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First Day

Problem 1. A standard parabola is the graph of a quadratic polynomial
y = x2 + ax + b with leading coefficient 1. Three standard parabolas with
vertices V1, V2, V3 intersect pairwise at points A1, A2, A3. Let A 7→ s (A) be
the reflection of the plane with respect to the x axis.

Prove that standard parabolas with vertices s (A1), s (A2), s (A3) intersect
pairwise at the points s (V1), s (V2), s (V3).

Solution. First we show that the standard parabola with vertex V contains
point A if and only if the standard parabola with vertex s(A) contains point
s(V ).

Let A = (a, b) and V = (v, w). The equation of the standard parabola
with vertex V = (v, w) is y = (x − v)2 + w, so it contains point A if and
only if b = (a− v)2 + w. Similarly, the equation of the parabola with vertex
s(A) = (a,−b) is y = (x − a)2 − b; it contains point s(V ) = (v,−w) if and
only if −w = (v − a)2 − b. The two conditions are equivalent.

Now assume that the standard parabolas with vertices V1 and V2, V1 and
V3, V2 and V3 intersect each other at points A3, A2, A1, respectively. Then, by
the statement above, the standard parabolas with vertices s(A1) and s(A2),
s(A1) and s(A3), s(A2) and s(A3) intersect each other at points V3, V2, V1,
respectively, because they contain these points.

Problem 2. Does there exist a continuously differentiable function f : R → R

such that for every x ∈ R we have f(x) > 0 and f ′(x) = f(f(x))?

Solution. Assume that there exists such a function. Since f ′(x) = f(f(x)) > 0,
the function is strictly monotone increasing.

By the monotonity, f(x) > 0 implies f(f(x)) > f(0) for all x. Thus, f(0)
is a lower bound for f ′(x), and for all x < 0 we have f(x) < f(0)+x · f(0) =
(1 + x)f(0). Hence, if x ≤ −1 then f(x) ≤ 0, contradicting the property
f(x) > 0.

So such function does not exist.
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Problem 3. Let n be a positive integer and let

ak =
1
(

n
k

) , bk = 2k−n, for k = 1, 2, . . . , n.

Show that

a1 − b1

1
+

a2 − b2

2
+ · · ·+ an − bn

n
= 0. (1)

Solution. Since k
(

n
k

)

= n
(

n−1
k−1

)

for all k ≥ 1, (1) is equivalent to

2n

n

[

1
(

n−1
0

) +
1

(

n−1
1

) + · · ·+ 1
(

n−1
n−1

)

]

=
21

1
+

22

2
+ · · ·+ 2n

n
. (2)

We prove (2) by induction. For n = 1, both sides are equal to 2.
Assume that (2) holds for some n. Let

xn =
2n

n

[

1
(

n−1
0

) +
1

(

n−1
1

) + · · ·+ 1
(

n−1
n−1

)

]

;

then

xn+1 =
2n+1

n + 1

n
∑

k=0

1
(

n
k

) =
2n

n + 1

(

1 +

n−1
∑

k=0

(

1
(

n
k

) +
1

(

n
k+1

)

)

+ 1

)

=

=
2n

n + 1

n−1
∑

k=0

n−k
n

+ k+1
n

(

n−1
k

) +
2n+1

n + 1
=

2n

n

n−1
∑

k=0

1
(

n−1
k

) +
2n+1

n + 1
= xn +

2n+1

n + 1
.

This implies (2) for n + 1.

Problem 4. Let f : [a, b] → [a, b] be a continuous function and let p ∈ [a, b].
Define p0 = p and pn+1 = f(pn) for n = 0, 1, 2, . . . Suppose that the set
Tp = {pn : n = 0, 1, 2, . . .} is closed, i.e., if x /∈ Tp then there is a δ > 0 such
that for all x′ ∈ Tp we have |x′ − x| ≥ δ. Show that Tp has finitely many
elements.

Solution. If for some n > m the equality pm = pn holds then Tp is a finite
set. Thus we can assume that all points p0, p1, . . . are distinct. There is
a convergent subsequence pnk

and its limit q is in Tp. Since f is continu-
ous pnk+1 = f(pnk

) → f(q), so all, except for finitely many, points pn are
accumulation points of Tp. Hence we may assume that all of them are ac-
cumulation points of Tp. Let d = sup{|pm − pn| : m, n ≥ 0}. Let δn be
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positive numbers such that
∑∞

n=0 δn < d
2
. Let In be an interval of length less

than δn centered at pn such that there are there are infinitely many k’s such

that pk /∈
n
⋃

j=0

Ij, this can be done by induction. Let n0 = 0 and nm+1 be the

smallest integer k > nm such that pk /∈
nm
⋃

j=0

Ij. Since Tp is closed the limit

of the subsequence (pnm
) must be in Tp but it is impossible because of the

definition of In’s, of course if the sequence (pnm
) is not convergent we may

replace it with its convergent subsequence. The proof is finished.

Remark. If Tp = {p1, p2, . . . } and each pn is an accumulation point of Tp,
then Tp is the countable union of nowhere dense sets (i.e. the single-element
sets {pn}). If T is closed then this contradicts the Baire Category Theorem.

Problem 5. Prove or disprove the following statements:
(a) There exists a monotone function f : [0, 1] → [0, 1] such that for each
y ∈ [0, 1] the equation f(x) = y has uncountably many solutions x.
(b) There exists a continuously differentiable function f : [0, 1] → [0, 1] such
that for each y ∈ [0, 1] the equation f(x) = y has uncountably many solutions
x.

