International Competition in Mathematics for
 Universtiy Students
 in

Plovdiv, Bulgaria
1995

PROBLEMS AND SOLUTIONS

First day

Problem 1. (10 points)
Let X be a nonsingular matrix with columns $X_{1}, X_{2}, \ldots, X_{n}$. Let Y be a matrix with columns $X_{2}, X_{3}, \ldots, X_{n}, 0$. Show that the matrices $A=Y X^{-1}$ and $B=X^{-1} Y$ have rank $n-1$ and have only 0 's for eigenvalues.

Solution. Let $J=\left(a_{i j}\right)$ be the $n \times n$ matrix where $a_{i j}=1$ if $i=j+1$ and $a_{i j}=0$ otherwise. The rank of J is $n-1$ and its only eigenvalues are 0^{\prime} s. Moreover $Y=X J$ and $A=Y X^{-1}=X J X^{-1}, B=X^{-1} Y=J$. It follows that both A and B have rank $n-1$ with only 0^{\prime} s for eigenvalues.

Problem 2. (15 points)
Let f be a continuous function on $[0,1]$ such that for every $x \in[0,1]$ we have $\int_{x}^{1} f(t) d t \geq \frac{1-x^{2}}{2}$. Show that $\int_{0}^{1} f^{2}(t) d t \geq \frac{1}{3}$.

Solution. From the inequality

$$
0 \leq \int_{0}^{1}(f(x)-x)^{2} d x=\int_{0}^{1} f^{2}(x) d x-2 \int_{0}^{1} x f(x) d x+\int_{0}^{1} x^{2} d x
$$

we get

$$
\int_{0}^{1} f^{2}(x) d x \geq 2 \int_{0}^{1} x f(x) d x-\int_{0}^{1} x^{2} d x=2 \int_{0}^{1} x f(x) d x-\frac{1}{3}
$$

From the hypotheses we have $\int_{0}^{1} \int_{x}^{1} f(t) d t d x \geq \int_{0}^{1} \frac{1-x^{2}}{2} d x$ or $\int_{0}^{1} t f(t) d t \geq$ $\frac{1}{3}$. This completes the proof.

Problem 3. (15 points)
Let f be twice continuously differentiable on $(0,+\infty)$ such that $\lim _{x \rightarrow 0+} f^{\prime}(x)=-\infty$ and $\lim _{x \rightarrow 0+} f^{\prime \prime}(x)=+\infty$. Show that

$$
\lim _{x \rightarrow 0+} \frac{f(x)}{f^{\prime}(x)}=0
$$

Solution. Since f^{\prime} tends to $-\infty$ and $f^{\prime \prime}$ tends to $+\infty$ as x tends to $0+$, there exists an interval $(0, r)$ such that $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for all $x \in(0, r)$. Hence f is decreasing and f^{\prime} is increasing on $(0, r)$. By the mean value theorem for every $0<x<x_{0}<r$ we obtain

$$
f(x)-f\left(x_{0}\right)=f^{\prime}(\xi)\left(x-x_{0}\right)>0,
$$

for some $\xi \in\left(x, x_{0}\right)$. Taking into account that f^{\prime} is increasing, $f^{\prime}(x)<$ $f^{\prime}(\xi)<0$, we get

$$
x-x_{0}<\frac{f^{\prime}(\xi)}{f^{\prime}(x)}\left(x-x_{0}\right)=\frac{f(x)-f\left(x_{0}\right)}{f^{\prime}(x)}<0 .
$$

Taking limits as x tends to $0+$ we obtain

$$
-x_{0} \leq \liminf _{x \rightarrow 0+} \frac{f(x)}{f^{\prime}(x)} \leq \limsup _{x \rightarrow 0+} \frac{f(x)}{f^{\prime}(x)} \leq 0 .
$$

Since this happens for all $x_{0} \in(0, r)$ we deduce that $\lim _{x \rightarrow 0+} \frac{f(x)}{f^{\prime}(x)}$ exists and $\lim _{x \rightarrow 0+} \frac{f(x)}{f^{\prime}(x)}=0$.

Problem 4. (15 points)
Let $F:(1, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
F(x):=\int_{x}^{x^{2}} \frac{d t}{\ln t} .
$$

Show that F is one-to-one (i.e. injective) and find the range (i.e. set of values) of F.

