$8^{\text {th }}$ IMC 2001

July 19 - July 25
Prague, Czech Republic

Second day

Problem 1.

Let $r, s \geq 1$ be integers and $a_{0}, a_{1}, \ldots, a_{r-1}, b_{0}, b_{1}, \ldots, b_{s-1}$ be real nonnegative numbers such that

$$
\begin{gathered}
\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{r-1} x^{r-1}+x^{r}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{s-1} x^{s-1}+x^{s}\right)= \\
1+x+x^{2}+\ldots+x^{r+s-1}+x^{r+s} .
\end{gathered}
$$

Prove that each a_{i} and each b_{j} equals either 0 or 1 .
Solution. Multiply the left hand side polynomials. We obtain the following equalities:

$$
a_{0} b_{0}=1, \quad a_{0} b_{1}+a_{1} b_{0}=1, \quad \ldots
$$

Among them one can find equations

$$
a_{0}+a_{1} b_{s-1}+a_{2} b_{s-2}+\ldots=1
$$

and

$$
b_{0}+b_{1} a_{r-1}+b_{2} a_{r-2}+\ldots=1
$$

From these equations it follows that $a_{0}, b_{0} \leq 1$. Taking into account that $a_{0} b_{0}=1$ we can see that $a_{0}=b_{0}=1$.

Now looking at the following equations we notice that all a 's must be less than or equal to 1 . The same statement holds for the b 's. It follows from $a_{0} b_{1}+a_{1} b_{0}=1$ that one of the numbers a_{1}, b_{1} equals 0 while the other one must be 1 . Follow by induction.

Problem 2.

Let $a_{0}=\sqrt{2}, b_{0}=2, a_{n+1}=\sqrt{2-\sqrt{4-a_{n}^{2}}}, \quad b_{n+1}=\frac{2 b_{n}}{2+\sqrt{4+b_{n}^{2}}}$.
a) Prove that the sequences $\left(a_{n}\right),\left(b_{n}\right)$ are decreasing and converge to 0 .
b) Prove that the sequence $\left(2^{n} a_{n}\right)$ is increasing, the sequence $\left(2^{n} b_{n}\right)$ is decreasing and that these two sequences converge to the same limit.
c) Prove that there is a positive constant C such that for all n the following inequality holds: $0<b_{n}-a_{n}<\frac{C}{8^{n}}$.

Solution. Obviously $a_{2}=\sqrt{2-\sqrt{2}}<\sqrt{2}$. Since the function $f(x)=$ $\sqrt{2-\sqrt{4-x^{2}}}$ is increasing on the interval [0,2] the inequality $a_{1}>a_{2}$ implies that $a_{2}>a_{3}$. Simple induction ends the proof of monotonicity of $\left(a_{n}\right)$. In the same way we prove that $\left(b_{n}\right)$ decreases (just notice that $g(x)=\frac{2 x}{2+\sqrt{4+x^{2}}}=$ $\left.2 /\left(2 / x+\sqrt{1+4 / x^{2}}\right)\right)$. It is a matter of simple manipulation to prove that $2 f(x)>x$ for all $x \in(0,2)$, this implies that the sequence $\left(2^{n} a_{n}\right)$ is strictly
increasing. The inequality $2 g(x)<x$ for $x \in(0,2)$ implies that the sequence $\left(2^{n} b_{n}\right)$ strictly decreases. By an easy induction one can show that $a_{n}^{2}=\frac{4 b_{n}^{2}}{4+b_{n}^{2}}$ for positive integers n. Since the limit of the decreasing sequence $\left(2^{n} b_{n}\right)$ of positive numbers is finite we have

$$
\lim 4^{n} a_{n}^{2}=\lim \frac{4 \cdot 4^{n} b_{n}^{2}}{4+b_{n}^{2}}=\lim 4^{n} b_{n}^{2}
$$

