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PROBLEMS AND SOLUTIONS

First day

Problem 1. (10 points)
Let X be a nonsingular matrix with columns X1, X2, . . . , Xn. Let Y be a

matrix with columns X2, X3, . . . , Xn, 0. Show that the matrices A = Y X−1

and B = X−1Y have rank n− 1 and have only 0’s for eigenvalues.

Solution. Let J = (aij) be the n× n matrix where aij = 1 if i = j + 1
and aij = 0 otherwise. The rank of J is n − 1 and its only eigenvalues are
0′s. Moreover Y = XJ and A = Y X−1 = XJX−1, B = X−1Y = J . It
follows that both A and B have rank n− 1 with only 0′s for eigenvalues.

Problem 2. (15 points)
Let f be a continuous function on [0, 1] such that for every x ∈ [0, 1] we

have

∫ 1

x
f(t)dt ≥ 1− x2

2
. Show that

∫ 1

0
f2(t)dt ≥ 1

3
.

Solution. From the inequality

0 ≤
∫ 1

0
(f(x)− x)2 dx =

∫ 1

0
f2(x)dx− 2

∫ 1

0
xf(x)dx +

∫ 1

0
x2dx

we get

∫ 1

0
f2(x)dx ≥ 2

∫ 1

0
xf(x)dx−

∫ 1

0
x2dx = 2

∫ 1

0
xf(x)dx− 1

3
.

From the hypotheses we have

∫ 1

0

∫ 1

x
f(t)dtdx ≥

∫ 1

0

1− x2

2
dx or

∫ 1

0
tf(t)dt ≥

1

3
. This completes the proof.

Problem 3. (15 points)
Let f be twice continuously differentiable on (0,+∞) such that

lim
x→0+

f ′(x) = −∞ and lim
x→0+

f ′′(x) = +∞. Show that

lim
x→0+

f(x)

f ′(x)
= 0.
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Solution. Since f ′ tends to −∞ and f ′′ tends to +∞ as x tends to
0+, there exists an interval (0, r) such that f ′(x) < 0 and f ′′(x) > 0 for all
x ∈ (0, r). Hence f is decreasing and f ′ is increasing on (0, r). By the mean
value theorem for every 0 < x < x0 < r we obtain

f(x)− f(x0) = f ′(ξ)(x− x0) > 0,

for some ξ ∈ (x, x0). Taking into account that f ′ is increasing, f ′(x) <

f ′(ξ) < 0, we get

x− x0 <
f ′(ξ)

f ′(x)
(x− x0) =

f(x)− f(x0)

f ′(x)
< 0.

Taking limits as x tends to 0+ we obtain

−x0 ≤ lim inf
x→0+

f(x)

f ′(x)
≤ lim sup

x→0+

f(x)

f ′(x)
≤ 0.

Since this happens for all x0 ∈ (0, r) we deduce that lim
x→0+

f(x)

f ′(x)
exists and

lim
x→0+

f(x)

f ′(x)
= 0.

Problem 4. (15 points)

Let F : (1,∞) → R be the function defined by

F (x) :=

∫ x2

x

dt

ln t
.

Show that F is one-to-one (i.e. injective) and find the range (i.e. set of
values) of F .

Solution. From the definition we have

F ′(x) =
x− 1

lnx
, x > 1.

Therefore F ′(x) > 0 for x ∈ (1,∞). Thus F is strictly increasing and hence
one-to-one. Since

F (x) ≥ (x2 − x)min

{
1

ln t
: x ≤ t ≤ x2

}
=

x2 − x

lnx2
→∞
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as x →∞, it follows that the range of F is (F (1+),∞). In order to determine
F (1+) we substitute t = ev in the definition of F and we get

F (x) =

∫ 2 ln x

ln x

ev

v
dv.

Hence

F (x) < e2 lnx
∫ 2 ln x

ln x

1

v
dv = x2 ln 2

and similarly F (x) > x ln 2. Thus F (1+) = ln 2.

Problem 5. (20 points)

Let A and B be real n × n matrices. Assume that there exist n + 1
different real numbers t1, t2, . . . , tn+1 such that the matrices

Ci = A + tiB, i = 1, 2, . . . , n + 1,

are nilpotent (i.e. Cn
i = 0).

Show that both A and B are nilpotent.

Solution. We have that

(A + tB)n = An + tP1 + t2P2 + · · ·+ tn−1Pn−1 + tnBn

for some matrices P1, P2, . . . , Pn−1 not depending on t.

