Solutions for problems in the $9^{\text {th }}$ International Mathematics Competition for University Students

Warsaw, July 19 - July 25, 2002

First Day

Problem 1. A standard parabola is the graph of a quadratic polynomial $y=x^{2}+a x+b$ with leading coefficient 1 . Three standard parabolas with vertices V_{1}, V_{2}, V_{3} intersect pairwise at points A_{1}, A_{2}, A_{3}. Let $A \mapsto s(A)$ be the reflection of the plane with respect to the x axis.

Prove that standard parabolas with vertices $s\left(A_{1}\right), s\left(A_{2}\right), s\left(A_{3}\right)$ intersect pairwise at the points $s\left(V_{1}\right), s\left(V_{2}\right), s\left(V_{3}\right)$.

Solution. First we show that the standard parabola with vertex V contains point A if and only if the standard parabola with vertex $s(A)$ contains point $s(V)$.

Let $A=(a, b)$ and $V=(v, w)$. The equation of the standard parabola with vertex $V=(v, w)$ is $y=(x-v)^{2}+w$, so it contains point A if and only if $b=(a-v)^{2}+w$. Similarly, the equation of the parabola with vertex $s(A)=(a,-b)$ is $y=(x-a)^{2}-b$; it contains point $s(V)=(v,-w)$ if and only if $-w=(v-a)^{2}-b$. The two conditions are equivalent.

Now assume that the standard parabolas with vertices V_{1} and V_{2}, V_{1} and V_{3}, V_{2} and V_{3} intersect each other at points A_{3}, A_{2}, A_{1}, respectively. Then, by the statement above, the standard parabolas with vertices $s\left(A_{1}\right)$ and $s\left(A_{2}\right)$, $s\left(A_{1}\right)$ and $s\left(A_{3}\right), s\left(A_{2}\right)$ and $s\left(A_{3}\right)$ intersect each other at points V_{3}, V_{2}, V_{1}, respectively, because they contain these points.
Problem 2. Does there exist a continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every $x \in \mathbb{R}$ we have $f(x)>0$ and $f^{\prime}(x)=f(f(x))$?
Solution. Assume that there exists such a function. Since $f^{\prime}(x)=f(f(x))>0$, the function is strictly monotone increasing.

By the monotonity, $f(x)>0$ implies $f(f(x))>f(0)$ for all x. Thus, $f(0)$ is a lower bound for $f^{\prime}(x)$, and for all $x<0$ we have $f(x)<f(0)+x \cdot f(0)=$ $(1+x) f(0)$. Hence, if $x \leq-1$ then $f(x) \leq 0$, contradicting the property $f(x)>0$.

So such function does not exist.

Problem 3. Let n be a positive integer and let

$$
a_{k}=\frac{1}{\binom{n}{k}}, \quad b_{k}=2^{k-n}, \quad \text { for } \quad k=1,2, \ldots, n
$$

Show that

$$
\begin{equation*}
\frac{a_{1}-b_{1}}{1}+\frac{a_{2}-b_{2}}{2}+\cdots+\frac{a_{n}-b_{n}}{n}=0 . \tag{1}
\end{equation*}
$$

Solution. Since $k\binom{n}{k}=n\binom{n-1}{k-1}$ for all $k \geq 1$, (1) is equivalent to

$$
\begin{equation*}
\frac{2^{n}}{n}\left[\frac{1}{\binom{n-1}{0}}+\frac{1}{\binom{n-1}{1}}+\cdots+\frac{1}{\binom{n-1}{n-1}}\right]=\frac{2^{1}}{1}+\frac{2^{2}}{2}+\cdots+\frac{2^{n}}{n} \tag{2}
\end{equation*}
$$

We prove (2) by induction. For $n=1$, both sides are equal to 2 .
Assume that (2) holds for some n. Let

$$
x_{n}=\frac{2^{n}}{n}\left[\frac{1}{\binom{n-1}{0}}+\frac{1}{\binom{n-1}{1}}+\cdots+\frac{1}{\binom{n-1}{n-1}}\right] ;
$$

then

$$
\begin{aligned}
& x_{n+1}=\frac{2^{n+1}}{n+1} \sum_{k=0}^{n} \frac{1}{\binom{n}{k}}=\frac{2^{n}}{n+1}\left(1+\sum_{k=0}^{n-1}\left(\frac{1}{\binom{n}{k}}+\frac{1}{\binom{n}{k+1}}\right)+1\right)= \\
= & \frac{2^{n}}{n+1} \sum_{k=0}^{n-1} \frac{\frac{n-k}{n}+\frac{k+1}{n}}{\binom{n-1}{k}}+\frac{2^{n+1}}{n+1}=\frac{2^{n}}{n} \sum_{k=0}^{n-1} \frac{1}{\binom{n-1}{k}}+\frac{2^{n+1}}{n+1}=x_{n}+\frac{2^{n+1}}{n+1} .
\end{aligned}
$$

This implies (2) for $n+1$.
Problem 4. Let $f:[a, b] \rightarrow[a, b]$ be a continuous function and let $p \in[a, b]$. Define $p_{0}=p$ and $p_{n+1}=f\left(p_{n}\right)$ for $n=0,1,2, \ldots$ Suppose that the set $T_{p}=\left\{p_{n}: n=0,1,2, \ldots\right\}$ is closed, i.e., if $x \notin T_{p}$ then there is a $\delta>0$ such that for all $x^{\prime} \in T_{p}$ we have $\left|x^{\prime}-x\right| \geq \delta$. Show that T_{p} has finitely many elements.