We know already that the limits $\lim 2^{n} a_{n}$ and $\lim 2^{n} b_{n}$ are equal. The first of the two is positive because the sequence $\left(2^{n} a_{n}\right)$ is strictly increasing. The existence of a number C follows easily from the equalities

$$
2^{n} b_{n}-2^{n} a_{n}=\left(4^{n} b_{n}^{2}-\frac{4^{n+1} b_{n}^{2}}{4+b_{n}^{2}}\right) /\left(2^{n} b_{n}+2^{n} a_{n}\right)=\frac{\left(2^{n} b_{n}\right)^{4}}{4+b_{n}^{2}} \cdot \frac{1}{4^{n}} \cdot \frac{1}{2^{n}\left(b_{n}+a_{n}\right)}
$$

and from the existence of positive limits $\lim 2^{n} b_{n}$ and $\lim 2^{n} a_{n}$.
Remark. The last problem may be solved in a much simpler way by someone who is able to make use of sine and cosine. It is enough to notice that $a_{n}=2 \sin \frac{\pi}{2^{n+1}}$ and $b_{n}=2 \tan \frac{\pi}{2^{n+1}}$.

Problem 3.

Find the maximum number of points on a sphere of radius 1 in \mathbb{R}^{n} such that the distance between any two of these points is strictly greater than $\sqrt{2}$.

Solution. The unit sphere in \mathbb{R}^{n} is defined by

$$
S_{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{k=1}^{n} x_{k}^{2}=1\right\}
$$

The distance between the points $X=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ is:

$$
d^{2}(X, Y)=\sum_{k=1}^{n}\left(x_{k}-y_{k}\right)^{2} .
$$

We have

$$
\begin{aligned}
d(X, Y)>\sqrt{2} & \Leftrightarrow d^{2}(X, Y)>2 \\
& \Leftrightarrow \sum_{k=1}^{n} x_{k}^{2}+\sum_{k=1}^{n} y_{k}^{2}+2 \sum_{k=1}^{n} x_{k} y_{k}>2 \\
& \Leftrightarrow \sum_{k=1}^{n} x_{k} y_{k}<0
\end{aligned}
$$

Taking account of the symmetry of the sphere, we can suppose that

$$
A_{1}=(-1,0, \ldots, 0)
$$

For $X=A_{1}, \sum_{k=1}^{n} x_{k} y_{k}<0$ implies $y_{1}>0, \forall Y \in M_{n}$.
Let $X=\left(x_{1}, \bar{X}\right), Y=\left(y_{1}, \bar{Y}\right) \in M_{n} \backslash\left\{A_{1}\right\}, \bar{X}, \bar{Y} \in \mathbb{R}^{n-1}$.

We have

$$
\sum_{k=1}^{n} x_{k} y_{k}<0 \Rightarrow x_{1} y_{1}+\sum_{k=1}^{n-1} \bar{x}_{k} \bar{y}_{k}<0 \Leftrightarrow \sum_{k=1}^{n-1} x_{k}^{\prime} y_{k}^{\prime}<0
$$

where

$$
x_{k}^{\prime}=\frac{\bar{x}_{k}}{\sqrt{\sum \bar{x}_{k}^{2}}}, \quad y_{k}^{\prime}=\frac{\bar{y}_{k}}{\sqrt{\sum \bar{y}_{k}^{2}}} .
$$

therefore

$$
\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}\right),\left(y_{1}^{\prime}, \ldots, y_{n-1}^{\prime}\right) \in S_{n-2}
$$

and verifies $\sum_{k=1}^{n} x_{k} y_{k}<0$.
If a_{n} is the search number of points in \mathbb{R}^{n} we obtain $a_{n} \leq 1+a_{n-1}$ and $a_{1}=2$ implies that $a_{n} \leq n+1$.

