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Problems and Solutions

Problem 1.
Let {&,}52 1 be a sequence of positive real numbers, such that lim &, =
n—oo

0. Find .
1 k
lim —Zln (— —{—sn) ,
Lt n
where In denotes the natural logarithm.

Solution.
It is well known that

k

1 1 n
-1 :/ Inzdx = lim —Zln (—)
0 n—oo n, n
k=1
(Riemman’s sums). Then
1 & k 1 & k
—Zln (——i—sn) > —Zln (—) — —1.
n i n n i n,) n—oo
Given € > 0 there exist ng such that 0 < e, < ¢ for all n > ny. Then
1 & k 1 & k
—Zln <——|—6n) < —Zln <—+e> .
n = n Ut n
Since

1 & k 1
lim — Z In <— + e> = / In(x + €)dx
n—oo n, P n 0

1+¢
= / In zdx
€



we obtain the result when € goes to 0 and so

N k
lim —Zln —+e, ) =—-1

Problem 2.
o0

Suppose > a, converges. Do the following sums have to converge as
n=1
well?

a) a1 +ag+aq4+ag+ag+ar+ag+as+aegtas+---+ag+azz+---

b) a) +az +a3+aq4+as+ a7+ ag+ag+ag+aj; + a3+ a5 + ag +
ai2 + aiq + aie + a7 +aig + - -

Justify your answers.

Solution.

o0 n
a) Yes. Let S = Y an, S, = Y ag. Fix e > 0 and a number ng such
n=1 k=1

that |S, — S| < e for n > ng. The partial sums of the permuted series have

the form Lon—1,; = Son—1 4 Son — Son_p, 0 < k < 27~1 and for 27! > ngy we

have |Lon-1,;, — S| < 3¢, i.e. the permuted series converges.

(_1)n+1 h L S 2n7171 1

———Then n—2 = Son-1 + -
NG 3.2n—2 gn-1 k:§—2 1

— 00, 80 Lgon-2 — 0.
n—oo

1
A /2n n—oo

b) No. Take a,, =

and L3.2n—2 — Sanl Z 2”72

Problem 3.
Let A and B be real nxn matrices such that A24+B2=AB. Prove that
if BA — AB is an invertible matrix then n is divisible by 3.

1 3
Set S = A+ wB, where w = —3 +i§' We have

Solution.

SS = (A+wB)(A+wB)=A*>+wBA+wWAB + B?
= AB+wBA+WAB =w(BA - AB),

because @ + 1 = —w. Since det(SS) = detS.det S is a real number and
detw(BA — AB) = w"det(BA — AB) and det(BA — AB) # 0, then w™ is a

real number. This is possible only when n is divisible by 3.



Problem 4.
Let a be a real number, 1 < a < 2.
a) Show that a has a unique representation as an infinite product

o (124 )

where each n; is a positive integer satisfying
2
n; < Njy1.

b) Show that « is rational if and only if its infinite product has the
following property:
For some m and all £k > m,

2

Solution.
a) We construct inductively the sequence {n;} and the ratios

«

O = ——
T+ %)

so that
0, > 1 for all k.

Choose nj to be the least n for which

1
1+ — <0k
n
(0o = «) so that for each k,
1
(1) 1+ — <0, 1 <1+ .
ng ng — 1
Since
Orh—1 <1+
nk—l
we have .
Or_ I+ = 1
Nk+1 1+n—k 1+n—k ’I’Lk—l



2
Hence, for each k, np41 > ny.
Since n1 > 2, nj — oo so that 6, — 1. Hence

o0

oz:H(l%—nik).

1

The uniquness of the infinite product will follow from the fact that on
every step ny has to be determine by (1).
Indeed, if for some k we have

1
1+ — >0,
ng

then 0, <1, 0x+1 < 1 and hence {6} does not converge to 1.
Now observe that for M > 1,

2) <1+1)(1+1)<1+1> —1+1+1+1+ =1+ L
M M? M4 M M2 M3 O M-1

Assume that for some k& we have

14 <Or
ny —
Then we get
o Or—1
1 1 - 1 !
T+ +5) - 40+ )
0, 0.

- 1+l k11 0y 1 >

— a contradiction.
b) From (2) « is rational if its product ends in the stated way.

Conversely, suppose « is the rational number P Our aim is to show
q
that for some m,
N

Op—1 = .
m-—1 Ny, — 1

Suppose this is not the case, so that for every m,

Nm

(3) O <

N — 1



For each k& we write
_m

ak
as a fraction (not necessarily in lowest terms) where

O

Po=D, 9o =4
and in general
Pk = Pk—1T%, Q& = qe—1(ng + 1).

The numbers pi — g are positive integers: to obtain a contradiction it suffices
to show that this sequence is strictly decreasing. Now,

Pk — qk — (Pk—1 — Qe—1) = nPr—1 — (Mg + 1)qr—1 — Pr—1 + qk—1

= (ng— 1)pr—1 — NpQr—1

and this is negative because

—1 n
Pk _ 919—1 < k

k-1 ng —1

by inequality (3).

