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Day 1

1. (a) Let a1, a2, . . . be a sequence of real numbers such that a1 = 1 and an+1 > 3
2an for all n.

Prove that the sequence
an(

3
2

)n−1

has a finite limit or tends to infinity. (10 points)
(b) Prove that for all α > 1 there exists a sequence a1, a2, . . . with the same properties such

that
lim

an(
3
2

)n−1 = α.

(10 points)
Solution. (a) Let bn =

an(
3
2

)n−1 . Then an+1 > 3
2an is equivalent to bn+1 > bn, thus the sequence

(bn) is strictly increasing. Each increasing sequence has a finite limit or tends to infinity.
(b) For all α > 1 there exists a sequence 1 = b1 < b2 < . . . which converges to α. Choosing

an =
(

3
2

)n−1
bn, we obtain the required sequence (an).

2. Let a1, a2 . . . , a51 be non-zero elements of a field. We simultaneously replace each element with
the sum of the 50 remaining ones. In this way we get a sequence b1 . . . , b51. If this new sequence is
a permutation of the original one, what can be the characteristic of the field? (The characteristic
of a field is p, if p is the smallest positive integer such that x + x + . . . + x︸ ︷︷ ︸

p

= 0 for any element x

of the field. If there exists no such p, the characteristic is 0.) (20 points)
Solution. Let S = a1 + a2 + · · · + a51. Then b1 + b2 + · · · + b51 = 50S. Since b1, b2, · · · , b51 is a

permutation of a1, a2, · · · , a51, we get 50S = S, so 49S = 0. Assume that the characteristic of the
field is not equal to 7. Then 49S = 0 implies that S = 0. Therefore bi = −ai for i = 1, 2, · · · , 51.
On the other hand, bi = aϕ(i), where ϕ ∈ S51. Therefore, if the characteristic is not 2, the sequence
a1, a2, · · · , a51 can be partitioned into pairs {ai, aϕ(i)} of additive inverses. But this is impossible,
since 51 is an odd number. It follows that the characteristic of the field is 7 or 2.

The characteristic can be either 2 or 7. For the case of 7, x1 = . . . = x51 = 1 is a possible
choice. For the case of 2, any elements can be chosen such that S = 0, since then bi = −ai = ai.

3. Let A be an n × n real matrix such that 3A3 = A2 + A + I (I is the identity matrix). Show
that the sequence Ak converges to an idempotent matrix. (A matrix B is called idempotent if
B2 = B.) (20 points)

Solution. The minimal polynomial of A is a divisor of 3x3−x2−x−1. This polynomial has three
different roots. This implies that A is diagonalizable: A = C−1DC where D is a diagonal matrix.
The eigenvalues of the matrices A and D are all roots of polynomial 3x3 − x2 − x− 1. One of the
three roots is 1, the remaining two roots have smaller absolute value than 1. Hence, the diagonal
elements of Dk, which are the kth powers of the eigenvalues, tend to either 0 or 1 and the limit
M = lim Dk is idempotent. Then lim Ak = C−1MC is idempotent as well.

4. Determine the set of all pairs (a, b) of positive integers for which the set of positive integers
can be decomposed into two sets A and B such that a ·A = b ·B. (20 points)
Solution. Clearly a and b must be different since A and B are disjoint.
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Let {a, b} be a solution and consider the sets A,B such that a ·A = b ·B. Denoting d = (a, b)
the greatest common divisor of a and b, we have a = d·a1, b = d·b1, (a1, b1) = 1 and a1 ·A = b1 ·B.
Thus {a1, b1} is a solution and it is enough to determine the solutions {a, b} with (a, b) = 1.

If 1 ∈ A then a ∈ a · A = b · B, thus b must be a divisor of a. Similarly, if 1 ∈ B, then a is a
divisor of b. Therefore, in all solutions, one of numbers a, b is a divisor of the other one.

Now we prove that if n ≥ 2, then (1, n) is a solution. For each positive integer k, let f(k)
be the largest non-negative integer for which nf(k)|k. Then let A = {k : f(k) is odd} and
B = {k : f(k) is even}. This is a decomposition of all positive integers such that A = n ·B.

5. Let g : [0, 1] → R be a continuous function and let fn : [0, 1] → R be a sequence of functions
defined by f0(x) = g(x) and

fn+1(x) =
1
x

∫ x

0

fn(t)dt (x ∈ (0, 1], n = 0, 1, 2, . . .).

Determine lim
n→∞

fn(x) for every x ∈ (0, 1]. (20 points)

B. We shall prove in two different ways that limn→∞ fn(x) = g(0) for every x ∈ (0, 1]. (The
second one is more lengthy but it tells us how to calculate fn directly from g.)

