International Competition in Mathematics for University Students in Plovdiv, Bulgaria 1994

PROBLEMS AND SOLUTIONS

First day — July 29, 1994

Problem 1. (13 points)

a) Let A be a $n \times n$, $n \ge 2$, symmetric, invertible matrix with real positive elements. Show that $z_n \le n^2 - 2n$, where z_n is the number of zero elements in A^{-1} .

b) How many zero elements are there in the inverse of the $n \times n$ matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & 2 & 2 & 2 & \dots & 2 \\ 1 & 2 & 1 & 1 & \dots & 1 \\ 1 & 2 & 1 & 2 & \dots & 2 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 2 & 1 & 2 & \dots & \dots \end{pmatrix} ?$$

Solution. Denote by a_{ij} and b_{ij} the elements of A and A^{-1} , respectively. Then for $k \neq m$ we have $\sum_{i=0}^{n} a_{ki}b_{im} = 0$ and from the positivity of a_{ij} we conclude that at least one of $\{b_{im} : i = 1, 2, ..., n\}$ is positive and at least one is negative. Hence we have at least two non-zero elements in every column of A^{-1} . This proves part a). For part b) all b_{ij} are zero except $b_{1,1} = 2, b_{n,n} = (-1)^n, b_{i,i+1} = b_{i+1,i} = (-1)^i$ for i = 1, 2, ..., n-1.

Problem 2. (13 points) Let $f \in C^1(a, b)$, $\lim_{x \to a+} f(x) = +\infty$, $\lim_{x \to b-} f(x) = -\infty$ and $f'(x) + f^2(x) \ge -1$ for $x \in (a, b)$. Prove that $b - a \ge \pi$ and give an example where $b - a = \pi$.

Solution. From the inequality we get

$$\frac{d}{dx}(\operatorname{arctg} f(x) + x) = \frac{f'(x)}{1 + f^2(x)} + 1 \ge 0$$

for $x \in (a, b)$. Thus $\operatorname{arctg} f(x) + x$ is non-decreasing in the interval and using the limits we get $\frac{\pi}{2} + a \leq -\frac{\pi}{2} + b$. Hence $b - a \geq \pi$. One has equality for $f(x) = \operatorname{cotg} x, a = 0, b = \pi$.

Problem 3. (13 points)

Given a set S of 2n - 1, $n \in \mathbb{N}$, different irrational numbers. Prove that there are n different elements $x_1, x_2, \ldots, x_n \in S$ such that for all nonnegative rational numbers a_1, a_2, \ldots, a_n with $a_1 + a_2 + \cdots + a_n > 0$ we have that $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ is an irrational number.

Solution. Let \mathbb{I} be the set of irrational numbers, \mathbb{Q} – the set of rational numbers, $\mathbb{Q}^+ = \mathbb{Q} \cap [0, \infty)$. We work by induction. For n = 1 the statement is trivial. Let it be true for n - 1. We start to prove it for n. From the induction argument there are n - 1 different elements $x_1, x_2, \ldots, x_{n-1} \in S$ such that

(1)
$$\begin{array}{c} a_1 x_1 + a_2 x_2 + \dots + a_{n-1} x_{n-1} \in \mathbb{I} \\ \text{for all } a_1, a_2, \dots, a_n \in \mathbb{Q}^+ \text{ with } a_1 + a_2 + \dots + a_{n-1} > 0. \end{array}$$

Denote the other elements of S by $x_n, x_{n+1}, \ldots, x_{2n-1}$. Assume the statement is not true for n. Then for $k = 0, 1, \ldots, n-1$ there are $r_k \in \mathbb{Q}$ such that

(2)
$$\sum_{i=1}^{n-1} b_{ik} x_i + c_k x_{n+k} = r_k \text{ for some } b_{ik}, c_k \in \mathbb{Q}^+, \ \sum_{i=1}^{n-1} b_{ik} + c_k > 0.$$

Also

(3)
$$\sum_{k=0}^{n-1} d_k x_{n+k} = R \text{ for some } d_k \in \mathbb{Q}^+, \ \sum_{k=0}^{n-1} d_k > 0, \ R \in \mathbb{Q}.$$

If in (2) $c_k = 0$ then (2) contradicts (1). Thus $c_k \neq 0$ and without loss of generality one may take $c_k = 1$. In (2) also $\sum_{i=1}^{n-1} b_{ik} > 0$ in view of $x_{n+k} \in \mathbb{I}$. Replacing (2) in (3) we get

$$\sum_{k=0}^{n-1} d_k \left(-\sum_{i=1}^{n-1} b_{ik} x_i + r_k \right) = R \text{ or } \sum_{i=1}^{n-1} \left(\sum_{k=0}^{n-1} d_k b_{ik} \right) x_i \in \mathbb{Q},$$

which contradicts (1) because of the conditions on b's and d's.