We show that $a_{n}=n+1$, giving an example of a set M_{n} with $(n+1)$ elements satisfying the conditions of the problem.

$$
\begin{aligned}
& A_{1}=(-1,0,0,0, \ldots, 0,0) \\
& A_{2}=\left(\frac{1}{n},-c_{1}, 0,0, \ldots, 0,0\right) \\
& A_{3}=\left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1},-c_{2}, 0, \ldots, 0,0\right) \\
& A_{4}=\left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-1} \cdot c_{2},-c_{3}, \ldots, 0,0\right) \\
& A_{n-1}=\left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-2} \cdot c_{2}, \frac{1}{n-3} \cdot c_{3}, \ldots,-c_{n-2}, 0\right) \\
& A_{n}=\left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-2} \cdot c_{1}, \frac{1}{n-3} \cdot c_{3}, \ldots, \frac{1}{2} \cdot c_{n-2},-c_{n-1}\right) \\
& A_{n+1}=\left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-2} \cdot c_{2}, \frac{1}{n-3} \cdot c_{3}, \ldots, \frac{1}{2} \cdot c_{n-2}, c_{n-1}\right)
\end{aligned}
$$

where

$$
c_{k}=\sqrt{\left(1+\frac{1}{n}\right)\left(1-\frac{1}{n-k+1}\right)}, \quad k=\overline{1, n-1}
$$

We have $\sum_{k=1}^{n} x_{k} y_{k}=-\frac{1}{n}<0$ and $\sum_{k-=1}^{n} x_{k}^{2}=1, \quad \forall X, Y \in\left\{A_{1}, \ldots, A_{n+1}\right\}$.
These points are on the unit sphere in \mathbb{R}^{n} and the distance between any two points is equal to

$$
d=\sqrt{2} \sqrt{1+\frac{1}{n}}>\sqrt{2}
$$

Remark. For $n=2$ the points form an equilateral triangle in the unit circle; for $n=3$ the four points from a regular tetrahedron and in \mathbb{R}^{n} the points from an n dimensional regular simplex.

Problem 4.

Let $A=\left(a_{k, \ell}\right)_{k, \ell=1, \ldots, n}$ be an $n \times n$ complex matrix such that for each $m \in\{1, \ldots, n\}$ and $1 \leq j_{1}<\ldots<j_{m} \leq n$ the determinant of the matrix $\left(a_{j_{k}, j_{\ell}}\right)_{k, \ell=1, \ldots, m}$ is zero. Prove that $A^{n}=0$ and that there exists a permutation $\sigma \in S_{n}$ such that the matrix

$$
\left(a_{\sigma(k), \sigma(\ell)}\right)_{k, \ell=1, \ldots, n}
$$

has all of its nonzero elements above the diagonal.
Solution. We will only prove (2), since it implies (1). Consider a directed graph G with n vertices V_{1}, \ldots, V_{n} and a directed edge from V_{k} to V_{ℓ} when $a_{k, \ell} \neq 0$. We shall prove that it is acyclic.

Assume that there exists a cycle and take one of minimum length m. Let $j_{1}<\ldots<j_{m}$ be the vertices the cycle goes through and let $\sigma_{0} \in S_{n}$ be a permutation such that $a_{j_{k}, j_{\sigma_{0}(k)}} \neq 0$ for $k=1, \ldots, m$. Observe that for any other $\sigma \in S_{n}$ we have $a_{j_{k}, j_{\sigma(k)}}=0$ for some $k \in\{1, \ldots, m\}$, otherwise we would obtain a different cycle through the same set of vertices and, consequently, a shorter cycle. Finally

$$
\begin{gathered}
0=\operatorname{det}\left(a_{j_{k}, j_{\ell}}\right)_{k, \ell=1, \ldots, m} \\
=(-1)^{\operatorname{sign} \sigma_{0}} \prod_{k=1}^{m} a_{j_{k}, j_{\sigma_{0}(k)}}+\sum_{\sigma \neq \sigma_{0}}(-1)^{\operatorname{sign} \sigma} \prod_{k=1}^{m} a_{j_{k}, j_{\sigma(k)}} \neq 0,
\end{gathered}
$$

which is a contradiction.
Since G is acyclic there exists a topological ordering i.e. a permutation $\sigma \in S_{n}$ such that $k<\ell$ whenever there is an edge from $V_{\sigma(k)}$ to $V_{\sigma(\ell)}$. It is easy to see that this permutation solves the problem.

