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PROBLEMS AND SOLUTIONS

First day — July 29, 1994

Problem 1. (13 points)
a) Let A be a n × n, n ≥ 2, symmetric, invertible matrix with real

positive elements. Show that zn ≤ n2 − 2n, where zn is the number of zero
elements in A−1.

b) How many zero elements are there in the inverse of the n× n matrix

A =



















1 1 1 1 . . . 1
1 2 2 2 . . . 2
1 2 1 1 . . . 1
1 2 1 2 . . . 2
. . . . . . . . . . . . . . . . . . . .
1 2 1 2 . . . . . .



















?

Solution. Denote by aij and bij the elements of A and A−1, respectively.

Then for k 6= m we have
n
∑

i=0
akibim = 0 and from the positivity of aij we

conclude that at least one of {bim : i = 1, 2, . . . , n} is positive and at least
one is negative. Hence we have at least two non-zero elements in every
column of A−1. This proves part a). For part b) all bij are zero except
b1,1 = 2, bn,n = (−1)n, bi,i+1 = bi+1,i = (−1)i for i = 1, 2, . . . , n− 1.

Problem 2. (13 points)
Let f ∈ C1(a, b), lim

x→a+
f(x) = +∞, lim

x→b−
f(x) = −∞ and

f ′(x)+ f2(x) ≥ −1 for x ∈ (a, b). Prove that b−a ≥ π and give an example
where b− a = π.

Solution. From the inequality we get

d

dx
(arctg f(x) + x) =

f ′(x)

1 + f2(x)
+ 1 ≥ 0

for x ∈ (a, b). Thus arctg f(x)+x is non-decreasing in the interval and using

the limits we get
π

2
+ a ≤ −

π

2
+ b. Hence b− a ≥ π. One has equality for

f(x) = cotg x, a = 0, b = π.

Problem 3. (13 points)
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Given a set S of 2n − 1, n ∈ N, different irrational numbers. Prove
that there are n different elements x1, x2, . . . , xn ∈ S such that for all non-
negative rational numbers a1, a2, . . . , an with a1 + a2 + · · ·+ an > 0 we have
that a1x1 + a2x2 + · · ·+ anxn is an irrational number.

Solution. Let I be the set of irrational numbers, Q – the set of rational
numbers, Q+ = Q∩ [0,∞). We work by induction. For n = 1 the statement
is trivial. Let it be true for n − 1. We start to prove it for n. From the
induction argument there are n − 1 different elements x1, x2, . . . , xn−1 ∈ S
such that

(1)
a1x1 + a2x2 + · · · + an−1xn−1 ∈ I

for all a1, a2, . . . , an ∈ Q+ with a1 + a2 + · · ·+ an−1 > 0.

Denote the other elements of S by xn, xn+1, . . . , x2n−1. Assume the state-
ment is not true for n. Then for k = 0, 1, . . . , n − 1 there are rk ∈ Q such
that

(2)
n−1
∑

i=1

bikxi + ckxn+k = rk for some bik, ck ∈ Q+,
n−1
∑

i=1

bik + ck > 0.

Also

(3)
n−1
∑

k=0

dkxn+k = R for some dk ∈ Q+,
n−1
∑

k=0

dk > 0, R ∈ Q.

If in (2) ck = 0 then (2) contradicts (1). Thus ck 6= 0 and without loss of

generality one may take ck = 1. In (2) also
n−1
∑

i=1
bik > 0 in view of xn+k ∈ I.

Replacing (2) in (3) we get

n−1
∑

k=0

dk

(

−
n−1
∑

i=1

bikxi + rk

)

= R or
n−1
∑

i=1

(

n−1
∑

k=0

dkbik

)

xi ∈ Q,

which contradicts (1) because of the conditions on b′s and d′s.