Solution. From the definition we have

$$
F^{\prime}(x)=\frac{x-1}{\ln x}, \quad x>1 .
$$

Therefore $F^{\prime}(x)>0$ for $x \in(1, \infty)$. Thus F is strictly increasing and hence one-to-one. Since

$$
F(x) \geq\left(x^{2}-x\right) \min \left\{\frac{1}{\ln t}: x \leq t \leq x^{2}\right\}=\frac{x^{2}-x}{\ln x^{2}} \rightarrow \infty
$$

as $x \rightarrow \infty$, it follows that the range of F is $(F(1+), \infty)$. In order to determine $F(1+)$ we substitute $t=e^{v}$ in the definition of F and we get

$$
F(x)=\int_{\ln x}^{2 \ln x} \frac{e^{v}}{v} d v
$$

Hence

$$
F(x)<e^{2 \ln x} \int_{\ln x}^{2 \ln x} \frac{1}{v} d v=x^{2} \ln 2
$$

and similarly $F(x)>x \ln 2$. Thus $F(1+)=\ln 2$.

Problem 5. (20 points)
Let A and B be real $n \times n$ matrices. Assume that there exist $n+1$ different real numbers $t_{1}, t_{2}, \ldots, t_{n+1}$ such that the matrices

$$
C_{i}=A+t_{i} B, \quad i=1,2, \ldots, n+1,
$$

are nilpotent (i.e. $C_{i}^{n}=0$).
Show that both A and B are nilpotent.
Solution. We have that

$$
(A+t B)^{n}=A^{n}+t P_{1}+t^{2} P_{2}+\cdots+t^{n-1} P_{n-1}+t^{n} B^{n}
$$

for some matrices $P_{1}, P_{2}, \ldots, P_{n-1}$ not depending on t.
Assume that $a, p_{1}, p_{2}, \ldots, p_{n-1}, b$ are the (i, j)-th entries of the corresponding matrices $A^{n}, P_{1}, P_{2}, \ldots, P_{n-1}, B^{n}$. Then the polynomial

$$
b t^{n}+p_{n-1} t^{n-1}+\cdots+p_{2} t^{2}+p_{1} t+a
$$

has at least $n+1$ roots $t_{1}, t_{2}, \ldots, t_{n+1}$. Hence all its coefficients vanish. Therefore $A^{n}=0, B^{n}=0, P_{i}=0$; and A and B are nilpotent.

Problem 6. (25 points)
Let $p>1$. Show that there exists a constant $K_{p}>0$ such that for every $x, y \in \mathbb{R}$ satisfying $|x|^{p}+|y|^{p}=2$, we have

$$
(x-y)^{2} \leq K_{p}\left(4-(x+y)^{2}\right) .
$$

Solution. Let $0<\delta<1$. First we show that there exists $K_{p, \delta}>0$ such that

$$
f(x, y)=\frac{(x-y)^{2}}{4-(x+y)^{2}} \leq K_{p, \delta}
$$

for every $(x, y) \in D_{\delta}=\left\{(x, y):|x-y| \geq \delta,|x|^{p}+|y|^{p}=2\right\}$.
Since D_{δ} is compact it is enough to show that f is continuous on D_{δ}. For this we show that the denominator of f is different from zero. Assume the contrary. Then $|x+y|=2$, and $\left|\frac{x+y}{2}\right|^{p}=1$. Since $p>1$, the function $g(t)=|t|^{p}$ is strictly convex, in other words $\left|\frac{x+y}{2}\right|^{p}<\frac{|x|^{p}+|y|^{p}}{2}$ whenever $x \neq y . \quad$ So for some $(x, y) \in D_{\delta}$ we have $\left|\frac{x+y}{2}\right|^{p}<\frac{|x|^{p}+|y|^{p}}{2}=1=$ $\left|\frac{x+y}{2}\right|^{p}$. We get a contradiction.