Problem 5. Let \mathbb{R} be the set of real numbers. Prove that there is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)>0$, and such that

$$
f(x+y) \geq f(x)+y f(f(x)) \quad \text { for all } x, y \in \mathbb{R}
$$

Solution. Suppose that there exists a function satisfying the inequality. If $f(f(x)) \leq 0$ for all x, then f is a decreasing function in view of the inequalities $f(x+y) \geq f(x)+y f(f(x)) \geq f(x)$ for any $y \leq 0$. Since $f(0)>0 \geq f(f(x))$, it implies $f(x)>0$ for all x, which is a contradiction. Hence there is a z such that $f(f(z))>0$. Then the inequality $f(z+x) \geq f(z)+x f(f(z))$ shows that $\lim _{x \rightarrow \infty} f(x)=+\infty$ and therefore $\lim _{x \rightarrow \infty} f(f(x))=+\infty$. In particular, there exist $x, y>0$ such that $f(x) \geq 0, f(f(x))>1, y \geq \frac{x+1}{f(f(x))-1}$ and $f(f(x+y+1)) \geq 0$. Then $f(x+y) \geq f(x)+y f(f(x)) \geq x+y+1$ and hence

$$
\begin{aligned}
f(f(x+y)) & \geq f(x+y+1)+(f(x+y)-(x+y+1)) f(f(x+y+1)) \geq \\
& \geq f(x+y+1) \geq f(x+y)+f(f(x+y)) \geq \\
& \geq f(x)+y f(f(x))+f(f(x+y))>f(f(x+y)) .
\end{aligned}
$$

This contradiction completes the solution of the problem.

Problem 6.

For each positive integer n, let $f_{n}(\vartheta)=\sin \vartheta \cdot \sin (2 \vartheta) \cdot \sin (4 \vartheta) \cdots \sin \left(2^{n} \vartheta\right)$.
For all real ϑ and all n, prove that

$$
\left|f_{n}(\vartheta)\right| \leq \frac{2}{\sqrt{3}}\left|f_{n}(\pi / 3)\right| .
$$

Solution. We prove that $g(\vartheta)=|\sin \vartheta||\sin (2 \vartheta)|^{1 / 2}$ attains its maximum value $(\sqrt{3} / 2)^{3 / 2}$ at points $2^{k} \pi / 3$ (where k is a positive integer). This can be seen by using derivatives or a classical bound like

$$
\begin{gathered}
|g(\vartheta)|=|\sin \vartheta||\sin (2 \vartheta)|^{1 / 2}=\frac{\sqrt{2}}{\sqrt[4]{3}}(\sqrt[4]{|\sin \vartheta| \cdot|\sin \vartheta| \cdot|\sin \vartheta| \cdot|\sqrt{3} \cos \vartheta|})^{2} \\
\leq \frac{\sqrt{2}}{\sqrt[4]{3}} \cdot \frac{3 \sin ^{2} \vartheta+3 \cos ^{2} \vartheta}{4}=\left(\frac{\sqrt{3}}{2}\right)^{3 / 2}
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left|\frac{f_{n}(\vartheta)}{f_{n}(\pi / 3)}\right|=\left|\frac{g(\vartheta) \cdot g(2 \vartheta)^{1 / 2} \cdot g(4 \vartheta)^{3 / 4} \cdots g\left(2^{n-1} \vartheta\right)^{E}}{g(\pi / 3) \cdot g(2 \pi / 3)^{1 / 2} \cdot g(4 \pi / 3)^{3 / 4} \cdots g\left(2^{n-1} \pi / 3\right)^{E}}\right| \cdot\left|\frac{\sin \left(2^{n} \vartheta\right)}{\sin \left(2^{n} \pi / 3\right)}\right|^{1-E / 2} \\
\leq\left|\frac{\sin \left(2^{n} \vartheta\right)}{\sin \left(2^{n} \pi / 3\right)}\right|^{1-E / 2} \leq\left(\frac{1}{\sqrt{3} / 2}\right)^{1-E / 2} \leq \frac{2}{\sqrt{3}}
\end{gathered}
$$

where $E=\frac{2}{3}\left(1-(-1 / 2)^{n}\right)$. This is exactly the bound we had to prove.