Problem 4. (18 points)

Let α ∈ R \ {0} and suppose that F and G are linear maps (operators)
from Rn into Rn satisfying F ◦G−G ◦ F = αF .

a) Show that for all k ∈ N one has F k ◦G−G ◦ F k = αkF k.

b) Show that there exists k ≥ 1 such that F k = 0.
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Solution. For a) using the assumptions we have

F k ◦G−G ◦ F k =
k
∑

i=1

(

F k−i+1 ◦G ◦ F i−1 − F k−i ◦G ◦ F i
)

=

=
k
∑

i=1

F k−i ◦ (F ◦G−G ◦ F ) ◦ F i−1 =

=
k
∑

i=1

F k−i ◦ αF ◦ F i−1 = αkF k.

b) Consider the linear operator L(F ) = F ◦G−G◦F acting over all n×n
matrices F . It may have at most n2 different eigenvalues. Assuming that
F k 6= 0 for every k we get that L has infinitely many different eigenvalues
αk in view of a) – a contradiction.

Problem 5. (18 points)
a) Let f ∈ C[0, b], g ∈ C(R) and let g be periodic with period b. Prove

that

∫ b

0
f(x)g(nx)dx has a limit as n →∞ and

lim
n→∞

∫ b

0
f(x)g(nx)dx =

1

b

∫ b

0
f(x)dx ·

∫ b

0
g(x)dx.

b) Find

lim
n→∞

∫ π

0

sinx

1 + 3cos 2nx
dx.

Solution. Set ‖g‖1 =

∫ b

0
|g(x)|dx and

ω(f, t) = sup {|f(x)− f(y)| : x, y ∈ [0, b], |x− y| ≤ t} .

In view of the uniform continuity of f we have ω(f, t) → 0 as t → 0. Using
the periodicity of g we get

∫ b

0
f(x)g(nx)dx =

n
∑

k=1

∫ bk/n

b(k−1)/n
f(x)g(nx)dx

=
n
∑

k=1

f(bk/n)

∫ bk/n

b(k−1)/n
g(nx)dx +

n
∑

k=1

∫ bk/n

b(k−1)/n
{f(x)− f(bk/n)}g(nx)dx

=
1

n

n
∑

k=1

f(bk/n)

∫ b

0
g(x)dx + O(ω(f, b/n)‖g‖1)
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=
1

b

n
∑

k=1

∫ bk/n

b(k−1)/n
f(x)dx

∫ b

0
g(x)dx

+
1

b

n
∑

k=1

(

b

n
f(bk/n)−

∫ bk/n

b(k−1)/n
f(x)dx

)

∫ b

0
g(x)dx + O(ω(f, b/n)‖g‖1)

=
1

b

∫ b

0
f(x)dx

∫ b

0
g(x)dx + O(ω(f, b/n)‖g‖1).

This proves a). For b) we set b = π, f(x) = sinx, g(x) = (1 + 3cos 2x)−1.
From a) and

∫ π

0
sinxdx = 2,

∫ π

0
(1 + 3cos 2x)−1dx =

π

2

we get

lim
n→∞

∫ π

0

sinx

1 + 3cos 2nx
dx = 1.

Problem 6. (25 points)

Let f ∈ C2[0, N ] and |f ′(x)| < 1, f ′′(x) > 0 for every x ∈ [0, N ]. Let
0 ≤ m0 < m1 < · · · < mk ≤ N be integers such that ni = f(mi) are also
integers for i = 0, 1, . . . , k. Denote bi = ni − ni−1 and ai = mi − mi−1 for
i = 1, 2, . . . , k.

a) Prove that

−1 <
b1

a1
<

b2

a2
< · · · <

bk

ak
< 1.

b) Prove that for every choice of A > 1 there are no more than N/A
indices j such that aj > A.

c) Prove that k ≤ 3N 2/3 (i.e. there are no more than 3N 2/3 integer
points on the curve y = f(x), x ∈ [0, N ]).

Solution. a) For i = 1, 2, . . . , k we have

bi = f(mi)− f(mi−1) = (mi −mi−1)f
′(xi)

for some xi ∈ (mi−1,mi). Hence
bi

ai
= f ′(xi) and so −1 <

bi

ai
< 1. From the

convexity of f we have that f ′ is increasing and
bi

ai
= f ′(xi) < f ′(xi+1) =

bi+1

ai+1
because of xi < mi < xi+1.
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b) Set SA = {j ∈ {0, 1, . . . , k} : aj > A}. Then

N ≥ mk −m0 =
k
∑

i=1

ai ≥
∑

j∈SA

aj > A|SA|

and hence |SA| < N/A.
c) All different fractions in (−1, 1) with denominators less or equal A are

no more 2A2. Using b) we get k < N/A + 2A2. Put A = N 1/3 in the above
estimate and get k < 3N 2/3.