Problem 4. (18 points)

Let $\alpha \in \mathbb{R} \setminus \{0\}$ and suppose that F and G are linear maps (operators) from \mathbb{R}^n into \mathbb{R}^n satisfying $F \circ G - G \circ F = \alpha F$.

- a) Show that for all $k \in \mathbb{N}$ one has $F^k \circ G G \circ F^k = \alpha k F^k$.
- b) Show that there exists $k \ge 1$ such that $F^k = 0$.

Solution. For a) using the assumptions we have

$$\begin{split} F^k \circ G - G \circ F^k &= \sum_{i=1}^k \left(F^{k-i+1} \circ G \circ F^{i-1} - F^{k-i} \circ G \circ F^i \right) = \\ &= \sum_{i=1}^k F^{k-i} \circ (F \circ G - G \circ F) \circ F^{i-1} = \\ &= \sum_{i=1}^k F^{k-i} \circ \alpha F \circ F^{i-1} = \alpha k F^k. \end{split}$$

b) Consider the linear operator $L(F) = F \circ G - G \circ F$ acting over all $n \times n$ matrices F. It may have at most n^2 different eigenvalues. Assuming that $F^k \neq 0$ for every k we get that L has infinitely many different eigenvalues αk in view of a) – a contradiction.

Problem 5. (18 points)

a) Let $f \in C[0,b]$, $g \in C(\mathbb{R})$ and let g be periodic with period b. Prove that $\int_0^b f(x)g(nx)dx$ has a limit as $n \to \infty$ and

$$\lim_{n \to \infty} \int_0^b f(x)g(nx)dx = \frac{1}{b} \int_0^b f(x)dx \cdot \int_0^b g(x)dx.$$

b) Find

$$\lim_{n \to \infty} \int_0^\pi \frac{\sin x}{1 + 3\cos^2 nx} dx.$$

Solution. Set $||g||_1 = \int_0^b |g(x)| dx$ and $\omega(f,t) = \sup \{ |f(x) - f(y)| : x, y \in [0,b], |x-y| \le t \}.$

In view of the uniform continuity of f we have $\omega(f,t) \to 0$ as $t \to 0$. Using the periodicity of g we get

$$\begin{split} &\int_{0}^{b} f(x)g(nx)dx = \sum_{k=1}^{n} \int_{b(k-1)/n}^{bk/n} f(x)g(nx)dx \\ &= \sum_{k=1}^{n} f(bk/n) \int_{b(k-1)/n}^{bk/n} g(nx)dx + \sum_{k=1}^{n} \int_{b(k-1)/n}^{bk/n} \{f(x) - f(bk/n)\}g(nx)dx \\ &= \frac{1}{n} \sum_{k=1}^{n} f(bk/n) \int_{0}^{b} g(x)dx + O(\omega(f, b/n) ||g||_{1}) \end{split}$$

$$= \frac{1}{b} \sum_{k=1}^{n} \int_{b(k-1)/n}^{bk/n} f(x) dx \int_{0}^{b} g(x) dx + \frac{1}{b} \sum_{k=1}^{n} \left(\frac{b}{n} f(bk/n) - \int_{b(k-1)/n}^{bk/n} f(x) dx \right) \int_{0}^{b} g(x) dx + O(\omega(f, b/n) ||g||_{1}) = \frac{1}{b} \int_{0}^{b} f(x) dx \int_{0}^{b} g(x) dx + O(\omega(f, b/n) ||g||_{1}).$$