If x and y have different signs then $(x, y) \in D_{\delta}$ for all $0<\delta<1$ because then $|x-y| \geq \max \{|x|,|y|\} \geq 1>\delta$. So we may further assume without loss of generality that $x>0, y>0$ and $x^{p}+y^{p}=2$. Set $x=1+t$. Then

$$
\begin{aligned}
y & =\left(2-x^{p}\right)^{1 / p}=\left(2-(1+t)^{p}\right)^{1 / p}=\left(2-\left(1+p t+\frac{p(p-1)}{2} t^{2}+o\left(t^{2}\right)\right)\right)^{1 / p} \\
& =\left(1-p t-\frac{p(p-1)}{2} t^{2}+o\left(t^{2}\right)\right)^{1 / p} \\
& =1+\frac{1}{p}\left(-p t-\frac{p(p-1)}{2} t^{2}+o\left(t^{2}\right)\right)+\frac{1}{2 p}\left(\frac{1}{p}-1\right)(-p t+o(t))^{2}+o\left(t^{2}\right) \\
& =1-t-\frac{p-1}{2} t^{2}+o\left(t^{2}\right)-\frac{p-1}{2} t^{2}+o\left(t^{2}\right) \\
& =1-t-(p-1) t^{2}+o\left(t^{2}\right) .
\end{aligned}
$$

We have

$$
(x-y)^{2}=(2 t+o(t))^{2}=4 t^{2}+o\left(t^{2}\right)
$$

and
$4-(x+y)^{2}=4-\left(2-(p-1) t^{2}+o\left(t^{2}\right)\right)^{2}=4-4+4(p-1) t^{2}+o\left(t^{2}\right)=4(p-1) t^{2}+o\left(t^{2}\right)$.
So there exists $\delta_{p}>0$ such that if $|t|<\delta_{p}$ we have $(x-y)^{2}<5 t^{2}, 4-(x+y)^{2}>$ $3(p-1) t^{2}$. Then

$$
\begin{equation*}
(x-y)^{2}<5 t^{2}=\frac{5}{3(p-1)} \cdot 3(p-1) t^{2}<\frac{5}{3(p-1)}\left(4-(x+y)^{2}\right) \tag{*}
\end{equation*}
$$

if $|x-1|<\delta_{p}$. From the symmetry we have that $(*)$ also holds when $|y-1|<\delta_{p}$.

To finish the proof it is enough to show that $|x-y| \geq 2 \delta_{p}$ whenever $|x-1| \geq \delta_{p},|y-1| \geq \delta_{p}$ and $x^{p}+y^{p}=2$. Indeed, since $x^{p}+y^{p}=2$ we have that $\max \{x, y\} \geq 1$. So let $x-1 \geq \delta_{p}$. Since $\left(\frac{x+y}{2}\right)^{p} \leq \frac{x^{p}+y^{p}}{2}=1$ we get $x+y \leq 2$. Then $x-y \geq 2(x-1) \geq 2 \delta_{p}$.

Second day

Problem 1. (10 points)
Let A be 3×3 real matrix such that the vectors $A u$ and u are orthogonal for each column vector $u \in \mathbb{R}^{3}$. Prove that:
a) $A^{\top}=-A$, where A^{\top} denotes the transpose of the matrix A;
b) there exists a vector $v \in \mathbb{R}^{3}$ such that $A u=v \times u$ for every $u \in \mathbb{R}^{3}$, where $v \times u$ denotes the vector product in \mathbb{R}^{3}.

Solution. a) Set $A=\left(a_{i j}\right), u=\left(u_{1}, u_{2}, u_{3}\right)^{\top}$. If we use the orthogonality condition

$$
\begin{equation*}
(A u, u)=0 \tag{1}
\end{equation*}
$$

with $u_{i}=\delta_{i k}$ we get $a_{k k}=0$. If we use (1) with $u_{i}=\delta_{i k}+\delta_{i m}$ we get

$$
a_{k k}+a_{k m}+a_{m k}+a_{m m}=0
$$

and hence $a_{k m}=-a_{m k}$.
b) Set $v_{1}=-a_{23}, v_{2}=a_{13}, v_{3}=-a_{12}$. Then

$$
A u=\left(v_{2} u_{3}-v_{3} u_{2}, v_{3} u_{1}-v_{1} u_{3}, v_{1} u_{2}-v_{2} u_{1}\right)^{\top}=v \times u
$$

Problem 2. (15 points)