Solution. If for some $n>m$ the equality $p_{m}=p_{n}$ holds then T_{p} is a finite set. Thus we can assume that all points p_{0}, p_{1}, \ldots are distinct. There is a convergent subsequence $p_{n_{k}}$ and its limit q is in T_{p}. Since f is continuous $p_{n_{k}+1}=f\left(p_{n_{k}}\right) \rightarrow f(q)$, so all, except for finitely many, points p_{n} are accumulation points of T_{p}. Hence we may assume that all of them are accumulation points of T_{p}. Let $d=\sup \left\{\left|p_{m}-p_{n}\right|: \quad m, n \geq 0\right\}$. Let δ_{n} be
positive numbers such that $\sum_{n=0}^{\infty} \delta_{n}<\frac{d}{2}$. Let I_{n} be an interval of length less than δ_{n} centered at p_{n} such that there are there are infinitely many k 's such that $p_{k} \notin \bigcup_{j=0}^{n} I_{j}$, this can be done by induction. Let $n_{0}=0$ and n_{m+1} be the smallest integer $k>n_{m}$ such that $p_{k} \notin \bigcup_{j=0}^{n_{m}} I_{j}$. Since T_{p} is closed the limit of the subsequence ($p_{n_{m}}$) must be in T_{p} but it is impossible because of the definition of I_{n} 's, of course if the sequence ($p_{n_{m}}$) is not convergent we may replace it with its convergent subsequence. The proof is finished.

Remark. If $T_{p}=\left\{p_{1}, p_{2}, \ldots\right\}$ and each p_{n} is an accumulation point of T_{p}, then T_{p} is the countable union of nowhere dense sets (i.e. the single-element sets $\left.\left\{p_{n}\right\}\right)$. If T is closed then this contradicts the Baire Category Theorem.
Problem 5. Prove or disprove the following statements:
(a) There exists a monotone function $f:[0,1] \rightarrow[0,1]$ such that for each $y \in[0,1]$ the equation $f(x)=y$ has uncountably many solutions x.
(b) There exists a continuously differentiable function $f:[0,1] \rightarrow[0,1]$ such that for each $y \in[0,1]$ the equation $f(x)=y$ has uncountably many solutions x.

Solution. a. It does not exist. For each y the set $\{x: y=f(x)\}$ is either empty or consists of 1 point or is an interval. These sets are pairwise disjoint, so there are at most countably many of the third type.
b. Let f be such a map. Then for each value y of this map there is an x_{0} such that $y=f(x)$ and $f^{\prime}(x)=0$, because an uncountable set $\{x: \quad y=f(x)\}$ contains an accumulation point x_{0} and clearly $f^{\prime}\left(x_{0}\right)=0$. For every $\varepsilon>0$ and every x_{0} such that $f^{\prime}\left(x_{0}\right)=0$ there exists an open interval $I_{x_{0}}$ such that if $x \in I_{x_{0}}$ then $\left|f^{\prime}(x)\right|<\varepsilon$. The union of all these intervals $I_{x_{0}}$ may be written as a union of pairwise disjoint open intervals J_{n}. The image of each J_{n} is an interval (or a point) of length $<\varepsilon \cdot$ length $\left(J_{n}\right)$ due to Lagrange Mean Value Theorem. Thus the image of the interval $[0,1]$ may be covered with the intervals such that the sum of their lengths is $\varepsilon \cdot 1=\varepsilon$. This is not possible for $\varepsilon<1$.
Remarks. 1. The proof of part \mathbf{b} is essentially the proof of the easy part of A. Sard's theorem about measure of the set of critical values of a smooth map.
2. If only continuity is required, there exists such a function, e.g. the first co-ordinate of the very well known Peano curve which is a continuous map from an interval onto a square.

Problem 6. For an $n \times n$ matrix M with real entries let $\|M\|=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|M x\|_{2}}{\|x\|_{2}}$, where $\|\cdot\|_{2}$ denotes the Euclidean norm on \mathbb{R}^{n}. Assume that an $n \times n$ matrix A with real entries satisfies $\left\|A^{k}-A^{k-1}\right\| \leq \frac{1}{2002 k}$ for all positive integers k. Prove that $\left\|A^{k}\right\| \leq 2002$ for all positive integers k.

Solution.