Assume that a, p1, p2, . . . , pn−1, b are the (i, j)-th entries of the corre-
sponding matrices An, P1, P2, . . . , Pn−1, B

n. Then the polynomial

btn + pn−1t
n−1 + · · · + p2t

2 + p1t + a

has at least n + 1 roots t1, t2, . . . , tn+1. Hence all its coefficients vanish.
Therefore An = 0, Bn = 0, Pi = 0; and A and B are nilpotent.

Problem 6. (25 points)

Let p > 1. Show that there exists a constant Kp > 0 such that for every
x, y ∈ R satisfying |x|p + |y|p = 2, we have

(x− y)2 ≤ Kp

(
4− (x + y)2

)
.
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Solution. Let 0 < δ < 1. First we show that there exists Kp,δ > 0 such
that

f(x, y) =
(x− y)2

4− (x + y)2
≤ Kp,δ

for every (x, y) ∈ Dδ = {(x, y) : |x− y| ≥ δ, |x|p + |y|p = 2}.
Since Dδ is compact it is enough to show that f is continuous on Dδ.

For this we show that the denominator of f is different from zero. Assume

the contrary. Then |x + y| = 2, and

∣∣∣∣
x + y

2

∣∣∣∣
p

= 1. Since p > 1, the function

g(t) = |t|p is strictly convex, in other words

∣∣∣∣
x + y

2

∣∣∣∣
p

<
|x|p + |y|p

2
whenever

x 6= y. So for some (x, y) ∈ Dδ we have

∣∣∣∣
x + y

2

∣∣∣∣
p

<
|x|p + |y|p

2
= 1 =

∣∣∣∣
x + y

2

∣∣∣∣
p

. We get a contradiction.

If x and y have different signs then (x, y) ∈ Dδ for all 0 < δ < 1 because
then |x−y| ≥ max{|x|, |y|} ≥ 1 > δ. So we may further assume without loss
of generality that x > 0, y > 0 and xp + yp = 2. Set x = 1 + t. Then

y = (2− xp)1/p=(2− (1 + t)p)1/p =

(
2− (1 + pt +

p(p−1)

2
t2 + o(t2))

)1/p

=

(
1− pt− p(p− 1)

2
t2 + o(t2)

)1/p

= 1 +
1

p

(
−pt− p(p− 1)

2
t2 + o(t2)

)
+

1

2p

(
1

p
− 1

)
(−pt + o(t))2 + o(t2)

= 1− t− p− 1

2
t2 + o(t2)− p− 1

2
t2 + o(t2)

= 1− t− (p− 1)t2 + o(t2).

We have
(x− y)2 = (2t + o(t))2 = 4t2 + o(t2)

and

4−(x+y)2=4−(2−(p−1)t2+o(t2))2=4−4+4(p−1)t2+o(t2)=4(p−1)t2+o(t2).

So there exists δp > 0 such that if |t| < δp we have (x−y)2 < 5t2, 4−(x+y)2 >

3(p− 1)t2. Then

(∗) (x− y)2 < 5t2 =
5

3(p− 1)
· 3(p− 1)t2 <

5

3(p− 1)
(4− (x + y)2)
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if |x − 1| < δp. From the symmetry we have that (∗) also holds when
|y − 1| < δp.

To finish the proof it is enough to show that |x − y| ≥ 2δp whenever
|x− 1| ≥ δp, |y− 1| ≥ δp and xp + yp = 2. Indeed, since xp + yp = 2 we have

that max{x, y} ≥ 1. So let x − 1 ≥ δp. Since

(
x + y

2

)p

≤ xp + yp

2
= 1 we

get x + y ≤ 2. Then x− y ≥ 2(x− 1) ≥ 2δp.

Second day

Problem 1. (10 points)
Let A be 3×3 real matrix such that the vectors Au and u are orthogonal

for each column vector u ∈ R
3. Prove that:

a) A> = −A, where A> denotes the transpose of the matrix A;
b) there exists a vector v ∈ R

3 such that Au = v × u for every u ∈ R
3,

where v × u denotes the vector product in R
3.

Solution. a) Set A = (aij), u = (u1, u2, u3)
>. If we use the orthogonal-

ity condition

(1) (Au, u) = 0

with ui = δik we get akk = 0. If we use (1) with ui = δik + δim we get

akk + akm + amk + amm = 0

and hence akm = −amk.
b) Set v1 = −a23, v2 = a13, v3 = −a12. Then

Au = (v2u3 − v3u2, v3u1 − v1u3, v1u2 − v2u1)
> = v × u.

