n \geq n_{0}$. Then, for any $n \geq n_{0}$, we have

$$
\begin{aligned}
\left|f_{n+1}(x)\right| & \leq \frac{1}{x} \int_{0}^{x}|g(t)| \frac{(\log (x / t))^{n}}{n!} d t \\
& \leq \frac{1}{x} \int_{0}^{\delta} \varepsilon \frac{(\log (x / t))^{n}}{n!} d t+\frac{1}{x} \int_{\delta}^{x}|g(t)| \frac{(\log (x / \delta))^{n}}{n!} d t \\
& \leq \frac{1}{x} \int_{0}^{x} \varepsilon \frac{(\log (x / t))^{n}}{n!} d t+\frac{1}{x} \int_{\delta}^{x} M \varepsilon d t \\
& \leq \varepsilon+M \varepsilon .
\end{aligned}
$$

Therefore $\lim _{n} f(x)=0=g(0)$.
6. Let $f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ be a polynomial with real coefficients. Prove that if all roots of f lie in the left half-plane $\{z \in \mathbb{C}: \operatorname{Re} z<0\}$ then

$$
a_{k} a_{k+3}<a_{k+1} a_{k+2}
$$

holds for every $k=0,1, \ldots, n-3$. (20 points)
Solution. The polynomial f is a product of linear and quadratic factors, $f(z)=\prod_{i}\left(k_{i} z+l_{i}\right)$.
$\prod_{j}\left(p_{j} z^{2}+q_{j} z+r_{j}\right)$, with $k_{i}, l_{i}, p_{j}, q_{j}, r_{j} \in \mathbb{R}$. Since all roots are in the left half-plane, for each i, k_{i} and l_{i} are of the same sign, and for each j, p_{j}, q_{j}, r_{j} are of the same sign, too. Hence, multiplying f by -1 if necessary, the roots of f don't change and f becomes the polynomial with all positive coefficients.

For the simplicity, we extend the sequence of coefficients by $a_{n+1}=a_{n+2}=\ldots=0$ and $a_{-1}=a_{-2}=\ldots=0$ and prove the same statement for $-1 \leq k \leq n-2$ by induction.

For $n \leq 2$ the statement is obvious: a_{k+1} and a_{k+2} are positive and at least one of a_{k-1} and a_{k+3} is 0 ; hence, $a_{k+1} a_{k+2}>a_{k} a_{k+3}=0$.

Now assume that $n \geq 3$ and the statement is true for all smaller values of n. Take a divisor of $f(z)$ which has the form $z^{2}+p z+q$ where p and q are positive real numbers. (Such a divisor can be obtained from a conjugate pair of roots or two real roots.) Then we can write

$$
\begin{equation*}
f(z)=\left(z^{2}+p z+q\right)\left(b_{n-2} z^{n-2}+\ldots+b_{1} z+b_{0}\right)=\left(z^{2}+p z+q\right) g(x) \tag{1}
\end{equation*}
$$

The roots polynomial $g(z)$ are in the left half-plane, so we have $b_{k+1} b_{k+2}<b_{k} b_{k+3}$ for all $-1 \leq$ $k \leq n-4$. Defining $b_{n-1}=b_{n}=\ldots=0$ and $b_{-1}=b_{-2}=\ldots=0$ as well, we also have $b_{k+1} b_{k+2} \leq b_{k} b_{k+3}$ for all integer k.

Now we prove $a_{k+1} a_{k+2}>a_{k} a_{k+3}$. If $k=-1$ or $k=n-2$ then this is obvious since $a_{k+1} a_{k+2}$ is positive and $a_{k} a_{k+3}=0$. Thus, assume $0 \leq k \leq n-3$. By an easy computation,

$$
\begin{gathered}
a_{k+1} a_{k+2}-a_{k} a_{k+3}= \\
=\left(q b_{k+1}+p b_{k}+b_{k-1}\right)\left(q b_{k+2}+p b_{k+1}+b_{k}\right)-\left(q b_{k}+p b_{k-1}+b_{k-2}\right)\left(q b_{k+3}+p b_{k+2}+b_{k+1}\right)= \\
=\left(b_{k-1} b_{k}-b_{k-2} b_{k+1}\right)+p\left(b_{k}^{2}-b_{k-2} b_{k+2}\right)+q\left(b_{k-1} b_{k+2}-b_{k-2} b_{k+3}\right)+ \\
+p^{2}\left(b_{k} b_{k+1}-b_{k-1} b_{k+2}\right)+q^{2}\left(b_{k+1} b_{k+2}-b_{k} b_{k+3}\right)+p q\left(b_{k+1}^{2}-b_{k-1} b_{k+3}\right) .
\end{gathered}
$$

We prove that all the six terms are non-negative and at least one is positive. Term $p^{2}\left(b_{k} b_{k+1}-\right.$ $\left.b_{k-1} b_{k+2}\right)$ is positive since $0 \leq k \leq n-3$. Also terms $b_{k-1} b_{k}-b_{k-2} b_{k+1}$ and $q^{2}\left(b_{k+1} b_{k+2}-b_{k} b_{k+3}\right)$ are non-negative by the induction hypothesis.

To check the sign of $p\left(b_{k}^{2}-b_{k-2} b_{k+2}\right)$ consider

$$
b_{k-1}\left(b_{k}^{2}-b_{k-2} b_{k+2}\right)=b_{k-2}\left(b_{k} b_{k+1}-b_{k-1} b_{k+2}\right)+b_{k}\left(b_{k-1} b_{k}-b_{k-2} b_{k+1}\right) \geq 0
$$

If $b_{k-1}>0$ we can divide by it to obtain $b_{k}^{2}-b_{k-2} b_{k+2} \geq 0$. Otherwise, if $b_{k-1}=0$, either $b_{k-2}=0$ or $b_{k+2}=0$ and thus $b_{k}^{2}-b_{k-2} b_{k+2}=b_{k}^{2} \geq 0$. Therefore, $p\left(b_{k}^{2}-b_{k-2} b_{k+2}\right) \geq 0$ for all k. Similarly, $p q\left(b_{k+1}^{2}-b_{k-1} b_{k+3}\right) \geq 0$.

The sign of $q\left(b_{k-1} b_{k+2}-b_{k-2} b_{k+3}\right)$ can be checked in a similar way. Consider

$$
b_{k+1}\left(b_{k-1} b_{k+2}-b_{k-2} b_{k+3}\right)=b_{k-1}\left(b_{k+1} b_{k+2}-b_{k} b_{k+3}\right)+b_{k+3}\left(b_{k-1} b_{k}-b_{k-2} b_{k+1}\right) \geq 0
$$

If $b_{k+1}>0$, we can divide by it. Otherwise either $b_{k-2}=0$ or $b_{k+3}=0$. In all cases, we obtain $b_{k-1} b_{k+2}-b_{k-2} b_{k+3} \geq 0$.

Now the signs of all terms are checked and the proof is complete.

