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Problems and Solutions

Problem 1.

Let {εn}∞n=1 be a sequence of positive real numbers, such that lim
n→∞

εn =

0. Find

lim
n→∞

1

n

n
∑

k=1

ln

(

k

n
+ εn

)

,

where ln denotes the natural logarithm.

Solution.

It is well known that

−1 =

∫ 1

0
lnxdx = lim

n→∞

1

n

n
∑

k=1

ln

(

k

n

)

(Riemman’s sums). Then

1

n

n
∑

k=1

ln

(

k

n
+ εn

)

≥ 1

n

n
∑

k=1

ln

(

k

n

)

−→
n→∞

−1.

Given ε > 0 there exist n0 such that 0 < εn ≤ ε for all n ≥ n0. Then

1

n

n
∑

k=1

ln

(

k

n
+ εn

)

≤ 1

n

n
∑

k=1

ln

(

k

n
+ ε

)

.

Since

lim
n→∞

1

n

n
∑

k=1

ln

(

k

n
+ ε

)

=

∫ 1

0
ln(x + ε)dx

=

∫ 1+ε

ε
lnxdx
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we obtain the result when ε goes to 0 and so

lim
n→∞

1

n

n
∑

k=1

ln

(

k

n
+ εn

)

= −1.

Problem 2.

Suppose
∞
∑

n=1
an converges. Do the following sums have to converge as

well?

a) a1 +a2 +a4 +a3 +a8 +a7 +a6 +a5 +a16 +a15 + · · ·+a9 +a32 + · · ·
b) a1 + a2 + a3 + a4 + a5 + a7 + a6 + a8 + a9 + a11 + a13 + a15 + a10 +

a12 + a14 + a16 + a17 + a19 + · · ·
Justify your answers.

Solution.

a) Yes. Let S =
∞
∑

n=1
an, Sn =

n
∑

k=1
ak. Fix ε > 0 and a number n0 such

that |Sn − S| < ε for n > n0. The partial sums of the permuted series have

the form L2n−1+k = S2n−1 + S2n − S2n−k, 0 ≤ k < 2n−1 and for 2n−1 > n0 we

have |L2n−1+k − S| < 3ε, i.e. the permuted series converges.

b) No. Take an =
(−1)n+1

√
n

.Then L3.2n−2 = S2n−1 +
2n−1−1

∑

k=2n−2

1√
2k + 1

and L3.2n−2 − S2n−1 ≥ 2n−2 1√
2n

−→
n→∞

∞, so L3.2n−2 −→
n→∞

∞.

Problem 3.

Let A and B be real n×n matrices such that A2+B2=AB. Prove that

if BA−AB is an invertible matrix then n is divisible by 3.

Solution.

Set S = A + ωB, where ω = −1

2
+ i

√
3

2
. We have

SS = (A + ωB)(A + ωB) = A2 + ωBA + ωAB + B2

= AB + ωBA + ωAB = ω(BA−AB),

because ω + 1 = −ω. Since det(SS) = detS.det S is a real number and

detω(BA − AB) = ωn det(BA − AB) and det(BA − AB) 6= 0, then ωn is a

real number. This is possible only when n is divisible by 3.
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Problem 4.

Let α be a real number, 1 < α < 2.

a) Show that α has a unique representation as an infinite product

α =

(

1 +
1

n1

) (

1 +
1

n2

)

. . .

where each ni is a positive integer satisfying

n2
i ≤ ni+1.

b) Show that α is rational if and only if its infinite product has the

following property:

For some m and all k ≥ m,

nk+1 = n2
k.

Solution.

a) We construct inductively the sequence {ni} and the ratios

θk =
α

∏k
1(1 + 1

ni
)

so that

θk > 1 for all k.

Choose nk to be the least n for which

1 +
1

n
< θk−1

(θ0 = α) so that for each k,

(1) 1 +
1

nk
< θk−1 ≤ 1 +

1

nk − 1
.

Since

θk−1 ≤ 1 +
1

nk − 1

we have

1 +
1

nk+1
< θk =

θk−1

1 + 1
nk

≤
1 + 1

nk−1

1 + 1
nk

= 1 +
1

n2
k − 1

.
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Hence, for each k, nk+1 ≥ n2
k.

Since n1 ≥ 2, nk →∞ so that θk → 1. Hence

α =
∞
∏

1

(

1 +
1

nk

)

.