Proof I. First we prove our claim for non-decreasing g. In this case, by induction, one can
easily see that

1. each fn is non-decrasing as well, and

2. g(x) = f0(x) ≥ f1(x) ≥ f2(x) ≥ . . . ≥ g(0) (x ∈ (0, 1]).

Then (2) implies that there exists

h(x) = lim
n→∞

fn(x) (x ∈ (0, 1]).

Clearly h is non-decreasing and g(0) ≤ h(x) ≤ fn(x) for any x ∈ (0, 1], n = 0, 1, 2, . . .. Therefore
to show that h(x) = g(0) for any x ∈ (0, 1], it is enough to prove that h(1) cannot be greater than
g(0).

Suppose that h(1) > g(0). Then there exists a 0 < δ < 1 such that h(1) > g(δ). Using the
definition, (2) and (1) we get

fn+1(1) =
∫ 1

0

fn(t)dt ≤
∫ δ

0

g(t)dt +
∫ 1

δ

fn(t)dt ≤ δg(δ) + (1− δ)fn(1).

Hence
fn(1)− fn+1(1) ≥ δ(fn(1)− g(δ)) ≥ δ(h(1)− g(δ)) > 0,

so fn(1) → −∞, which is a contradiction.
Similarly, we can prove our claim for non-increasing continuous functions as well.
Now suppose that g is an arbitrary continuous function on [0, 1]. Let

M(x) = sup
t∈[0,x]

g(t), m(x) = inf
t∈[0,x]

g(t) (x ∈ [0, 1])

Then on [0, 1] m is non-increasing, M is non-decreasing, both are continuous, m(x) ≤ g(x) ≤ M(x)
and M(0) = m(0) = g(0). Define the sequences of functions Mn(x) and mn(x) in the same way
as fn is defined but starting with M0 = M and m0 = m.

Then one can easily see by induction that mn(x) ≤ fn(x) ≤ Mn(x). By the first part of the
proof, limn mn(x) = m(0) = g(0) = M(0) = limn Mn(x) for any x ∈ (0, 1]. Therefore we must
have limn fn(x) = g(0).
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Proof II. To make the notation clearer we shall denote the variable of fj by xj . By definition
(and Fubini theorem) we get that

fn+1(xn+1) =
1

xn+1

∫ xn+1

0

1
xn

∫ xn

0

1
xn−1

∫ xn−1

0

. . .

∫ x2

0

1
x1

∫ x1

0

g(x0)dx0dx1 . . . dxn

=
1

xn+1

∫∫
0≤x0≤x1≤...≤xn≤xn+1

g(x0)
dx0dx1 . . . dxn

x1 . . . xn

=
1

xn+1

∫ xn+1

0

g(x0)

(∫∫
x0≤x1≤...≤xn≤xn+1

dx1 . . . dxn

x1 . . . xn

)
dx0.

Therefore with the notation

hn(a, b) =
∫∫

a≤x1≤...≤xn≤b

dx1 . . . dxn

x1 . . . xn

and x = xn+1, t = x0 we have

fn+1(x) =
1
x

∫ x

0

g(t)hn(t, x)dt.

Using that hn(a, b) is the same for any permutation of x1, . . . , xn and the fact that the integral
is 0 on any hyperplanes (xi = xj) we get that

n! hn(a, b) =
∫∫

a≤x1,...,xn≤b

dx1 . . . dxn

x1 . . . xn
=
∫ b

a

. . .

∫ b

a

dx1 . . . dxn

x1 . . . xn

=

(∫ b

a

dx

x

)n

= (log(b/a))n.

Therefore

fn+1(x) =
1
x

∫ x

0

g(t)
(log(x/t))n

n!
dt.

Note that if g is constant then the definition gives fn = g. This implies on one hand that we
must have

1
x

∫ x

0

(log(x/t))n

n!
dt = 1

and on the other hand that, by replacing g by g − g(0), we can suppose that g(0) = 0.
Let x ∈ (0, 1] and ε > 0 be fixed. By continuity there exists a 0 < δ < x and an M such that

|g(t)| < ε on [0, δ] and |g(t)| ≤ M on [0, 1] . Since

lim
n→∞

(log(x/δ))n

n!
= 0

there exists an n0 sucht that log(x/δ))n/n! < ε whenever n ≥ n0. Then, for any n ≥ n0, we have

|fn+1(x)| ≤ 1
x

∫ x

0

|g(t)| (log(x/t))n

n!
dt

≤ 1
x

∫ δ

0

ε
(log(x/t))n

n!
dt +

1
x

∫ x

δ

|g(t)| (log(x/δ))n

n!
dt

≤ 1
x

∫ x

0

ε
(log(x/t))n

n!
dt +

1
x

∫ x

δ

Mεdt

≤ ε + Mε.