Second day — July 30, 1994

Problem 1. (14 points)
Let f ∈ C1[a, b], f(a) = 0 and suppose that λ ∈ R, λ > 0, is such that

|f ′(x)| ≤ λ|f(x)|

for all x ∈ [a, b]. Is it true that f(x) = 0 for all x ∈ [a, b]?

Solution. Assume that there is y ∈ (a, b] such that f(y) 6= 0. Without
loss of generality we have f(y) > 0. In view of the continuity of f there exists
c ∈ [a, y) such that f(c) = 0 and f(x) > 0 for x ∈ (c, y]. For x ∈ (c, y] we
have |f ′(x)| ≤ λf(x). This implies that the function g(x) = ln f(x)− λx is

not increasing in (c, y] because of g ′(x) =
f ′(x)

f(x)
−λ ≤ 0. Thus ln f(x)−λx ≥

ln f(y)− λy and f(x) ≥ eλx−λyf(y) for x ∈ (c, y]. Thus

0 = f(c) = f(c + 0) ≥ eλc−λyf(y) > 0

— a contradiction. Hence one has f(x) = 0 for all x ∈ [a, b].

Problem 2. (14 points)
Let f : R2 → R be given by f(x, y) = (x2 − y2)e−x2

−y2

.
a) Prove that f attains its minimum and its maximum.

b) Determine all points (x, y) such that
∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0 and

determine for which of them f has global or local minimum or maximum.

Solution. We have f(1, 0) = e−1, f(0, 1) = −e−1 and te−t ≤ 2e−2 for
t ≥ 2. Therefore |f(x, y)| ≤ (x2 + y2)e−x2

−y2

≤ 2e−2 < e−1 for (x, y) /∈
M = {(u, v) : u2 + v2 ≤ 2} and f cannot attain its minimum and its
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maximum outside M . Part a) follows from the compactness of M and the

continuity of f . Let (x, y) be a point from part b). From
∂f

∂x
(x, y) =

2x(1 − x2 + y2)e−x2
−y2

we get

(1) x(1− x2 + y2) = 0.

Similarly

(2) y(1 + x2 − y2) = 0.

All solutions (x, y) of the system (1), (2) are (0, 0), (0, 1), (0,−1), (1, 0)
and (−1, 0). One has f(1, 0) = f(−1, 0) = e−1 and f has global maximum
at the points (1, 0) and (−1, 0). One has f(0, 1) = f(0,−1) = −e−1 and
f has global minimum at the points (0, 1) and (0,−1). The point (0, 0)
is not an extrema point because of f(x, 0) = x2e−x2

> 0 if x 6= 0 and
f(y, 0) = −y2e−y2

< 0 if y 6= 0.

Problem 3. (14 points)
Let f be a real-valued function with n + 1 derivatives at each point of

R. Show that for each pair of real numbers a, b, a < b, such that

ln

(

f(b) + f ′(b) + · · ·+ f (n)(b)

f(a) + f ′(a) + · · ·+ f (n)(a)

)

= b− a

there is a number c in the open interval (a, b) for which

f (n+1)(c) = f(c).

Note that ln denotes the natural logarithm.

Solution. Set g(x) =
(

f(x) + f ′(x) + · · ·+ f (n)(x)
)

e−x. From the

assumption one get g(a) = g(b). Then there exists c ∈ (a, b) such that

g′(c) = 0. Replacing in the last equality g ′(x) =
(

f (n+1)(x)− f(x)
)

e−x we

finish the proof.

Problem 4. (18 points)
Let A be a n× n diagonal matrix with characteristic polynomial

(x− c1)
d1(x− c2)

d2 . . . (x− ck)
dk ,

where c1, c2, . . . , ck are distinct (which means that c1 appears d1 times on the
diagonal, c2 appears d2 times on the diagonal, etc. and d1+d2+· · ·+dk = n).
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Let V be the space of all n×n matrices B such that AB = BA. Prove that
the dimension of V is

d2
1 + d2

2 + · · ·+ d2
k.