Problem 5. For a natural n consider the hyperplane

n
0= {x = (z1,22,...,2,) € R": le = O}
i=1
and the lattice Z' = {y € Rjj : all y; are integers}. Define the (quasi-)norm
n 1/p
in R by ||, = <z |xi|p> i 0 < p < o0, and ||zle = max |z
=1 v
a) Let = € R{ be such that
max x; —minz; < 1.
7 (2
For every p € [1,00] and for every y € Z§ prove that
lzllp < llz + yllp-
b) For every p € (0,1), show that there is an n and an x € R{ with

maxz; —minz; < 1 and an y € Z such that
(2 (2

zllp > Nl + yllp-



Solution.
a) For z = 0 the statement is trivial. Let  # 0. Then max x; > 0 and

minz; < 0. Hence ||z||oc < 1. From the hypothesis on x it follov:/s that:
' i) If z; < 0 then maxz; < z; + 1.
ii) If ; > 0 then rrilnm, >x; — 1L
Consider y € Z§, ;; # 0. We split the indices {1,2,...,n} into five
sets:

1(0) = {i : y; = 0},
I+,+)={i:yi >0,2; >0}, I(+,—)={i:y; >0,2; <0},
I(—,+):{i:yi<0,xi>0}, I(—,—):{i:yi<0,xi§0}.

As least one of the last four index sets is not empty. If I(4+,+) # O or
I(—,—) # O then ||z + ylloc > 1 > [|2]. If I(+,4) = I(—,—) = O then

> y; = 0 implies I(+,—) # @ and I(—,+) # . Therefore i) and ii) give
|z 4+ ylloo > ||]|oc which completes the case p = co.
Now let 1 < p < oo. Then using i) for every j € I(+,—) we get
lzj+yjl =y —1+x;+1>|y;| -1 + max ;. Hence
lzj +y;|” > |yj| — 1+ |ag? for every k € I(—,+) and j € I(+,-).
Similarly
lzj +y;|P > |yj| — 1+ |ag? for every k€ I(+,—) and j € I(—,+);

|z; + y;|P > |y;| + |z;|P for every j € I(+,+)UI(—,—).

Assume that >3 1> > 1. Then
JeI(+,—) JEI(—,+)

12+ yll; = ll=[5

= > (\%erj\p—\xj!p)Jr( doolmitylP— Y !wk!p)

JeI(+,+)UI(—,—) JEI(+,—) kel(—,+)

+( > larul - Y )\mp)

JjeI(—,+) kel(+,—
> Z |y]| + Z |yj| -1
JEI(+,+)UI(—,—) JEI(+,—)



+( > (yl-1n- > 1+ Z)l)

jeI(—,4) jeI(+,-) jeI(—,+
= Ylwl—-2 > 1=2 > (-D+2 >  y;=>0
i=1 JEI(+,-) JEI(+,—) JEI(+,+)

The case >, 1< Y 1 is similar. This proves the statement.
jEI(+,—) jEI(—,+)
b) Fix p € (0,1) and a rational ¢t € (3,1). Choose a pair of positive
integers m and [ such that mt =I(1 —¢) and set n = m +[. Let

z; =t, 1=1,2,....m; z,=t—1, 1=m+1m+2,...,n;

yi=—1, i=12....m; Ymr1=m; y;=0,i=m+2,...,n.

Then x € Rfj, maxx; —minz; =1, y € Z§ and
1 7
Jolls o+ gl = m(E? — (1~ 67) + (1~ 0 — (m 1+,

which is possitive for m big enough.

Problem 6. Suppose that F is a family of finite subsets of N and for
any two sets A, B € F we have AN B # (.

a) Is it true that there is a finite subset Y of N such that for any
A,B € F we have ANBNY # 07

b) Is the statement a) true if we suppose in addition that all of the
members of F' have the same size?

Justify your answers.

Solution.

a) No. Consider F' = {A1, By,..., Ay, By, ...}, where A, = {1,3,5,...,2n—
1,2n}, B, = {2,4,6,...,2n,2n + 1}.

b) Yes. We will prove inductively a stronger statement:

Suppose F', G are

two families of finite subsets of N such that:
1) For every A € F and B € G we have AN B # O;
2) All the elements of F' have the same size r, and elements of G — size s. (we
shall write #(F) =, #(G) = s).



Then there is a finite set Y such that AUBUY # O for every A € F and
B ed.

The problem b) follows if we take F' = G.

Proof of the statement: The statement is obvious for r = s = 1.
Fix the numbers r, s and suppose the statement is proved for all pairs F’, G’
with #(F') < r, #(G') < s. Fix Ay € F, By € G. For any subset C C AgU By,
denote

F(C):{AEFAQ(A()UBQ):C}

Then F = U F(C). It is enough to prove that for any pair of non-
D#CCAUBy

empty sets C, D C AgU By the families F/(C) and G(D) satisfy the statement.
Indeed, if we denote by Yc p the corresponding finite set, then the

finite set U Yo p will satisfy the statement for F' and G. The proof
C,DCAoUBy '

for F(C') and G(D).

If CND# 0@, it is trivial.

If CND = @, then any two sets A € F(C), B € G(D) must meet
outside Ag U By. Then if we denote F(C) = {A\ C : A € F(C)}, G(D) =
{B\' D : B € G(D)}, then F(C) and G(D) satisfy the conditions 1) and 2)
above, with #(F(C)) = #(F) — #C < r, #(G(D)) = #(G) — #D < s, and

the inductive assumption works.