Therefore limn f(x) = 0 = g(0).
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6. Let f(z) = anzn + an−1z
n−1 + . . .+ a1z + a0 be a polynomial with real coefficients. Prove that

if all roots of f lie in the left half-plane {z ∈ C : Re z < 0} then

akak+3 < ak+1ak+2

holds for every k = 0, 1, . . . , n− 3. (20 points)
Solution. The polynomial f is a product of linear and quadratic factors, f(z) =

∏
i(kiz + li) ·∏

j(pjz
2 +qjz+rj), with ki, li, pj , qj , rj ∈ R. Since all roots are in the left half-plane, for each i, ki

and li are of the same sign, and for each j, pj , qj , rj are of the same sign, too. Hence, multiplying
f by −1 if necessary, the roots of f don’t change and f becomes the polynomial with all positive
coefficients.

For the simplicity, we extend the sequence of coefficients by an+1 = an+2 = . . . = 0 and
a−1 = a−2 = . . . = 0 and prove the same statement for −1 ≤ k ≤ n− 2 by induction.

For n ≤ 2 the statement is obvious: ak+1 and ak+2 are positive and at least one of ak−1 and
ak+3 is 0; hence, ak+1ak+2 > akak+3 = 0.

Now assume that n ≥ 3 and the statement is true for all smaller values of n. Take a divisor of
f(z) which has the form z2 + pz + q where p and q are positive real numbers. (Such a divisor can
be obtained from a conjugate pair of roots or two real roots.) Then we can write

f(z) = (z2 + pz + q)(bn−2z
n−2 + . . . + b1z + b0) = (z2 + pz + q)g(x). (1)

The roots polynomial g(z) are in the left half-plane, so we have bk+1bk+2 < bkbk+3 for all −1 ≤
k ≤ n − 4. Defining bn−1 = bn = . . . = 0 and b−1 = b−2 = . . . = 0 as well, we also have
bk+1bk+2 ≤ bkbk+3 for all integer k.

Now we prove ak+1ak+2 > akak+3. If k = −1 or k = n− 2 then this is obvious since ak+1ak+2

is positive and akak+3 = 0. Thus, assume 0 ≤ k ≤ n− 3. By an easy computation,

ak+1ak+2 − akak+3 =

= (qbk+1 + pbk + bk−1)(qbk+2 + pbk+1 + bk)− (qbk + pbk−1 + bk−2)(qbk+3 + pbk+2 + bk+1) =

= (bk−1bk − bk−2bk+1) + p(b2
k − bk−2bk+2) + q(bk−1bk+2 − bk−2bk+3)+

+p2(bkbk+1 − bk−1bk+2) + q2(bk+1bk+2 − bkbk+3) + pq(b2
k+1 − bk−1bk+3).

We prove that all the six terms are non-negative and at least one is positive. Term p2(bkbk+1−
bk−1bk+2) is positive since 0 ≤ k ≤ n−3. Also terms bk−1bk−bk−2bk+1 and q2(bk+1bk+2−bkbk+3)
are non-negative by the induction hypothesis.

To check the sign of p(b2
k − bk−2bk+2) consider

bk−1(b2
k − bk−2bk+2) = bk−2(bkbk+1 − bk−1bk+2) + bk(bk−1bk − bk−2bk+1) ≥ 0.

If bk−1 > 0 we can divide by it to obtain b2
k−bk−2bk+2 ≥ 0. Otherwise, if bk−1 = 0, either bk−2 = 0

or bk+2 = 0 and thus b2
k − bk−2bk+2 = b2

k ≥ 0. Therefore, p(b2
k − bk−2bk+2) ≥ 0 for all k. Similarly,

pq(b2
k+1 − bk−1bk+3) ≥ 0.
The sign of q(bk−1bk+2 − bk−2bk+3) can be checked in a similar way. Consider

bk+1(bk−1bk+2 − bk−2bk+3) = bk−1(bk+1bk+2 − bkbk+3) + bk+3(bk−1bk − bk−2bk+1) ≥ 0.

If bk+1 > 0, we can divide by it. Otherwise either bk−2 = 0 or bk+3 = 0. In all cases, we obtain
bk−1bk+2 − bk−2bk+3 ≥ 0.

Now the signs of all terms are checked and the proof is complete.
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