Problem 2. (15 points)
Let {bn}∞n=0 be a sequence of positive real numbers such that b0 = 1,

bn = 2 +
√

bn−1 − 2
√

1 +
√

bn−1. Calculate

∞∑

n=1

bn2n.
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Solution. Put an = 1 +
√

bn for n ≥ 0. Then an > 1, a0 = 2 and

an = 1 +
√

1 + an−1 − 2
√

an−1 =
√

an−1,

so an = 22−n

. Then

N∑

n=1

bn2n =
N∑

n=1

(an − 1)22n =
N∑

n=1

[a2
n2n − an2n+1 + 2n]

=
N∑

n=1

[(an−1 − 1)2n − (an − 1)2n+1]

= (a0 − 1)21 − (aN − 1)2N+1 = 2− 2
22−N − 1

2−N
.

Put x = 2−N . Then x → 0 as N →∞ and so

∞∑

n=1

bn2N = lim
N→∞

(
2− 2

22−N − 1

2−N

)
= lim

x→0

(
2− 2

2x − 1

x

)
= 2− 2 ln 2.

Problem 3. (15 points)
Let all roots of an n-th degree polynomial P (z) with complex coefficients

lie on the unit circle in the complex plane. Prove that all roots of the
polynomial

2zP ′(z)− nP (z)

lie on the same circle.

Solution. It is enough to consider only polynomials with leading coef-
ficient 1. Let P (z) = (z − α1)(z − α2) . . . (z − αn) with |αj| = 1, where the
complex numbers α1, α2, . . . , αn may coincide.

We have

P̃ (z) ≡ 2zP ′(z)− nP (z) = (z + α1)(z − α2) . . . (z − αn) +

+(z − α1)(z + α2) . . . (z − αn) + · · · + (z − α1)(z − α2) . . . (z + αn).

Hence,
P̃ (z)

P (z)
=

n∑

k=1

z + αk

z − αk
. Since Re

z + α

z − α
=
|z|2 − |α|2
|z − α|2 for all complex z,

α, z 6= α, we deduce that in our case Re
P̃ (z)

P (z)
=

n∑

k=1

|z|2 − 1

|z − αk|2
. From |z| 6= 1

it follows that Re
P̃ (z)

P (z)
6= 0. Hence P̃ (z) = 0 implies |z| = 1.
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Problem 4. (15 points)

a) Prove that for every ε > 0 there is a positive integer n and real
numbers λ1, . . . , λn such that

max
x∈[−1,1]

∣∣∣∣∣x−
n∑

k=1

λkx
2k+1

∣∣∣∣∣ < ε.

b) Prove that for every odd continuous function f on [−1, 1] and for every
ε > 0 there is a positive integer n and real numbers µ1, . . . , µn such that

max
x∈[−1,1]

∣∣∣∣∣f(x)−
n∑

k=1

µkx
2k+1

∣∣∣∣∣ < ε.

Recall that f is odd means that f(x) = −f(−x) for all x ∈ [−1, 1].

Solution. a) Let n be such that (1 − ε2)n ≤ ε. Then |x(1 − x2)n| < ε

for every x ∈ [−1, 1]. Thus one can set λk = (−1)k+1

(
n

k

)
because then

x−
n∑

k=1

λkx
2k+1 =

n∑

k=0

(−1)k

(
n

k

)
x2k+1 = x(1− x2)n.

b) From the Weierstrass theorem there is a polynomial, say p ∈ Πm, such
that

max
x∈[−1,1]

|f(x)− p(x)| < ε

2
.

Set q(x) =
1

2
{p(x)− p(−x)}. Then

f(x)− q(x) =
1

2
{f(x)− p(x)} − 1

2
{f(−x)− p(−x)}

and

(1) max
|x|≤1

|f(x)− q(x)| ≤ 1

2
max
|x|≤1

|f(x)− p(x)|+ 1

2
max
|x|≤1

|f(−x)− p(−x)| < ε

2
.

But q is an odd polynomial in Πm and it can be written as

q(x) =
m∑

k=0

bkx
2k+1 = b0x +

m∑

k=1

bkx
2k+1.
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If b0 = 0 then (1) proves b). If b0 6= 0 then one applies a) with
ε

2|b0|
instead

of ε to get

(2) max
|x|≤1

∣∣∣∣∣b0x−
n∑

k=1

b0λkx
2k+1

∣∣∣∣∣ <
ε

2

for appropriate n and λ1, λ2, . . . , λn. Now b) follows from (1) and (2) with
max{n,m} instead of n.

