International Competition in Mathematics for Universtiy Students
in
Plovdiv, Bulgaria
1994

PROBLEMS AND SOLUTIONS

First day - July 29, 1994

Problem 1. (13 points)
a) Let A be a $n \times n, n \geq 2$, symmetric, invertible matrix with real positive elements. Show that $z_{n} \leq n^{2}-2 n$, where z_{n} is the number of zero elements in A^{-1}.
b) How many zero elements are there in the inverse of the $n \times n$ matrix

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 2 & 2 & \ldots & 2 \\
1 & 2 & 1 & 1 & \ldots & 1 \\
1 & 2 & 1 & 2 & \ldots & 2 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & 2 & 1 & 2 & \ldots & \ldots
\end{array}\right) ?
$$

Solution. Denote by $a_{i j}$ and $b_{i j}$ the elements of A and A^{-1}, respectively. Then for $k \neq m$ we have $\sum_{i=0}^{n} a_{k i} b_{i m}=0$ and from the positivity of $a_{i j}$ we conclude that at least one of $\left\{b_{i m}: i=1,2, \ldots, n\right\}$ is positive and at least one is negative. Hence we have at least two non-zero elements in every column of A^{-1}. This proves part a). For part b) all $b_{i j}$ are zero except $b_{1,1}=2, b_{n, n}=(-1)^{n}, b_{i, i+1}=b_{i+1, i}=(-1)^{i}$ for $i=1,2, \ldots, n-1$.

Problem 2. (13 points)
Let $f \in C^{1}(a, b), \lim _{x \rightarrow a+} f(x)=+\infty, \lim _{x \rightarrow b-} f(x)=-\infty$ and $f^{\prime}(x)+f^{2}(x) \geq-1$ for $x \in(a, b)$. Prove that $b-a \geq \pi$ and give an example where $b-a=\pi$.

Solution. From the inequality we get

$$
\frac{d}{d x}(\operatorname{arctg} f(x)+x)=\frac{f^{\prime}(x)}{1+f^{2}(x)}+1 \geq 0
$$

for $x \in(a, b)$. Thus $\operatorname{arctg} f(x)+x$ is non-decreasing in the interval and using the limits we get $\frac{\pi}{2}+a \leq-\frac{\pi}{2}+b$. Hence $b-a \geq \pi$. One has equality for $f(x)=\operatorname{cotg} x, a=0, b=\pi$.

Problem 3. (13 points)

Given a set S of $2 n-1, n \in \mathbb{N}$, different irrational numbers. Prove that there are n different elements $x_{1}, x_{2}, \ldots, x_{n} \in S$ such that for all nonnegative rational numbers $a_{1}, a_{2}, \ldots, a_{n}$ with $a_{1}+a_{2}+\cdots+a_{n}>0$ we have that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}$ is an irrational number.

Solution. Let \mathbb{I} be the set of irrational numbers, \mathbb{Q} - the set of rational numbers, $\mathbb{Q}^{+}=\mathbb{Q} \cap[0, \infty)$. We work by induction. For $n=1$ the statement is trivial. Let it be true for $n-1$. We start to prove it for n. From the induction argument there are $n-1$ different elements $x_{1}, x_{2}, \ldots, x_{n-1} \in S$ such that

$$
\begin{align*}
& a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n-1} x_{n-1} \in \mathbb{I} \\
& \text { for all } a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Q}^{+} \text {with } a_{1}+a_{2}+\cdots+a_{n-1}>0 \tag{1}
\end{align*}
$$

Denote the other elements of S by $x_{n}, x_{n+1}, \ldots, x_{2 n-1}$. Assume the statement is not true for n. Then for $k=0,1, \ldots, n-1$ there are $r_{k} \in \mathbb{Q}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n-1} b_{i k} x_{i}+c_{k} x_{n+k}=r_{k} \text { for some } b_{i k}, c_{k} \in \mathbb{Q}^{+}, \sum_{i=1}^{n-1} b_{i k}+c_{k}>0 \tag{2}
\end{equation*}
$$

Also

$$
\begin{equation*}
\sum_{k=0}^{n-1} d_{k} x_{n+k}=R \text { for some } d_{k} \in \mathbb{Q}^{+}, \sum_{k=0}^{n-1} d_{k}>0, \quad R \in \mathbb{Q} \tag{3}
\end{equation*}
$$