This proves a). For b) we set $b = \pi$, $f(x) = \sin x$, $g(x) = (1 + 3\cos^2 x)^{-1}$. From a) and

$$\int_0^{\pi} \sin x dx = 2, \quad \int_0^{\pi} (1 + 3\cos^2 x)^{-1} dx = \frac{\pi}{2}$$

we get

$$\lim_{n \to \infty} \int_0^\pi \frac{\sin x}{1 + 3\cos^2 nx} dx = 1.$$

Problem 6. (25 points)

Let $f \in C^2[0, N]$ and |f'(x)| < 1, f''(x) > 0 for every $x \in [0, N]$. Let $0 \le m_0 < m_1 < \cdots < m_k \le N$ be integers such that $n_i = f(m_i)$ are also integers for $i = 0, 1, \ldots, k$. Denote $b_i = n_i - n_{i-1}$ and $a_i = m_i - m_{i-1}$ for $i = 1, 2, \ldots, k$.

a) Prove that

$$-1 < \frac{b_1}{a_1} < \frac{b_2}{a_2} < \dots < \frac{b_k}{a_k} < 1.$$

b) Prove that for every choice of A > 1 there are no more than N/A indices j such that $a_j > A$.

c) Prove that $k \leq 3N^{2/3}$ (i.e. there are no more than $3N^{2/3}$ integer points on the curve $y = f(x), x \in [0, N]$).

Solution. a) For $i = 1, 2, \ldots, k$ we have

$$b_i = f(m_i) - f(m_{i-1}) = (m_i - m_{i-1})f'(x_i)$$

for some $x_i \in (m_{i-1}, m_i)$. Hence $\frac{b_i}{a_i} = f'(x_i)$ and so $-1 < \frac{b_i}{a_i} < 1$. From the convexity of f we have that f' is increasing and $\frac{b_i}{a_i} = f'(x_i) < f'(x_{i+1}) = \frac{b_{i+1}}{a_{i+1}}$ because of $x_i < m_i < x_{i+1}$.

b) Set $S_A = \{j \in \{0, 1, \dots, k\} : a_j > A\}$. Then

$$N \ge m_k - m_0 = \sum_{i=1}^k a_i \ge \sum_{j \in S_A} a_j > A|S_A|$$

and hence $|S_A| < N/A$.

c) All different fractions in (-1, 1) with denominators less or equal A are no more $2A^2$. Using b) we get $k < N/A + 2A^2$. Put $A = N^{1/3}$ in the above estimate and get $k < 3N^{2/3}$.

Second day — July 30, 1994

Problem 1. (14 points)

Let $f \in C^1[a, b]$, f(a) = 0 and suppose that $\lambda \in \mathbb{R}$, $\lambda > 0$, is such that

 $|f'(x)| \le \lambda |f(x)|$

for all $x \in [a, b]$. Is it true that f(x) = 0 for all $x \in [a, b]$?

Solution. Assume that there is $y \in (a, b]$ such that $f(y) \neq 0$. Without loss of generality we have f(y) > 0. In view of the continuity of f there exists $c \in [a, y)$ such that f(c) = 0 and f(x) > 0 for $x \in (c, y]$. For $x \in (c, y]$ we have $|f'(x)| \leq \lambda f(x)$. This implies that the function $g(x) = \ln f(x) - \lambda x$ is not increasing in (c, y] because of $g'(x) = \frac{f'(x)}{f(x)} - \lambda \leq 0$. Thus $\ln f(x) - \lambda x \geq \ln f(y) - \lambda y$ and $f(x) \geq e^{\lambda x - \lambda y} f(y)$ for $x \in (c, y]$. Thus

$$0 = f(c) = f(c+0) \ge e^{\lambda c - \lambda y} f(y) > 0$$

— a contradiction. Hence one has f(x) = 0 for all $x \in [a, b]$.

Problem 2. (14 points)

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = (x^2 - y^2)e^{-x^2 - y^2}$.

a) Prove that f attains its minimum and its maximum.

b) Determine all points (x, y) such that $\frac{\partial f}{\partial x}(x, y) = \frac{\partial f}{\partial y}(x, y) = 0$ and determine for which of them f has global or local minimum or maximum.