The uniquness of the infinite product will follow from the fact that on

every step nk has to be determine by (1).

Indeed, if for some k we have

1 +
1

nk
≥ θk−1

then θk ≤ 1, θk+1 < 1 and hence {θk} does not converge to 1.

Now observe that for M > 1,

(2)

(

1 +
1

M

) (

1 +
1

M2

) (

1 +
1

M4

)

· · · = 1+
1

M
+

1

M2
+

1

M3
+· · · = 1+

1

M − 1
.

Assume that for some k we have

1 +
1

nk − 1
< θk−1.

Then we get

α

(1 + 1
n1

)(1 + 1
n2

) . . .
=

θk−1

(1 + 1
nk

)(1 + 1
nk+1

) . . .

≥ θk−1

(1 + 1
nk

)(1 + 1
n2

k

) . . .
=

θk−1

1 + 1
nk−1

> 1

– a contradiction.

b) From (2) α is rational if its product ends in the stated way.

Conversely, suppose α is the rational number
p

q
. Our aim is to show

that for some m,

θm−1 =
nm

nm − 1
.

Suppose this is not the case, so that for every m,

(3) θm−1 <
nm

nm − 1
.
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For each k we write

θk =
pk

qk

as a fraction (not necessarily in lowest terms) where

p0 = p, q0 = q

and in general

pk = pk−1nk, qk = qk−1(nk + 1).

The numbers pk− qk are positive integers: to obtain a contradiction it suffices

to show that this sequence is strictly decreasing. Now,

pk − qk − (pk−1 − qk−1) = nkpk−1 − (nk + 1)qk−1 − pk−1 + qk−1

= (nk − 1)pk−1 − nkqk−1

and this is negative because

pk−1

qk−1
= θk−1 <

nk

nk − 1

by inequality (3).

Problem 5. For a natural n consider the hyperplane

Rn
0 =

{

x = (x1, x2, . . . , xn) ∈ R
n :

n
∑

i=1

xi = 0

}

and the lattice Zn
0 = {y ∈ Rn

0 : all yi are integers}. Define the (quasi–)norm

in R
n by ‖x‖p =

(

n
∑

i=1
|xi|p

)1/p

if 0 < p < ∞, and ‖x‖∞ = max
i
|xi|.

a) Let x ∈ Rn
0 be such that

max
i

xi −min
i

xi ≤ 1.

For every p ∈ [1,∞] and for every y ∈ Zn
0 prove that

‖x‖p ≤ ‖x + y‖p.

b) For every p ∈ (0, 1), show that there is an n and an x ∈ Rn
0 with

max
i

xi −min
i

xi ≤ 1 and an y ∈ Zn
0 such that

‖x‖p > ‖x + y‖p.
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Solution.

a) For x = 0 the statement is trivial. Let x 6= 0. Then max
i

xi > 0 and

min
i

xi < 0. Hence ‖x‖∞ < 1. From the hypothesis on x it follows that:

i) If xj ≤ 0 then max
i

xi ≤ xj + 1.

ii) If xj ≥ 0 then min
i

xi ≥ xj − 1.

Consider y ∈ Zn
0 , y 6= 0. We split the indices {1, 2, . . . , n} into five

sets:

I(0) = {i : yi = 0},

I(+,+) = {i : yi > 0, xi ≥ 0}, I(+,−) = {i : yi > 0, xi < 0},

I(−,+) = {i : yi < 0, xi > 0}, I(−,−) = {i : yi < 0, xi ≤ 0}.

As least one of the last four index sets is not empty. If I(+,+) 6= Ø or

I(−,−) 6= Ø then ‖x + y‖∞ ≥ 1 > ‖x‖∞. If I(+,+) = I(−,−) = Ø then
∑

yi = 0 implies I(+,−) 6= Ø and I(−,+) 6= Ø. Therefore i) and ii) give

‖x + y‖∞ ≥ ‖x‖∞ which completes the case p = ∞.

Now let 1 ≤ p < ∞. Then using i) for every j ∈ I(+,−) we get

|xj + yj| = yj − 1 + xj + 1 ≥ |yj | − 1 + max
i

xi. Hence

|xj + yj|p ≥ |yj| − 1 + |xk|p for every k ∈ I(−,+) and j ∈ I(+,−).