If in (2) $c_{k}=0$ then (2) contradicts (1). Thus $c_{k} \neq 0$ and without loss of generality one may take $c_{k}=1$. In (2) also $\sum_{i=1}^{n-1} b_{i k}>0$ in view of $x_{n+k} \in \mathbb{I}$. Replacing (2) in (3) we get

$$
\sum_{k=0}^{n-1} d_{k}\left(-\sum_{i=1}^{n-1} b_{i k} x_{i}+r_{k}\right)=R \quad \text { or } \sum_{i=1}^{n-1}\left(\sum_{k=0}^{n-1} d_{k} b_{i k}\right) x_{i} \in \mathbb{Q}
$$

which contradicts (1) because of the conditions on $b^{\prime} \mathrm{s}$ and $d^{\prime} \mathrm{s}$.

Problem 4. (18 points)
Let $\alpha \in \mathbb{R} \backslash\{0\}$ and suppose that F and G are linear maps (operators) from \mathbb{R}^{n} into \mathbb{R}^{n} satisfying $F \circ G-G \circ F=\alpha F$.
a) Show that for all $k \in \mathbb{N}$ one has $F^{k} \circ G-G \circ F^{k}=\alpha k F^{k}$.
b) Show that there exists $k \geq 1$ such that $F^{k}=0$.

Solution. For a) using the assumptions we have

$$
\begin{aligned}
F^{k} \circ G-G \circ F^{k} & =\sum_{i=1}^{k}\left(F^{k-i+1} \circ G \circ F^{i-1}-F^{k-i} \circ G \circ F^{i}\right)= \\
& =\sum_{i=1}^{k} F^{k-i} \circ(F \circ G-G \circ F) \circ F^{i-1}= \\
& =\sum_{i=1}^{k} F^{k-i} \circ \alpha F \circ F^{i-1}=\alpha k F^{k} .
\end{aligned}
$$

b) Consider the linear operator $L(F)=F \circ G-G \circ F$ acting over all $n \times n$ matrices F. It may have at most n^{2} different eigenvalues. Assuming that $F^{k} \neq 0$ for every k we get that L has infinitely many different eigenvalues αk in view of a) - a contradiction.

Problem 5. (18 points)
a) Let $f \in C[0, b], g \in C(\mathbb{R})$ and let g be periodic with period b. Prove that $\int_{0}^{b} f(x) g(n x) d x$ has a limit as $n \rightarrow \infty$ and

$$
\lim _{n \rightarrow \infty} \int_{0}^{b} f(x) g(n x) d x=\frac{1}{b} \int_{0}^{b} f(x) d x \cdot \int_{0}^{b} g(x) d x
$$

b) Find

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{\sin x}{1+3 \cos ^{2} n x} d x
$$

Solution. Set $\|g\|_{1}=\int_{0}^{b}|g(x)| d x$ and

$$
\omega(f, t)=\sup \{|f(x)-f(y)|: x, y \in[0, b],|x-y| \leq t\} .
$$

In view of the uniform continuity of f we have $\omega(f, t) \rightarrow 0$ as $t \rightarrow 0$. Using the periodicity of g we get

$$
\begin{aligned}
& \int_{0}^{b} f(x) g(n x) d x=\sum_{k=1}^{n} \int_{b(k-1) / n}^{b k / n} f(x) g(n x) d x \\
& =\sum_{k=1}^{n} f(b k / n) \int_{b(k-1) / n}^{b k / n} g(n x) d x+\sum_{k=1}^{n} \int_{b(k-1) / n}^{b k / n}\{f(x)-f(b k / n)\} g(n x) d x \\
& =\frac{1}{n} \sum_{k=1}^{n} f(b k / n) \int_{0}^{b} g(x) d x+O\left(\omega(f, b / n)\|g\|_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{b} \sum_{k=1}^{n} \int_{b(k-1) / n}^{b k / n} f(x) d x \int_{0}^{b} g(x) d x \\
& +\frac{1}{b} \sum_{k=1}^{n}\left(\frac{b}{n} f(b k / n)-\int_{b(k-1) / n}^{b k / n} f(x) d x\right) \int_{0}^{b} g(x) d x+O\left(\omega(f, b / n)\|g\|_{1}\right) \\
= & \frac{1}{b} \int_{0}^{b} f(x) d x \int_{0}^{b} g(x) d x+O\left(\omega(f, b / n)\|g\|_{1}\right) .
\end{aligned}
$$

