8th **IMC 2001** July 19 - July 25 Prague, Czech Republic

Second day

Problem 1.

Let $r, s \geq 1$ be integers and $a_0, a_1, \ldots, a_{r-1}, b_0, b_1, \ldots, b_{s-1}$ be real non-negative numbers such that

$$(a_0 + a_1x + a_2x^2 + \ldots + a_{r-1}x^{r-1} + x^r)(b_0 + b_1x + b_2x^2 + \ldots + b_{s-1}x^{s-1} + x^s) = 1 + x + x^2 + \ldots + x^{r+s-1} + x^{r+s}.$$

Prove that each a_i and each b_j equals either 0 or 1.

Solution. Multiply the left hand side polynomials. We obtain the following equalities:

$$a_0b_0 = 1, \quad a_0b_1 + a_1b_0 = 1, \quad \dots$$

Among them one can find equations

$$a_0 + a_1 b_{s-1} + a_2 b_{s-2} + \ldots = 1$$

and

$$b_0 + b_1 a_{r-1} + b_2 a_{r-2} + \ldots = 1.$$

From these equations it follows that $a_0, b_0 \leq 1$. Taking into account that $a_0b_0 = 1$ we can see that $a_0 = b_0 = 1$.

Now looking at the following equations we notice that all a's must be less than or equal to 1. The same statement holds for the b's. It follows from $a_0b_1 + a_1b_0 = 1$ that one of the numbers a_1, b_1 equals 0 while the other one must be 1. Follow by induction.

Problem 2.

Let
$$a_0 = \sqrt{2}, b_0 = 2, a_{n+1} = \sqrt{2 - \sqrt{4 - a_n^2}}, b_{n+1} = \frac{2b_n}{2 + \sqrt{4 + b_n^2}}$$

a) Prove that the sequences (a_n) , (b_n) are decreasing and converge to 0.

b) Prove that the sequence $(2^n a_n)$ is increasing, the sequence $(2^n b_n)$ is decreasing and that these two sequences converge to the same limit.

c) Prove that there is a positive constant C such that for all n the following inequality holds: $0 < b_n - a_n < \frac{C}{8^n}$.

Solution. Obviously $a_2 = \sqrt{2 - \sqrt{2}} < \sqrt{2}$. Since the function $f(x) = \sqrt{2 - \sqrt{4 - x^2}}$ is increasing on the interval [0, 2] the inequality $a_1 > a_2$ implies that $a_2 > a_3$. Simple induction ends the proof of monotonicity of (a_n) . In the same way we prove that (b_n) decreases (just notice that $g(x) = \frac{2x}{2 + \sqrt{4 + x^2}} = 2/(2/x + \sqrt{1 + 4/x^2}))$. It is a matter of simple manipulation to prove that 2f(x) > x for all $x \in (0, 2)$, this implies that the sequence $(2^n a_n)$ is strictly

increasing. The inequality 2g(x) < x for $x \in (0,2)$ implies that the sequence $(2^n b_n)$ strictly decreases. By an easy induction one can show that $a_n^2 = \frac{4b_n^2}{4+b_n^2}$ for positive integers n. Since the limit of the decreasing sequence $(2^n b_n)$ of positive numbers is finite we have

$$\lim 4^n a_n^2 = \lim \frac{4 \cdot 4^n b_n^2}{4 + b_n^2} = \lim 4^n b_n^2.$$

We know already that the limits $\lim 2^n a_n$ and $\lim 2^n b_n$ are equal. The first of the two is positive because the sequence $(2^n a_n)$ is strictly increasing. The existence of a number C follows easily from the equalities

$$2^{n}b_{n} - 2^{n}a_{n} = \left(4^{n}b_{n}^{2} - \frac{4^{n+1}b_{n}^{2}}{4 + b_{n}^{2}}\right) / \left(2^{n}b_{n} + 2^{n}a_{n}\right) = \frac{(2^{n}b_{n})^{4}}{4 + b_{n}^{2}} \cdot \frac{1}{4^{n}} \cdot \frac{1}{2^{n}(b_{n} + a_{n})}$$

and from the existence of positive limits $\lim 2^n b_n$ and $\lim 2^n a_n$.

Remark. The last problem may be solved in a much simpler way by someone who is able to make use of sine and cosine. It is enough to notice that $a_n = 2 \sin \frac{\pi}{2^{n+1}}$ and $b_n = 2 \tan \frac{\pi}{2^{n+1}}$.

Problem 3.

Find the maximum number of points on a sphere of radius 1 in \mathbb{R}^n such that the distance between any two of these points is strictly greater than $\sqrt{2}$.