Let $\left\{b_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive real numbers such that $b_{0}=1$, $b_{n}=2+\sqrt{b_{n-1}}-2 \sqrt{1+\sqrt{b_{n-1}}}$. Calculate

$$
\sum_{n=1}^{\infty} b_{n} 2^{n}
$$

Solution. Put $a_{n}=1+\sqrt{b_{n}}$ for $n \geq 0$. Then $a_{n}>1, a_{0}=2$ and

$$
a_{n}=1+\sqrt{1+a_{n-1}-2 \sqrt{a_{n-1}}}=\sqrt{a_{n-1}},
$$

so $a_{n}=2^{2^{-n}}$. Then

$$
\begin{aligned}
\sum_{n=1}^{N} b_{n} 2^{n} & =\sum_{n=1}^{N}\left(a_{n}-1\right)^{2} 2^{n}=\sum_{n=1}^{N}\left[a_{n}^{2} 2^{n}-a_{n} 2^{n+1}+2^{n}\right] \\
& =\sum_{n=1}^{N}\left[\left(a_{n-1}-1\right) 2^{n}-\left(a_{n}-1\right) 2^{n+1}\right] \\
& =\left(a_{0}-1\right) 2^{1}-\left(a_{N}-1\right) 2^{N+1}=2-2 \frac{2^{2^{-N}}-1}{2^{-N}}
\end{aligned}
$$

Put $x=2^{-N}$. Then $x \rightarrow 0$ as $N \rightarrow \infty$ and so

$$
\sum_{n=1}^{\infty} b_{n} 2^{N}=\lim _{N \rightarrow \infty}\left(2-2 \frac{2^{2^{-N}}-1}{2^{-N}}\right)=\lim _{x \rightarrow 0}\left(2-2 \frac{2^{x}-1}{x}\right)=2-2 \ln 2 .
$$

Problem 3. (15 points)

Let all roots of an n-th degree polynomial $P(z)$ with complex coefficients lie on the unit circle in the complex plane. Prove that all roots of the polynomial

$$
2 z P^{\prime}(z)-n P(z)
$$

lie on the same circle.
Solution. It is enough to consider only polynomials with leading coefficient 1. Let $P(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{n}\right)$ with $\left|\alpha_{j}\right|=1$, where the complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ may coincide.

We have

$$
\begin{aligned}
\widetilde{P}(z) \equiv & 2 z P^{\prime}(z)-n P(z)=\left(z+\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z-\alpha_{n}\right)+ \\
& +\left(z-\alpha_{1}\right)\left(z+\alpha_{2}\right) \ldots\left(z-\alpha_{n}\right)+\cdots+\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \ldots\left(z+\alpha_{n}\right)
\end{aligned}
$$

Hence, $\frac{\widetilde{P}(z)}{P(z)}=\sum_{k=1}^{n} \frac{z+\alpha_{k}}{z-\alpha_{k}}$. Since $\operatorname{Re} \frac{z+\alpha}{z-\alpha}=\frac{|z|^{2}-|\alpha|^{2}}{|z-\alpha|^{2}}$ for all complex z, $\alpha, z \neq \alpha$, we deduce that in our case $\operatorname{Re} \frac{\widetilde{P}(z)}{P(z)}=\sum_{k=1}^{n} \frac{|z|^{2}-1}{\left|z-\alpha_{k}\right|^{2}}$. From $|z| \neq 1$ it follows that $\operatorname{Re} \frac{\widetilde{P}(z)}{P(z)} \neq 0$. Hence $\widetilde{P}(z)=0$ implies $|z|=1$.

Problem 4. (15 points)
a) Prove that for every $\varepsilon>0$ there is a positive integer n and real numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
\max _{x \in[-1,1]}\left|x-\sum_{k=1}^{n} \lambda_{k} x^{2 k+1}\right|<\varepsilon
$$

b) Prove that for every odd continuous function f on $[-1,1]$ and for every $\varepsilon>0$ there is a positive integer n and real numbers μ_{1}, \ldots, μ_{n} such that

$$
\max _{x \in[-1,1]}\left|f(x)-\sum_{k=1}^{n} \mu_{k} x^{2 k+1}\right|<\varepsilon
$$