This proves a). For b) we set $b=\pi, f(x)=\sin x, g(x)=\left(1+3 \cos ^{2} x\right)^{-1}$. From a) and

$$
\int_{0}^{\pi} \sin x d x=2, \quad \int_{0}^{\pi}\left(1+3 \cos ^{2} x\right)^{-1} d x=\frac{\pi}{2}
$$

we get

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{\sin x}{1+3 \cos ^{2} n x} d x=1
$$

Problem 6. (25 points)
Let $f \in C^{2}[0, N]$ and $\left|f^{\prime}(x)\right|<1, f^{\prime \prime}(x)>0$ for every $x \in[0, N]$. Let $0 \leq m_{0}<m_{1}<\cdots<m_{k} \leq N$ be integers such that $n_{i}=f\left(m_{i}\right)$ are also integers for $i=0,1, \ldots, k$. Denote $b_{i}=n_{i}-n_{i-1}$ and $a_{i}=m_{i}-m_{i-1}$ for $i=1,2, \ldots, k$.
a) Prove that

$$
-1<\frac{b_{1}}{a_{1}}<\frac{b_{2}}{a_{2}}<\cdots<\frac{b_{k}}{a_{k}}<1 .
$$

b) Prove that for every choice of $A>1$ there are no more than N / A indices j such that $a_{j}>A$.
c) Prove that $k \leq 3 N^{2 / 3}$ (i.e. there are no more than $3 N^{2 / 3}$ integer points on the curve $y=f(x), x \in[0, N])$.

Solution. a) For $i=1,2, \ldots, k$ we have

$$
b_{i}=f\left(m_{i}\right)-f\left(m_{i-1}\right)=\left(m_{i}-m_{i-1}\right) f^{\prime}\left(x_{i}\right)
$$

for some $x_{i} \in\left(m_{i-1}, m_{i}\right)$. Hence $\frac{b_{i}}{a_{i}}=f^{\prime}\left(x_{i}\right)$ and so $-1<\frac{b_{i}}{a_{i}}<1$. From the convexity of f we have that f^{\prime} is increasing and $\frac{b_{i}}{a_{i}}=f^{\prime}\left(x_{i}\right)<f^{\prime}\left(x_{i+1}\right)=$ $\frac{b_{i+1}}{a_{i+1}}$ because of $x_{i}<m_{i}<x_{i+1}$.
b) Set $S_{A}=\left\{j \in\{0,1, \ldots, k\}: a_{j}>A\right\}$. Then

$$
N \geq m_{k}-m_{0}=\sum_{i=1}^{k} a_{i} \geq \sum_{j \in S_{A}} a_{j}>A\left|S_{A}\right|
$$

and hence $\left|S_{A}\right|<N / A$.
c) All different fractions in $(-1,1)$ with denominators less or equal A are no more $2 A^{2}$. Using b) we get $k<N / A+2 A^{2}$. Put $A=N^{1 / 3}$ in the above estimate and get $k<3 N^{2 / 3}$.

Second day - July 30, 1994

Problem 1. (14 points)
Let $f \in C^{1}[a, b], f(a)=0$ and suppose that $\lambda \in \mathbb{R}, \lambda>0$, is such that

$$
\left|f^{\prime}(x)\right| \leq \lambda|f(x)|
$$

for all $x \in[a, b]$. Is it true that $f(x)=0$ for all $x \in[a, b]$?
Solution. Assume that there is $y \in(a, b]$ such that $f(y) \neq 0$. Without loss of generality we have $f(y)>0$. In view of the continuity of f there exists $c \in[a, y)$ such that $f(c)=0$ and $f(x)>0$ for $x \in(c, y]$. For $x \in(c, y]$ we have $\left|f^{\prime}(x)\right| \leq \lambda f(x)$. This implies that the function $g(x)=\ln f(x)-\lambda x$ is not increasing in $(c, y]$ because of $g^{\prime}(x)=\frac{f^{\prime}(x)}{f(x)}-\lambda \leq 0$. Thus $\ln f(x)-\lambda x \geq$ $\ln f(y)-\lambda y$ and $f(x) \geq e^{\lambda x-\lambda y} f(y)$ for $x \in(c, y]$. Thus

$$
0=f(c)=f(c+0) \geq e^{\lambda c-\lambda y} f(y)>0
$$

- a contradiction. Hence one has $f(x)=0$ for all $x \in[a, b]$.