Solution. The unit sphere in \mathbb{R}^n is defined by

$$S_{n-1} = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n | \sum_{k=1}^n x_k^2 = 1 \right\}.$$

The distance between the points $X = (x_1, \ldots, x_n)$ and $Y = (y_1, \ldots, y_n)$ is:

$$d^{2}(X,Y) = \sum_{k=1}^{n} (x_{k} - y_{k})^{2}$$

We have

$$\begin{split} d(X,Y) > \sqrt{2} & \Leftrightarrow \quad d^2(X,Y) > 2 \\ \Leftrightarrow \quad \sum_{k=1}^n x_k^2 + \sum_{k=1}^n y_k^2 + 2\sum_{k=1}^n x_k y_k > 2 \\ \Leftrightarrow \quad \sum_{k=1}^n x_k y_k < 0 \end{split}$$

Taking account of the symmetry of the sphere, we can suppose that

$$A_1 = (-1, 0, \dots, 0).$$

For $X = A_1$, $\sum_{k=1}^n x_k y_k < 0$ implies $y_1 > 0$, $\forall Y \in M_n$. Let $X = (x_1, \overline{X}), Y = (y_1, \overline{Y}) \in M_n \setminus \{A_1\}, \overline{X}, \overline{Y} \in \mathbb{R}^{n-1}$. We have

$$\sum_{k=1}^{n} x_k y_k < 0 \Rightarrow x_1 y_1 + \sum_{k=1}^{n-1} \overline{x}_k \overline{y}_k < 0 \Leftrightarrow \sum_{k=1}^{n-1} x'_k y'_k < 0$$

where

$$x'_k = \frac{\overline{x}_k}{\sqrt{\sum \overline{x}_k^2}}, \quad y'_k = \frac{\overline{y}_k}{\sqrt{\sum \overline{y}_k^2}}.$$

therefore

$$(x'_1, \dots, x'_{n-1}), (y'_1, \dots, y'_{n-1}) \in S_{n-2}$$

and verifies $\sum_{k=1}^{n} x_k y_k < 0.$

If a_n is the search number of points in \mathbb{R}^n we obtain $a_n \leq 1 + a_{n-1}$ and $a_1 = 2$ implies that $a_n \leq n+1$.

We show that $a_n = n + 1$, giving an example of a set M_n with (n + 1) elements satisfying the conditions of the problem.

$$A_{1} = (-1, 0, 0, 0, \dots, 0, 0)$$

$$A_{2} = \left(\frac{1}{n}, -c_{1}, 0, 0, \dots, 0, 0\right)$$

$$A_{3} = \left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, -c_{2}, 0, \dots, 0, 0\right)$$

$$A_{4} = \left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-1} \cdot c_{2}, -c_{3}, \dots, 0, 0\right)$$

$$A_{n-1} = \left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-2} \cdot c_{2}, \frac{1}{n-3} \cdot c_{3}, \dots, -c_{n-2}, 0\right)$$

$$A_{n} = \left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-2} \cdot c_{1}, \frac{1}{n-3} \cdot c_{3}, \dots, \frac{1}{2} \cdot c_{n-2}, -c_{n-1}\right)$$

$$A_{n+1} = \left(\frac{1}{n}, \frac{1}{n-1} \cdot c_{1}, \frac{1}{n-2} \cdot c_{2}, \frac{1}{n-3} \cdot c_{3}, \dots, \frac{1}{2} \cdot c_{n-2}, -c_{n-1}\right)$$

where

$$c_k = \sqrt{\left(1 + \frac{1}{n}\right)\left(1 - \frac{1}{n-k+1}\right)}, \quad k = \overline{1, n-1}.$$

We have $\sum_{k=1}^{n} x_k y_k = -\frac{1}{n} < 0$ and $\sum_{k=1}^{n} x_k^2 = 1$, $\forall X, Y \in \{A_1, \dots, A_{n+1}\}$.

These points are on the unit sphere in \mathbb{R}^n and the distance between any two points is equal to

$$d = \sqrt{2}\sqrt{1 + \frac{1}{n}} > \sqrt{2}.$$

Remark. For n = 2 the points form an equilateral triangle in the unit circle; for n = 3 the four points from a regular tetrahedron and in \mathbb{R}^n the points from an n dimensional regular simplex.

Problem 4.

Let $A = (a_{k,\ell})_{k,\ell=1,\ldots,n}$ be an $n \times n$ complex matrix such that for each $m \in \{1,\ldots,n\}$ and $1 \leq j_1 < \ldots < j_m \leq n$ the determinant of the matrix $(a_{j_k,j_\ell})_{k,\ell=1,\ldots,m}$ is zero. Prove that $A^n = 0$ and that there exists a permutation $\sigma \in S_n$ such that the matrix

$$(a_{\sigma(k),\sigma(\ell)})_{k,\ell=1,\ldots,n}$$

has all of its nonzero elements above the diagonal.

Solution. We will only prove (2), since it implies (1). Consider a directed graph G with n vertices V_1, \ldots, V_n and a directed edge from V_k to V_ℓ when $a_{k,\ell} \neq 0$. We shall prove that it is acyclic.