Recall that f is odd means that $f(x)=-f(-x)$ for all $x \in[-1,1]$.
Solution. a) Let n be such that $\left(1-\varepsilon^{2}\right)^{n} \leq \varepsilon$. Then $\left|x\left(1-x^{2}\right)^{n}\right|<\varepsilon$ for every $x \in[-1,1]$. Thus one can set $\lambda_{k}=(-1)^{k+1}\binom{n}{k}$ because then

$$
x-\sum_{k=1}^{n} \lambda_{k} x^{2 k+1}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{2 k+1}=x\left(1-x^{2}\right)^{n} .
$$

b) From the Weierstrass theorem there is a polynomial, say $p \in \Pi_{m}$, such that

$$
\max _{x \in[-1,1]}|f(x)-p(x)|<\frac{\varepsilon}{2}
$$

Set $q(x)=\frac{1}{2}\{p(x)-p(-x)\}$. Then

$$
f(x)-q(x)=\frac{1}{2}\{f(x)-p(x)\}-\frac{1}{2}\{f(-x)-p(-x)\}
$$

and
(1) $\max _{|x| \leq 1}|f(x)-q(x)| \leq \frac{1}{2} \max _{|x| \leq 1}|f(x)-p(x)|+\frac{1}{2} \max _{|x| \leq 1}|f(-x)-p(-x)|<\frac{\varepsilon}{2}$.

But q is an odd polynomial in Π_{m} and it can be written as

$$
q(x)=\sum_{k=0}^{m} b_{k} x^{2 k+1}=b_{0} x+\sum_{k=1}^{m} b_{k} x^{2 k+1}
$$

If $b_{0}=0$ then (1) proves b). If $b_{0} \neq 0$ then one applies a) with $\frac{\varepsilon}{2\left|b_{0}\right|}$ instead of ε to get

$$
\begin{equation*}
\max _{|x| \leq 1}\left|b_{0} x-\sum_{k=1}^{n} b_{0} \lambda_{k} x^{2 k+1}\right|<\frac{\varepsilon}{2} \tag{2}
\end{equation*}
$$

for appropriate n and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Now b) follows from (1) and (2) with $\max \{n, m\}$ instead of n.

Problem 5. ($10+15$ points)
a) Prove that every function of the form

$$
f(x)=\frac{a_{0}}{2}+\cos x+\sum_{n=2}^{N} a_{n} \cos (n x)
$$

with $\left|a_{0}\right|<1$, has positive as well as negative values in the period $[0,2 \pi)$.
b) Prove that the function

$$
F(x)=\sum_{n=1}^{100} \cos \left(n^{\frac{3}{2}} x\right)
$$

has at least 40 zeros in the interval $(0,1000)$.
Solution. a) Let us consider the integral

$$
\int_{0}^{2 \pi} f(x)(1 \pm \cos x) d x=\pi\left(a_{0} \pm 1\right)
$$

The assumption that $f(x) \geq 0$ implies $a_{0} \geq 1$. Similarly, if $f(x) \leq 0$ then $a_{0} \leq-1$. In both cases we have a contradiction with the hypothesis of the problem.
b) We shall prove that for each integer N and for each real number $h \geq 24$ and each real number y the function

$$
F_{N}(x)=\sum_{n=1}^{N} \cos \left(x n^{\frac{3}{2}}\right)
$$

changes sign in the interval $(y, y+h)$. The assertion will follow immediately from here.

Consider the integrals

$$
I_{1}=\int_{y}^{y+h} F_{N}(x) d x, \quad I_{2}=\int_{y}^{y+h} F_{N}(x) \cos x d x
$$

If $F_{N}(x)$ does not change sign in $(y, y+h)$ then we have

$$
\left|I_{2}\right| \leq \int_{y}^{y+h}\left|F_{N}(x)\right| d x=\left|\int_{y}^{y+h} F_{N}(x) d x\right|=\left|I_{1}\right| .
$$

Hence, it is enough to prove that

$$
\left|I_{2}\right|>\left|I_{1}\right| .
$$

Obviously, for each $\alpha \neq 0$ we have

$$
\left|\int_{y}^{y+h} \cos (\alpha x) d x\right| \leq \frac{2}{|\alpha|} .
$$

Hence
(1) $\quad\left|I_{1}\right|=\left|\sum_{n=1}^{N} \int_{y}^{y+h} \cos \left(x n^{\frac{3}{2}}\right) d x\right| \leq 2 \sum_{n=1}^{N} \frac{1}{n^{\frac{3}{2}}}<2\left(1+\int_{1}^{\infty} \frac{d t}{t^{\frac{3}{2}}}\right)=6$.