Problem 5. (10+15 points)

a) Prove that every function of the form

f(x) =
a0

2
+ cos x +

N∑

n=2

ancos (nx)

with |a0| < 1, has positive as well as negative values in the period [0, 2π).

b) Prove that the function

F (x) =
100∑

n=1

cos (n
3

2 x)

has at least 40 zeros in the interval (0, 1000).

Solution. a) Let us consider the integral

∫ 2π

0
f(x)(1± cos x)dx = π(a0 ± 1).

The assumption that f(x) ≥ 0 implies a0 ≥ 1. Similarly, if f(x) ≤ 0 then
a0 ≤ −1. In both cases we have a contradiction with the hypothesis of the
problem.

b) We shall prove that for each integer N and for each real number h ≥ 24
and each real number y the function

FN (x) =
N∑

n=1

cos (xn
3

2 )

changes sign in the interval (y, y +h). The assertion will follow immediately
from here.
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Consider the integrals

I1 =

∫ y+h

y
FN (x)dx, I2 =

∫ y+h

y
FN (x)cos x dx.

If FN (x) does not change sign in (y, y + h) then we have

|I2| ≤
∫ y+h

y
|FN (x)|dx =

∣∣∣∣∣

∫ y+h

y
FN (x)dx

∣∣∣∣∣ = |I1|.

Hence, it is enough to prove that

|I2| > |I1|.

Obviously, for each α 6= 0 we have

∣∣∣∣∣

∫ y+h

y
cos (αx)dx

∣∣∣∣∣ ≤
2

|α| .

Hence

(1) |I1| =
∣∣∣∣∣

N∑

n=1

∫ y+h

y
cos (xn

3

2 )dx

∣∣∣∣∣ ≤ 2
N∑

n=1

1

n
3

2

< 2

(
1 +

∫ ∞

1

dt

t
3

2

)
= 6.

On the other hand we have

I2 =
N∑

n=1

∫ y+h

y
cos xcos (xn

3

2 )dx

=
1

2

∫ y+h

y
(1 + cos (2x))dx +

+
1

2

N∑

n=2

∫ y+h

y

(
cos

(
x(n

3

2 − 1)
)

+ cos
(
x(n

3

2 + 1)
))

dx

=
1

2
h + ∆,

where

|∆| ≤ 1

2

(
1 + 2

N∑

n=2

(
1

n
3

2 − 1
+

1

n
3

2 + 1

))
≤ 1

2
+ 2

N∑

n=2

1

n
3

2 − 1
.
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We use that n
3

2 − 1 ≥ 2

3
n

3

2 for n ≥ 3 and we get

|∆| ≤ 1

2
+

2

2
3

2 − 1
+ 3

N∑

n=3

1

n
3

2

<
1

2
+

2

2
√

2− 1
+ 3

∫ ∞

2

dt

t
3

2

< 6.

Hence

(2) |I2| >
1

2
h− 6.

We use that h ≥ 24 and inequalities (1), (2) and we obtain |I2| > |I1|. The
proof is completed.

Problem 6. (20 points)
Suppose that {fn}∞n=1 is a sequence of continuous functions on the inter-

val [0, 1] such that
∫ 1

0
fm(x)fn(x)dx =

{
1 if n = m

0 if n 6= m

and
sup{|fn(x)| : x ∈ [0, 1] and n = 1, 2, . . .} < +∞.

Show that there exists no subsequence {fnk
} of {fn} such that lim

k→∞
fnk

(x)

exists for all x ∈ [0, 1].

Solution. It is clear that one can add some functions, say {gm}, which
satisfy the hypothesis of the problem and the closure of the finite linear
combinations of {fn} ∪ {gm} is L2[0, 1]. Therefore without loss of generality
we assume that {fn} generates L2[0, 1].

Let us suppose that there is a subsequence {nk} and a function f such
that

fnk
(x) −→

k→∞
f(x) for every x ∈ [0, 1].

Fix m ∈ N. From Lebesgue’s theorem we have

0 =

∫ 1

0
fm(x)fnk

(x)dx −→
k→∞

∫ 1

0
fm(x)f(x)dx.

Hence

∫ 1

0
fm(x)f(x)dx = 0 for every m ∈ N, which implies f(x) = 0 almost

everywhere. Using once more Lebesgue’s theorem we get

1 =

∫ 1

0
f2

nk
(x)dx −→

k→∞

∫ 1

0
f2(x)dx = 0.

The contradiction proves the statement.