Solution. We have $f(1,0) = e^{-1}$, $f(0,1) = -e^{-1}$ and $te^{-t} \le 2e^{-2}$ for $t \ge 2$. Therefore $|f(x,y)| \le (x^2 + y^2)e^{-x^2 - y^2} \le 2e^{-2} < e^{-1}$ for $(x,y) \notin M = \{(u,v) : u^2 + v^2 \le 2\}$ and f cannot attain its minimum and its

maximum outside M. Part a) follows from the compactness of M and the continuity of f. Let (x, y) be a point from part b). From $\frac{\partial f}{\partial x}(x, y) = 2x(1-x^2+y^2)e^{-x^2-y^2}$ we get

(1)
$$x(1-x^2+y^2) = 0.$$

Similarly

(2)
$$y(1+x^2-y^2) = 0.$$

All solutions (x, y) of the system (1), (2) are (0, 0), (0, 1), (0, -1), (1, 0)and (-1, 0). One has $f(1, 0) = f(-1, 0) = e^{-1}$ and f has global maximum at the points (1, 0) and (-1, 0). One has $f(0, 1) = f(0, -1) = -e^{-1}$ and f has global minimum at the points (0, 1) and (0, -1). The point (0, 0)is not an extrema point because of $f(x, 0) = x^2 e^{-x^2} > 0$ if $x \neq 0$ and $f(y, 0) = -y^2 e^{-y^2} < 0$ if $y \neq 0$.

Problem 3. (14 points)

Let f be a real-valued function with n + 1 derivatives at each point of \mathbb{R} . Show that for each pair of real numbers a, b, a < b, such that

$$\ln\left(\frac{f(b) + f'(b) + \dots + f^{(n)}(b)}{f(a) + f'(a) + \dots + f^{(n)}(a)}\right) = b - a$$

there is a number c in the open interval (a, b) for which

$$f^{(n+1)}(c) = f(c).$$

Note that ln denotes the natural logarithm.

Solution. Set $g(x) = (f(x) + f'(x) + \dots + f^{(n)}(x)) e^{-x}$. From the assumption one get g(a) = g(b). Then there exists $c \in (a, b)$ such that g'(c) = 0. Replacing in the last equality $g'(x) = (f^{(n+1)}(x) - f(x)) e^{-x}$ we finish the proof.

Problem 4. (18 points)

Let A be a $n \times n$ diagonal matrix with characteristic polynomial

$$(x-c_1)^{d_1}(x-c_2)^{d_2}\dots(x-c_k)^{d_k},$$

where c_1, c_2, \ldots, c_k are distinct (which means that c_1 appears d_1 times on the diagonal, c_2 appears d_2 times on the diagonal, etc. and $d_1+d_2+\cdots+d_k=n$).

Let V be the space of all $n \times n$ matrices B such that AB = BA. Prove that the dimension of V is

$$d_1^2 + d_2^2 + \dots + d_k^2.$$

Solution. Set $A = (a_{ij})_{i,j=1}^n$, $B = (b_{ij})_{i,j=1}^n$, $AB = (x_{ij})_{i,j=1}^n$ and $BA = (y_{ij})_{i,j=1}^n$. Then $x_{ij} = a_{ii}b_{ij}$ and $y_{ij} = a_{jj}b_{ij}$. Thus AB = BA is equivalent to $(a_{ii} - a_{jj})b_{ij} = 0$ for i, j = 1, 2, ..., n. Therefore $b_{ij} = 0$ if $a_{ii} \neq a_{jj}$ and b_{ij} may be arbitrary if $a_{ii} = a_{jj}$. The number of indices (i, j) for which $a_{ii} = a_{jj} = c_m$ for some m = 1, 2, ..., k is d_m^2 . This gives the desired result.

Problem 5. (18 points)

Let x_1, x_2, \ldots, x_k be vectors of *m*-dimensional Euclidian space, such that $x_1 + x_2 + \cdots + x_k = 0$. Show that there exists a permutation π of the integers $\{1, 2, \ldots, k\}$ such that

$$\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\| \le \left(\sum_{i=1}^{k} \|x_i\|^2\right)^{1/2} \text{ for each } n = 1, 2, \dots, k.$$

Note that $\|\cdot\|$ denotes the Euclidian norm.