On the other hand we have

$$
\begin{aligned}
I_{2}= & \sum_{n=1}^{N} \int_{y}^{y+h} \cos x \cos \left(x n^{\frac{3}{2}}\right) d x \\
= & \frac{1}{2} \int_{y}^{y+h}(1+\cos (2 x)) d x+ \\
& +\frac{1}{2} \sum_{n=2}^{N} \int_{y}^{y+h}\left(\cos \left(x\left(n^{\frac{3}{2}}-1\right)\right)+\cos \left(x\left(n^{\frac{3}{2}}+1\right)\right)\right) d x \\
= & \frac{1}{2} h+\Delta,
\end{aligned}
$$

where

$$
|\Delta| \leq \frac{1}{2}\left(1+2 \sum_{n=2}^{N}\left(\frac{1}{n^{\frac{3}{2}}-1}+\frac{1}{n^{\frac{3}{2}}+1}\right)\right) \leq \frac{1}{2}+2 \sum_{n=2}^{N} \frac{1}{n^{\frac{3}{2}}-1} .
$$

We use that $n^{\frac{3}{2}}-1 \geq \frac{2}{3} n^{\frac{3}{2}}$ for $n \geq 3$ and we get

$$
|\Delta| \leq \frac{1}{2}+\frac{2}{2^{\frac{3}{2}}-1}+3 \sum_{n=3}^{N} \frac{1}{n^{\frac{3}{2}}}<\frac{1}{2}+\frac{2}{2 \sqrt{2}-1}+3 \int_{2}^{\infty} \frac{d t}{t^{\frac{3}{2}}}<6
$$

Hence

$$
\begin{equation*}
\left|I_{2}\right|>\frac{1}{2} h-6 \tag{2}
\end{equation*}
$$

We use that $h \geq 24$ and inequalities (1), (2) and we obtain $\left|I_{2}\right|>\left|I_{1}\right|$. The proof is completed.

Problem 6. (20 points)
Suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of continuous functions on the interval $[0,1]$ such that

$$
\int_{0}^{1} f_{m}(x) f_{n}(x) d x=\left\{\begin{array}{lll}
1 & \text { if } & n=m \\
0 & \text { if } & n \neq m
\end{array}\right.
$$

and

$$
\sup \left\{\left|f_{n}(x)\right|: x \in[0,1] \text { and } n=1,2, \ldots\right\}<+\infty
$$

Show that there exists no subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ such that $\lim _{k \rightarrow \infty} f_{n_{k}}(x)$ exists for all $x \in[0,1]$.

Solution. It is clear that one can add some functions, say $\left\{g_{m}\right\}$, which satisfy the hypothesis of the problem and the closure of the finite linear combinations of $\left\{f_{n}\right\} \cup\left\{g_{m}\right\}$ is $L_{2}[0,1]$. Therefore without loss of generality we assume that $\left\{f_{n}\right\}$ generates $L_{2}[0,1]$.

Let us suppose that there is a subsequence $\left\{n_{k}\right\}$ and a function f such that

$$
f_{n_{k}}(x) \underset{k \rightarrow \infty}{\longrightarrow} f(x) \text { for every } x \in[0,1]
$$

Fix $m \in \mathbb{N}$. From Lebesgue's theorem we have

$$
0=\int_{0}^{1} f_{m}(x) f_{n_{k}}(x) d x \underset{k \rightarrow \infty}{\longrightarrow} \int_{0}^{1} f_{m}(x) f(x) d x
$$

Hence $\int_{0}^{1} f_{m}(x) f(x) d x=0$ for every $m \in \mathbb{N}$, which implies $f(x)=0$ almost everywhere. Using once more Lebesgue's theorem we get

$$
1=\int_{0}^{1} f_{n_{k}}^{2}(x) d x \underset{k \rightarrow \infty}{\longrightarrow} \int_{0}^{1} f^{2}(x) d x=0
$$

The contradiction proves the statement.