Solution. a. It does not exist. For each y the set {x : y = f(x)} is either
empty or consists of 1 point or is an interval. These sets are pairwise disjoint,
so there are at most countably many of the third type.
b. Let f be such a map. Then for each value y of this map there is an x0 such
that y = f(x) and f ′(x) = 0, because an uncountable set {x : y = f(x)}
contains an accumulation point x0 and clearly f ′(x0) = 0. For every ε > 0
and every x0 such that f ′(x0) = 0 there exists an open interval Ix0

such
that if x ∈ Ix0

then |f ′(x)| < ε. The union of all these intervals Ix0
may

be written as a union of pairwise disjoint open intervals Jn. The image of
each Jn is an interval (or a point) of length < ε · length(Jn) due to Lagrange
Mean Value Theorem. Thus the image of the interval [0, 1] may be covered
with the intervals such that the sum of their lengths is ε · 1 = ε. This is not
possible for ε < 1.

Remarks. 1. The proof of part b is essentially the proof of the easy part
of A. Sard’s theorem about measure of the set of critical values of a smooth
map.
2. If only continuity is required, there exists such a function, e.g. the first
co-ordinate of the very well known Peano curve which is a continuous map
from an interval onto a square.
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Problem 6. For an n×n matrix M with real entries let ‖M‖ = sup
x∈Rn\{0}

‖Mx‖2

‖x‖2

,

where ‖·‖2 denotes the Euclidean norm on R
n. Assume that an n×n matrix

A with real entries satisfies ‖Ak − Ak−1‖ ≤ 1
2002k

for all positive integers k.
Prove that ‖Ak‖ ≤ 2002 for all positive integers k.

Solution.

Lemma 1. Let (an)n≥0 be a sequence of non-negative numbers such that
a2k−a2k+1 ≤ a2

k , a2k+1−a2k+2 ≤ akak+1 for any k ≥ 0 and lim sup nan < 1/4.
Then lim sup n

√
an < 1.

Proof. Let cl = supn≥2l(n + 1)an for l ≥ 0. We will show that cl+1 ≤ 4c2
l .

Indeed, for any integer n ≥ 2l+1 there exists an integer k ≥ 2l such that

n = 2k or n = 2k + 1. In the first case there is a2k − a2k+1 ≤ a2
k ≤

c2
l

(k+1)2
≤

4c2
l

2k+1
− 4c2

l

2k+2
, whereas in the second case there is a2k+1 − a2k+2 ≤ akak+1 ≤

c2
l

(k+1)(k+2)
≤ 4c2

l

2k+2
− 4c2

l

2k+3
.

Hence a sequence (an − 4c2
l

n+1
)n≥2l+1 is non-decreasing and its terms are

non-positive since it converges to zero. Therefore an ≤ 4c2
l

n+1
for n ≥ 2l+1,

meaning that c2
l+1 ≤ 4c2

l . This implies that a sequence ((4cl)
2−l

)l≥0 is non-
increasing and therefore bounded from above by some number q ∈ (0, 1) since
all its terms except finitely many are less than 1. Hence cl ≤ q2l

for l large
enough. For any n between 2l and 2l+1 there is an ≤ cl

n+1
≤ q2l ≤ (

√
q)n

yielding lim sup n
√

an ≤
√

q < 1, yielding lim sup n
√

an ≤
√

q < 1, which ends
the proof.

Lemma 2. Let T be a linear map from R
n into itself. Assume that

lim sup n‖T n+1 − T n‖ < 1/4. Then lim sup ‖T n+1−T n‖1/n < 1. In particular
T n converges in the operator norm and T is power bounded.

Proof. Put an = ‖T n+1 − T n‖. Observe that

T k+m+1 − T k+m = (T k+m+2 − T k+m+1)− (T k+1 − T k)(T m+1 − T m)

implying that ak+m ≤ ak+m+1 + akam. Therefore the sequence (am)m≥0 sat-
isfies assumptions of Lemma 1 and the assertion of Proposition 1 follows.

Remarks. 1. The theorem proved above holds in the case of an operator
T which maps a normed space X into itself, X does not have to be finite
dimensional.
2. The constant 1/4 in Lemma 1 cannot be replaced by any greater number
since a sequence an = 1

4n
satisfies the inequality ak+m − ak+m+1 ≤ akam for

any positive integers k and m whereas it does not have exponential decay.
3. The constant 1/4 in Lemma 2 cannot be replaced by any number greater
that 1/e. Consider an operator (Tf)(x) = xf(x) on L2([0, 1]). One can easily
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check that lim sup ‖T n+1 − T n‖ = 1/e, whereas T n does not converge in the
operator norm. The question whether in general lim sup n‖T n+1 − T n‖ < ∞
implies that T is power bounded remains open.

Remark The problem was incorrectly stated during the competition: in-
stead of the inequality ‖Ak − Ak−1‖ ≤ 1

2002k
, the inequality ‖Ak − Ak−1‖ ≤

1
2002n

was assumed. If A =

(

1 ε
0 1

)

then Ak =

(

1 k ε
0 1

)

. Therefore

Ak − Ak−1 =

(

0 ε
0 0

)

, so for sufficiently small ε the condition is satisfied

although the sequence
(

‖Ak‖
)

is clearly unbounded.
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