Problem 2. (14 points)
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=\left(x^{2}-y^{2}\right) e^{-x^{2}-y^{2}}$.
a) Prove that f attains its minimum and its maximum.
b) Determine all points (x, y) such that $\frac{\partial f}{\partial x}(x, y)=\frac{\partial f}{\partial y}(x, y)=0$ and determine for which of them f has global or local minimum or maximum.

Solution. We have $f(1,0)=e^{-1}, f(0,1)=-e^{-1}$ and $t e^{-t} \leq 2 e^{-2}$ for $t \geq 2$. Therefore $|f(x, y)| \leq\left(x^{2}+y^{2}\right) e^{-x^{2}-y^{2}} \leq 2 e^{-2}<e^{-1}$ for $(x, y) \notin$ $M=\left\{(u, v): u^{2}+v^{2} \leq 2\right\}$ and f cannot attain its minimum and its
maximum outside M. Part a) follows from the compactness of M and the continuity of f. Let (x, y) be a point from part b). From $\frac{\partial f}{\partial x}(x, y)=$ $2 x\left(1-x^{2}+y^{2}\right) e^{-x^{2}-y^{2}}$ we get

$$
\begin{equation*}
x\left(1-x^{2}+y^{2}\right)=0 \tag{1}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
y\left(1+x^{2}-y^{2}\right)=0 \tag{2}
\end{equation*}
$$

All solutions (x, y) of the system (1), (2) are $(0,0),(0,1),(0,-1),(1,0)$ and $(-1,0)$. One has $f(1,0)=f(-1,0)=e^{-1}$ and f has global maximum at the points $(1,0)$ and $(-1,0)$. One has $f(0,1)=f(0,-1)=-e^{-1}$ and f has global minimum at the points $(0,1)$ and $(0,-1)$. The point $(0,0)$ is not an extrema point because of $f(x, 0)=x^{2} e^{-x^{2}}>0$ if $x \neq 0$ and $f(y, 0)=-y^{2} e^{-y^{2}}<0$ if $y \neq 0$.

Problem 3. (14 points)
Let f be a real-valued function with $n+1$ derivatives at each point of \mathbb{R}. Show that for each pair of real numbers $a, b, a<b$, such that

$$
\ln \left(\frac{f(b)+f^{\prime}(b)+\cdots+f^{(n)}(b)}{f(a)+f^{\prime}(a)+\cdots+f^{(n)}(a)}\right)=b-a
$$

there is a number c in the open interval (a, b) for which

$$
f^{(n+1)}(c)=f(c)
$$

Note that \ln denotes the natural logarithm.
Solution. Set $g(x)=\left(f(x)+f^{\prime}(x)+\cdots+f^{(n)}(x)\right) e^{-x}$. From the assumption one get $g(a)=g(b)$. Then there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. Replacing in the last equality $g^{\prime}(x)=\left(f^{(n+1)}(x)-f(x)\right) e^{-x}$ we finish the proof.

Problem 4. (18 points)
Let A be a $n \times n$ diagonal matrix with characteristic polynomial

$$
\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \ldots\left(x-c_{k}\right)^{d_{k}}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are distinct (which means that c_{1} appears d_{1} times on the diagonal, c_{2} appears d_{2} times on the diagonal, etc. and $d_{1}+d_{2}+\cdots+d_{k}=n$).

Let V be the space of all $n \times n$ matrices B such that $A B=B A$. Prove that the dimension of V is

$$
d_{1}^{2}+d_{2}^{2}+\cdots+d_{k}^{2}
$$

Solution. Set $A=\left(a_{i j}\right)_{i, j=1}^{n}, B=\left(b_{i j}\right)_{i, j=1}^{n}, A B=\left(x_{i j}\right)_{i, j=1}^{n}$ and $B A=\left(y_{i j}\right)_{i, j=1}^{n}$. Then $x_{i j}=a_{i i} b_{i j}$ and $y_{i j}=a_{j j} b_{i j}$. Thus $A B=B A$ is equivalent to $\left(a_{i i}-a_{j j}\right) b_{i j}=0$ for $i, j=1,2, \ldots, n$. Therefore $b_{i j}=0$ if $a_{i i} \neq a_{j j}$ and $b_{i j}$ may be arbitrary if $a_{i i}=a_{j j}$. The number of indices (i, j) for which $a_{i i}=a_{j j}=c_{m}$ for some $m=1,2, \ldots, k$ is d_{m}^{2}. This gives the desired result.