Similarly

|xj + yj|p ≥ |yj| − 1 + |xk|p for every k ∈ I(+,−) and j ∈ I(−,+);

|xj + yj|p ≥ |yj |+ |xj |p for every j ∈ I(+,+) ∪ I(−,−).

Assume that
∑

j∈I(+,−)
1 ≥ ∑

j∈I(−,+)
1. Then

‖x + y‖p
p − ‖x‖p

p

=
∑

j∈I(+,+)∪I(−,−)

(|xj + yj |p − |xj|p) +





∑

j∈I(+,−)

|xj + yj|p −
∑

k∈I(−,+)

|xk|p




+





∑

j∈I(−,+)

|xj + yj|p −
∑

k∈I(+,−)

|xk|p




≥
∑

j∈I(+,+)∪I(−,−)

|yj|+
∑

j∈I(+,−)

(|yj | − 1)
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+





∑

j∈I(−,+)

(|yj | − 1)−
∑

j∈I(+,−)

1 +
∑

j∈I(−,+)

1





=
n

∑

i=1

|yi| − 2
∑

j∈I(+,−)

1 = 2
∑

j∈I(+,−)

(yj − 1) + 2
∑

j∈I(+,+)

yj ≥ 0.

The case
∑

j∈I(+,−)
1 ≤ ∑

j∈I(−,+)
1 is similar. This proves the statement.

b) Fix p ∈ (0, 1) and a rational t ∈ ( 1
2 , 1). Choose a pair of positive

integers m and l such that mt = l(1− t) and set n = m + l. Let

xi = t, i = 1, 2, . . . ,m; xi = t− 1, i = m + 1,m + 2, . . . , n;

yi = −1, i = 1, 2, . . . ,m; ym+1 = m; yi = 0, i = m + 2, . . . , n.

Then x ∈ Rn
0 , max

i
xi −min

i
xi = 1, y ∈ Zn

0 and

‖x‖p
p − ‖x + y‖p

p = m(tp − (1− t)p) + (1− t)p − (m− 1 + t)p,

which is possitive for m big enough.

Problem 6. Suppose that F is a family of finite subsets of N and for

any two sets A,B ∈ F we have A ∩B 6= Ø.

a) Is it true that there is a finite subset Y of N such that for any

A,B ∈ F we have A ∩B ∩ Y 6= Ø?

b) Is the statement a) true if we suppose in addition that all of the

members of F have the same size?

Justify your answers.

Solution.

a) No. Consider F = {A1, B1, . . . , An, Bn, . . .}, where An = {1, 3, 5, . . . , 2n−
1, 2n}, Bn = {2, 4, 6, . . . , 2n, 2n + 1}.

b) Yes. We will prove inductively a stronger statement:

Suppose F , G are

two families of finite subsets of N such that:

1) For every A ∈ F and B ∈ G we have A ∩B 6= Ø;

2) All the elements of F have the same size r, and elements of G – size s. (we

shall write #(F ) = r, #(G) = s).

7



Then there is a finite set Y such that A ∪ B ∪ Y 6= Ø for every A ∈ F and

B ∈ G.

The problem b) follows if we take F = G.

Proof of the statement: The statement is obvious for r = s = 1.

Fix the numbers r, s and suppose the statement is proved for all pairs F ′, G′

with #(F ′) < r, #(G′) < s. Fix A0 ∈ F , B0 ∈ G. For any subset C ⊂ A0∪B0,

denote

F (C) = {A ∈ F : A ∩ (A0 ∪B0) = C}.

Then F = ∪
Ø6=C⊂A0∪B0

F (C). It is enough to prove that for any pair of non-

empty sets C,D ⊂ A0∪B0 the families F (C) and G(D) satisfy the statement.

Indeed, if we denote by YC,D the corresponding finite set, then the

finite set ∪
C,D⊂A0∪B0

YC,D will satisfy the statement for F and G. The proof

for F (C) and G(D).

If C ∩D 6= Ø, it is trivial.

If C ∩ D = Ø, then any two sets A ∈ F (C), B ∈ G(D) must meet

outside A0 ∪ B0. Then if we denote F̃ (C) = {A \ C : A ∈ F (C)}, G̃(D) =

{B \ D : B ∈ G(D)}, then F̃ (C) and G̃(D) satisfy the conditions 1) and 2)

above, with #(F̃ (C)) = #(F ) −#C < r, #(G̃(D)) = #(G) − #D < s, and

the inductive assumption works.
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