Solution. We define π inductively. Set $\pi(1) = 1$. Assume π is defined for i = 1, 2, ..., n and also

(1)
$$\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\|^{2} \leq \sum_{i=1}^{n} \|x_{\pi(i)}\|^{2}.$$

Note (1) is true for n = 1. We choose $\pi(n+1)$ in a way that (1) is fulfilled with n+1 instead of n. Set $y = \sum_{i=1}^{n} x_{\pi(i)}$ and $A = \{1, 2, \dots, k\} \setminus \{\pi(i) : i = 1, 2, \dots, n\}$. Assume that $(y, x_r) > 0$ for all $r \in A$. Then $\left(y, \sum_{r \in A} x_r\right) > 0$ and in view of $y + \sum_{r \in A} x_r = 0$ one gets -(y, y) > 0, which is impossible. Therefore there is $r \in A$ such that

$$(2) (y, x_r) \le 0$$

Put $\pi(n+1) = r$. Then using (2) and (1) we have

$$\left\|\sum_{i=1}^{n+1} x_{\pi(i)}\right\|^2 = \|y + x_r\|^2 = \|y\|^2 + 2(y, x_r) + \|x_r\|^2 \le \|y\|^2 + \|y\|^2 + \|y\|^2 \le \|y\|^2 \le \|y\|^2 + \|y\|^2 \le \|y\|^2 \le \|y\|^2 + \|y\|^2 \le \|y\|^2 + \|y\|^2 \le \|y\|^2 + \|y\|^2 \le \|y\|^2 \le \|y\|^2 + \|y\|^2 + \|y\|^2 \le \|y\|^2 + \|y\|^2 \le \|y\|^2 + \|y\|^2 + \|y\|^2 \le \|y\|^2 + \|y\|^2 + \|y\|^2 \le \|y\|^2 + \|y\|^2 +$$

$$\leq \sum_{i=1}^{n} \|x_{\pi(i)}\|^2 + \|x_r\|^2 = \sum_{i=1}^{n+1} \|x_{\pi(i)}\|^2,$$

which verifies (1) for n + 1. Thus we define π for every n = 1, 2, ..., k. Finally from (1) we get

$$\left\|\sum_{i=1}^{n} x_{\pi(i)}\right\|^{2} \le \sum_{i=1}^{n} \|x_{\pi(i)}\|^{2} \le \sum_{i=1}^{k} \|x_{i}\|^{2}$$

Problem 6. (22 points)

Find $\lim_{N\to\infty} \frac{\ln^2 N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln(N-k)}$. Note that \ln denotes the natural logarithm.

garmin.

Solution. Obviously

(1)
$$A_N = \frac{\ln^2 N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln(N-k)} \ge \frac{\ln^2 N}{N} \cdot \frac{N-3}{\ln^2 N} = 1 - \frac{3}{N}.$$

Take $M, 2 \leq M < N/2$. Then using that $\frac{1}{\ln k \cdot \ln(N-k)}$ is decreasing in [2, N/2] and the symmetry with respect to N/2 one get

$$A_{N} = \frac{\ln^{2} N}{N} \left\{ \sum_{k=2}^{M} + \sum_{k=M+1}^{N-M-1} + \sum_{k=N-M}^{N-2} \right\} \frac{1}{\ln k \cdot \ln(N-k)} \leq \\ \leq \frac{\ln^{2} N}{N} \left\{ 2 \frac{M-1}{\ln 2 \cdot \ln(N-2)} + \frac{N-2M-1}{\ln M \cdot \ln(N-M)} \right\} \leq \\ \leq \frac{2}{\ln 2} \cdot \frac{M \ln N}{N} + \left(1 - \frac{2M}{N} \right) \frac{\ln N}{\ln M} + O\left(\frac{1}{\ln N} \right).$$

Choose $M = \left\lfloor \frac{N}{\ln^2 N} \right\rfloor + 1$ to get (2) $A_N \le \left(1 - \frac{2}{N \ln^2 N}\right) \frac{\ln N}{\ln N - 2 \ln \ln N} + O\left(\frac{1}{\ln N}\right) \le 1 + O\left(\frac{\ln \ln N}{\ln N}\right).$ Estimates (1) and (2) give

$$\lim_{N \to \infty} \frac{\ln^2 N}{N} \sum_{k=2}^{N-2} \frac{1}{\ln k \cdot \ln(N-k)} = 1.$$