Assume that there exists a cycle and take one of minimum length m. Let $j_1 < \ldots < j_m$ be the vertices the cycle goes through and let $\sigma_0 \in S_n$ be a permutation such that $a_{j_k,j_{\sigma_0(k)}} \neq 0$ for $k = 1,\ldots,m$. Observe that for any other $\sigma \in S_n$ we have $a_{j_k,j_{\sigma(k)}} = 0$ for some $k \in \{1,\ldots,m\}$, otherwise we would obtain a different cycle through the same set of vertices and, consequently, a shorter cycle. Finally

$$0 = \det(a_{j_k, j_\ell})_{k,\ell=1,\dots,m}$$

$$= (-1)^{\text{sign } \sigma_0} \prod_{k=1}^m a_{j_k, j_{\sigma_0(k)}} + \sum_{\sigma \neq \sigma_0} (-1)^{\text{sign } \sigma} \prod_{k=1}^m a_{j_k, j_{\sigma(k)}} \neq 0,$$

which is a contradiction.

Since G is acyclic there exists a topological ordering i.e. a permutation $\sigma \in S_n$ such that $k < \ell$ whenever there is an edge from $V_{\sigma(k)}$ to $V_{\sigma(\ell)}$. It is easy to see that this permutation solves the problem.

Problem 5. Let \mathbb{R} be the set of real numbers. Prove that there is no function $f : \mathbb{R} \to \mathbb{R}$ with f(0) > 0, and such that

$$f(x+y) \ge f(x) + yf(f(x))$$
 for all $x, y \in \mathbb{R}$.

Solution. Suppose that there exists a function satisfying the inequality. If $f(f(x)) \leq 0$ for all x, then f is a decreasing function in view of the inequalities $f(x+y) \geq f(x) + yf(f(x)) \geq f(x)$ for any $y \leq 0$. Since $f(0) > 0 \geq f(f(x))$, it implies f(x) > 0 for all x, which is a contradiction. Hence there is a z such that f(f(z)) > 0. Then the inequality $f(z+x) \geq f(z) + xf(f(z))$ shows that $\lim_{x \to \infty} f(x) = +\infty$ and therefore $\lim_{x \to \infty} f(f(x)) = +\infty$. In particular, there exist x, y > 0 such that $f(x) \geq 0$, f(f(x)) > 1, $y \geq \frac{x+1}{f(f(x))-1}$ and $f(f(x+y+1)) \geq 0$. Then $f(x+y) \geq f(x) + yf(f(x)) \geq x + y + 1$ and hence

$$\begin{array}{rcl} f(f(x+y)) & \geq & f(x+y+1) + \left(f(x+y) - (x+y+1)\right) f(f(x+y+1)) \geq \\ & \geq & f(x+y+1) \geq f(x+y) + f(f(x+y)) \geq \\ & \geq & f(x) + y f(f(x)) + f(f(x+y)) > f(f(x+y)). \end{array}$$

This contradiction completes the solution of the problem.

Problem 6.

For each positive integer n, let $f_n(\vartheta) = \sin \vartheta \cdot \sin(2\vartheta) \cdot \sin(4\vartheta) \cdots \sin(2^n \vartheta)$. For all real ϑ and all n, prove that

$$|f_n(\vartheta)| \le \frac{2}{\sqrt{3}} |f_n(\pi/3)|.$$

Solution. We prove that $g(\vartheta) = |\sin \vartheta| |\sin(2\vartheta)|^{1/2}$ attains its maximum value $(\sqrt{3}/2)^{3/2}$ at points $2^k \pi/3$ (where k is a positive integer). This can be seen by using derivatives or a classical bound like

$$\begin{aligned} |g(\vartheta)| &= |\sin\vartheta| |\sin(2\vartheta)|^{1/2} = \frac{\sqrt{2}}{\sqrt[4]{3}} \left(\sqrt[4]{|\sin\vartheta| \cdot |\sin\vartheta| \cdot |\sin\vartheta| \cdot |\sqrt{3}\cos\vartheta|} \right)^2 \\ &\leq \frac{\sqrt{2}}{\sqrt[4]{3}} \cdot \frac{3\sin^2\vartheta + 3\cos^2\vartheta}{4} = \left(\frac{\sqrt{3}}{2}\right)^{3/2}. \end{aligned}$$

Hence

$$\left|\frac{f_n(\vartheta)}{f_n(\pi/3)}\right| = \left|\frac{g(\vartheta) \cdot g(2\vartheta)^{1/2} \cdot g(4\vartheta)^{3/4} \cdots g(2^{n-1}\vartheta)^E}{g(\pi/3) \cdot g(2\pi/3)^{1/2} \cdot g(4\pi/3)^{3/4} \cdots g(2^{n-1}\pi/3)^E}\right| \cdot \left|\frac{\sin(2^n\vartheta)}{\sin(2^n\pi/3)}\right|^{1-E/2} \le \left|\frac{\sin(2^n\vartheta)}{\sin(2^n\pi/3)}\right|^{1-E/2} \le \left(\frac{1}{\sqrt{3}/2}\right)^{1-E/2} \le \frac{2}{\sqrt{3}}.$$

where $E = \frac{2}{3}(1 - (-1/2)^n)$. This is exactly the bound we had to prove.