Problem 5. (18 points)
Let $x_{1}, x_{2}, \ldots, x_{k}$ be vectors of m-dimensional Euclidian space, such that $x_{1}+x_{2}+\cdots+x_{k}=0$. Show that there exists a permutation π of the integers $\{1,2, \ldots, k\}$ such that

$$
\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\| \leq\left(\sum_{i=1}^{k}\left\|x_{i}\right\|^{2}\right)^{1 / 2} \quad \text { for each } n=1,2, \ldots, k
$$

Note that $\|\cdot\|$ denotes the Euclidian norm.
Solution. We define π inductively. Set $\pi(1)=1$. Assume π is defined for $i=1,2, \ldots, n$ and also

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\|^{2} \leq \sum_{i=1}^{n}\left\|x_{\pi(i)}\right\|^{2} . \tag{1}
\end{equation*}
$$

Note (1) is true for $n=1$. We choose $\pi(n+1)$ in a way that (1) is fulfilled with $n+1$ instead of n. Set $y=\sum_{i=1}^{n} x_{\pi(i)}$ and $A=\{1,2, \ldots, k\} \backslash\{\pi(i): i=$ $1,2, \ldots, n\}$. Assume that $\left(y, x_{r}\right)>0$ for all $r \in A$. Then $\left(y, \sum_{r \in A} x_{r}\right)>0$ and in view of $y+\sum_{r \in A} x_{r}=0$ one gets $-(y, y)>0$, which is impossible. Therefore there is $r \in A$ such that

$$
\begin{equation*}
\left(y, x_{r}\right) \leq 0 . \tag{2}
\end{equation*}
$$

Put $\pi(n+1)=r$. Then using (2) and (1) we have

$$
\left\|\sum_{i=1}^{n+1} x_{\pi(i)}\right\|^{2}=\left\|y+x_{r}\right\|^{2}=\|y\|^{2}+2\left(y, x_{r}\right)+\left\|x_{r}\right\|^{2} \leq\|y\|^{2}+\left\|x_{r}\right\|^{2} \leq
$$

$$
\leq \sum_{i=1}^{n}\left\|x_{\pi(i)}\right\|^{2}+\left\|x_{r}\right\|^{2}=\sum_{i=1}^{n+1}\left\|x_{\pi(i)}\right\|^{2}
$$

which verifies (1) for $n+1$. Thus we define π for every $n=1,2, \ldots, k$. Finally from (1) we get

$$
\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\|^{2} \leq \sum_{i=1}^{n}\left\|x_{\pi(i)}\right\|^{2} \leq \sum_{i=1}^{k}\left\|x_{i}\right\|^{2}
$$

Problem 6. (22 points)
Find $\lim _{N \rightarrow \infty} \frac{\ln ^{2} N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln (N-k)}$. Note that \ln denotes the natural logarithm.

Solution. Obviously
(1) $A_{N}=\frac{\ln ^{2} N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln (N-k)} \geq \frac{\ln ^{2} N}{N} \cdot \frac{N-3}{\ln ^{2} N}=1-\frac{3}{N}$.

Take $M, 2 \leq M<N / 2$. Then using that $\frac{1}{\ln k \cdot \ln (N-k)}$ is decreasing in [2,N/2] and the symmetry with respect to $N / 2$ one get

$$
\begin{aligned}
A_{N} & =\frac{\ln ^{2} N}{N}\left\{\sum_{k=2}^{M}+\sum_{k=M+1}^{N-M-1}+\sum_{k=N-M}^{N-2}\right\} \frac{1}{\ln k \cdot \ln (N-k)} \leq \\
& \leq \frac{\ln ^{2} N}{N}\left\{2 \frac{M-1}{\ln 2 \cdot \ln (N-2)}+\frac{N-2 M-1}{\ln M \cdot \ln (N-M)}\right\} \leq \\
& \leq \frac{2}{\ln 2} \cdot \frac{M \ln N}{N}+\left(1-\frac{2 M}{N}\right) \frac{\ln N}{\ln M}+O\left(\frac{1}{\ln N}\right) .
\end{aligned}
$$

Choose $M=\left[\frac{N}{\ln ^{2} N}\right]+1$ to get
(2) $A_{N} \leq\left(1-\frac{2}{N \ln ^{2} N}\right) \frac{\ln N}{\ln N-2 \ln \ln N}+O\left(\frac{1}{\ln N}\right) \leq 1+O\left(\frac{\ln \ln N}{\ln N}\right)$.

Estimates (1) and (2) give

$$
\lim _{N \rightarrow \infty} \frac{\ln ^{2} N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln (N-k)}=1
$$