Solution. Set A = (aij)
n
i,j=1, B = (bij)

n
i,j=1, AB = (xij)

n
i,j=1 and

BA = (yij)
n
i,j=1. Then xij = aiibij and yij = ajjbij . Thus AB = BA is

equivalent to (aii − ajj)bij = 0 for i, j = 1, 2, . . . , n. Therefore bij = 0 if
aii 6= ajj and bij may be arbitrary if aii = ajj. The number of indices (i, j)
for which aii = ajj = cm for some m = 1, 2, . . . , k is d2

m. This gives the
desired result.

Problem 5. (18 points)
Let x1, x2, . . . , xk be vectors of m-dimensional Euclidian space, such that

x1+x2+ · · ·+xk = 0. Show that there exists a permutation π of the integers
{1, 2, . . . , k} such that

∥

∥

∥

∥

∥

n
∑

i=1

xπ(i)

∥

∥

∥

∥

∥

≤

(

k
∑

i=1

‖xi‖
2

)1/2

for each n = 1, 2, . . . , k.

Note that ‖ · ‖ denotes the Euclidian norm.

Solution. We define π inductively. Set π(1) = 1. Assume π is defined
for i = 1, 2, . . . , n and also

(1)

∥

∥

∥

∥

∥

n
∑

i=1

xπ(i)

∥

∥

∥

∥

∥

2

≤
n
∑

i=1

‖xπ(i)‖
2.

Note (1) is true for n = 1. We choose π(n + 1) in a way that (1) is fulfilled

with n + 1 instead of n. Set y =
n
∑

i=1
xπ(i) and A = {1, 2, . . . , k} \ {π(i) : i =

1, 2, . . . , n}. Assume that (y, xr) > 0 for all r ∈ A. Then

(

y,
∑

r∈A
xr

)

> 0

and in view of y +
∑

r∈A
xr = 0 one gets −(y, y) > 0, which is impossible.

Therefore there is r ∈ A such that

(2) (y, xr) ≤ 0.

Put π(n + 1) = r. Then using (2) and (1) we have

∥

∥

∥

∥

∥

n+1
∑

i=1

xπ(i)

∥

∥

∥

∥

∥

2

= ‖y + xr‖
2 = ‖y‖2 + 2(y, xr) + ‖xr‖

2 ≤ ‖y‖2 + ‖xr‖
2 ≤
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≤
n
∑

i=1

‖xπ(i)‖
2 + ‖xr‖

2 =
n+1
∑

i=1

‖xπ(i)‖
2,

which verifies (1) for n + 1. Thus we define π for every n = 1, 2, . . . , k.
Finally from (1) we get

∥

∥

∥

∥

∥

n
∑

i=1

xπ(i)

∥

∥

∥

∥

∥

2

≤
n
∑

i=1

‖xπ(i)‖
2 ≤

k
∑

i=1

‖xi‖
2.

Problem 6. (22 points)

Find lim
N→∞

ln2 N

N

N−2
∑

k=2

1

ln k · ln(N − k)
. Note that ln denotes the natural

logarithm.

Solution. Obviously

(1) AN =
ln2 N

N

N−2
∑

k=2

1

ln k · ln(N − k)
≥

ln2 N

N
·
N − 3

ln2 N
= 1−

3

N
.

Take M , 2 ≤ M < N/2. Then using that
1

ln k · ln(N − k)
is decreasing in

[2, N/2] and the symmetry with respect to N/2 one get

AN =
ln2 N

N







M
∑

k=2

+
N−M−1
∑

k=M+1

+
N−2
∑

k=N−M







1

ln k · ln(N − k)
≤

≤
ln2 N

N

{

2
M − 1

ln 2 · ln(N − 2)
+

N − 2M − 1

lnM · ln(N −M)

}

≤

≤
2

ln 2
·
M lnN

N
+

(

1−
2M

N

)

lnN

lnM
+ O

(

1

lnN

)

.

Choose M =

[

N

ln2 N

]

+ 1 to get

(2) AN ≤

(

1−
2

N ln2 N

)

lnN

lnN − 2 ln lnN
+O

(

1

lnN

)

≤ 1+O

(

ln lnN

lnN

)

.

Estimates (1) and (2) give

lim
N→∞

ln2 N

N

N−2
∑

k=2

1

ln k · ln(N − k)
= 1.