Lemma 1. Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of non-negative numbers such that $a_{2 k}-a_{2 k+1} \leq a_{k}^{2}, a_{2 k+1}-a_{2 k+2} \leq a_{k} a_{k+1}$ for any $k \geq 0$ and $\limsup n a_{n}<1 / 4$. Then $\lim \sup \sqrt[n]{a_{n}}<1$.
Proof. Let $c_{l}=\sup _{n \geq 2^{l}}(n+1) a_{n}$ for $l \geq 0$. We will show that $c_{l+1} \leq 4 c_{l}^{2}$. Indeed, for any integer $n \geq 2^{l+1}$ there exists an integer $k \geq 2^{l}$ such that $n=2 k$ or $n=2 k+1$. In the first case there is $a_{2 k}-a_{2 k+1} \leq a_{k}^{2} \leq \frac{c_{l}^{2}}{(k+1)^{2}} \leq$ $\frac{4 c_{1}^{2}}{2 k+1}-\frac{4 c_{1}^{2}}{2 k+2}$, whereas in the second case there is $a_{2 k+1}-a_{2 k+2} \leq a_{k} a_{k+1} \leq$ $\frac{c_{i}^{2}}{(k+1)(k+2)} \leq \frac{4 c_{l}^{2}}{2 k+2}-\frac{4 c_{i}^{2}}{2 k+3}$.

Hence a sequence $\left(a_{n}-\frac{4 c_{t}^{2}}{n+1}\right)_{n \geq 2^{l+1}}$ is non-decreasing and its terms are non-positive since it converges to zero. Therefore $a_{n} \leq \frac{4 c_{1}^{2}}{n+1}$ for $n \geq 2^{l+1}$, meaning that $c_{l+1}^{2} \leq 4 c_{l}^{2}$. This implies that a sequence $\left(\left(4 c_{l}\right)^{2-l}\right)_{l \geq 0}$ is nonincreasing and therefore bounded from above by some number $q \in(0,1)$ since all its terms except finitely many are less than 1 . Hence $c_{l} \leq q^{2^{l}}$ for l large enough. For any n between 2^{l} and 2^{l+1} there is $a_{n} \leq \frac{c_{l}}{n+1} \leq q^{2^{l}} \leq(\sqrt{q})^{n}$ yielding $\lim \sup \sqrt[n]{a_{n}} \leq \sqrt{q}<1$, yielding $\lim \sup \sqrt[n]{a_{n}} \leq \sqrt{q}<1$, which ends the proof.
Lemma 2. Let T be a linear map from \mathbb{R}^{n} into itself. Assume that $\lim \sup n\left\|T^{n+1}-T^{n}\right\|<1 / 4$. Then lim sup $\left\|T^{n+1}-T^{n}\right\|^{1 / n}<1$. In particular T^{n} converges in the operator norm and T is power bounded.
Proof. Put $a_{n}=\left\|T^{n+1}-T^{n}\right\|$. Observe that

$$
T^{k+m+1}-T^{k+m}=\left(T^{k+m+2}-T^{k+m+1}\right)-\left(T^{k+1}-T^{k}\right)\left(T^{m+1}-T^{m}\right)
$$

implying that $a_{k+m} \leq a_{k+m+1}+a_{k} a_{m}$. Therefore the sequence $\left(a_{m}\right)_{m \geq 0}$ satisfies assumptions of Lemma 1 and the assertion of Proposition 1 follows.
Remarks. 1. The theorem proved above holds in the case of an operator T which maps a normed space X into itself, X does not have to be finite dimensional.
2. The constant $1 / 4$ in Lemma 1 cannot be replaced by any greater number since a sequence $a_{n}=\frac{1}{4 n}$ satisfies the inequality $a_{k+m}-a_{k+m+1} \leq a_{k} a_{m}$ for any positive integers k and m whereas it does not have exponential decay.
3. The constant $1 / 4$ in Lemma 2 cannot be replaced by any number greater that $1 / e$. Consider an operator $(T f)(x)=x f(x)$ on $L^{2}([0,1])$. One can easily
check that limsup $\left\|T^{n+1}-T^{n}\right\|=1 / e$, whereas T^{n} does not converge in the operator norm. The question whether in general $\lim \sup n\left\|T^{n+1}-T^{n}\right\|<\infty$ implies that T is power bounded remains open.

Remark The problem was incorrectly stated during the competition: instead of the inequality $\left\|A^{k}-A^{k-1}\right\| \leq \frac{1}{2002 k}$, the inequality $\left\|A^{k}-A^{k-1}\right\| \leq$ $\frac{1}{2002 n}$ was assumed. If $A=\left(\begin{array}{cc}1 & \varepsilon \\ 0 & 1\end{array}\right)$ then $A^{k}=\left(\begin{array}{cc}1 & k \varepsilon \\ 0 & 1\end{array}\right)$. Therefore $A^{k}-A^{k-1}=\left(\begin{array}{ll}0 & \varepsilon \\ 0 & 0\end{array}\right)$, so for sufficiently small ε the condition is satisfied although the sequence $\left(\left\|A^{k}\right\|\right)$ is clearly unbounded.

