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Abstract
Using the well-known hydrodynamic theory for dilute suspensions of spheroids, we have pre-

viously predicted the destabilisation of Taylor Couette flow, due to anisotropic viscous stresses

induced by suspended disk-shaped particles [1]. Here we provide experimental evidence for the

destabilisation mechanism using suspensions of mica flakes. As a function of the mica concentra-

tion, there is good qualitative agreement between the experiment and the theory in the concen-

tration dependence of the critical speed for instability onset and of the axial wavelength of the

corresponding Taylor vortices. Quantitative differences are attributed to hydrodynamic interac-

tions between the disks, which we account for in the theory in an ad-hoc fashion using rotary

diffusion.
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I. INTRODUCTION12

Taylor Couette flow (TCF) is the flow in the gap between two counter rotating cylinders.13

When the outer cylinder is held fixed, and the rotation speed of the inner cylinder exceeds a14

threshold value, the circular Taylor Couette base flow destabilises, which is accompanied by15

the emergence of so-called Taylor vortices [2]. For Newtonian fluids, the onset of instability16

corresponds to the Taylor number:17

Ta =
ρΩ

√
∆R3R1

ηs
, (1)

exceeding a critical value Tac that depends on the cylinder radius ratio R1/R2. Here ηs is18

the fluid viscosity, Ω is the angular velocity of the inner cylinder, ∆R = R2 − R1 is the19

gap width between the cylinders, and R1 and R2 are the radii of the inner and of the outer20

cylinder, respectively.21

In non-Newtonian fluids the behaviour is different, and two types of non-Newtonian TCF22

instabilities have been observed. The first type is driven by centrifugal forces, similar to the23

Newtonian instability, described above. In this case the non-Newtonian rheology only alters24

the details of the instability, i.e. the onset speed, the shape and the dynamics of the Taylor25

vortices, while the driving force remains the same. Examples of this type of instability26

include fluids with a shear thinning rheology [3–5] or suspensions of rod-like polymers, e.g.27

polyacrylic acid, xanthan and carboxymethyl cellulose [1, 6–8]. Other examples include dense28

suspensions of spheres [9–11], where non-Newtonian effects may arise from an anisotropic29

microstructure [12–15] as well as from a heterogeneous solid concentration [9, 16].30

The second type of non-Newtonian TCF instability is driven by viscoelastic stresses and31

persists even in the absence of centrifugal forces. This so-called “elastic instability” has been32

observed in polymer solutions: [17–19] and in micelle solutions [20] where in the later case,33

the instability is also affected by shear banding, i.e. by a non-monotonic relationship between34

the stress and the strain rate. The elastic instability is well understood and reproduced by35

numerical simulation using constitutive equations of viscoelastic fluids [18, 21].36

In this work we report on the modification of the centrifugal TCF instability, due to37

anisotropic viscous stresses generated by suspended disk-shaped particles. It is noted that38

dilute suspensions of spherical particles (with volume fraction c ≲ 0.05) behave as Newtonian39

fluids with an elevated viscosity. In this regard it is noted that for c ≲ 0.05, spherical particles40

may induce a very small destabilising effect, which may be attributed to particle inertia [16].41
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In a previous work we theoretically studied the destabilising effect of anisotropic viscous42

stresses induced by disk-shaped particles [1]. In that work we predicted that for suspensions43

of perfectly aligned disks, i.e. disk with an infinite aspect ratio and zero rotary diffusivity44

Dr, the instability persists even when the centrifugal force becomes vanishingly small. Zero45

rotary diffusion corresponds to an infinite rotary Péclet number:46

Pe =
γ̇

Dr

. (2)

Here γ̇ is the shear rate and Dr ∼ kBT/(ηsl
3) where l is the major axis of the disks. It47

was indeed predicted that under these idealised conditions, the critical Taylor number [Eq.48

(1)], required for instability onset, was equal to zero. It was furthermore shown that, as49

Ta → 0, the instability growth rate λ decreases as λ ∼ ν∆R−2Ta2 (Fig. 4b in Ref. [1]), i.e.50

a non-zero growth rate also requires a non-zero centrifugal force.51

A related but not entirely similar destabilisation mechanism has been observed in sus-52

pensions of disk-shaped clay particles [22]. These clay suspensions however generate elastic53

stresses and are shear thinning due to rotary diffusion and electrostatic inter-particle forces54

[23]. These effects destabilise TCF even in the absence of anisotropic viscous stresses [3].55

a) b)

FIG. 1. (a) A rod with its major axis n in the azimuthal direction ϕ, does not rotate when subjected

to an azimuthal vorticity perturbation. (b) A disk on the other hand tilts its normal n away from

the radial direction r towards the axial direction z. The mean flow field Uϕ(r) is drawn relative to

the motion of the particles.

We explain the destabilising effect of suspended disks, by contrasting it to the negligible56
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FIG. 2. (a) Mica size distribution, obtained from micrographs, as shown in the inset which has

a 200 µm scale bar. (b) The theoretical, intrinsic viscosity [η] as a function of the rotary Péclet

number Pe in dilute suspensions of disks with an aspect ratio of r−1
a = 102. The dotted lines

indicate the rotary Péclet value Pe ≈ 22 that corresponds to the measured [η] ≈ 10. The inset

shows the experimentally measured intrinsic viscosity in mica suspensions as a function of the shear

rate, for c = 5 × 10−3 (downward triangle), c = 10−2 (upward triangle), c = 2 × 10−2 (rightward

triangle) and c = 5× 10−2 (leftward triangle).

effect of suspended rods. Fig. 1a illustrates a rod in the Taylor Couette base flow which has57

a strain rate sϕr. The flow, gradient and vorticity directions are ϕ, r and z, respectively.58

In the limit of an infinite aspect ratio and an infinite Péclet number [Eq. (2)], the rod59

major axis n points in the ϕ-direction and generates no additional stress. A Taylor vortex60

perturbation corresponds to azimuthal fluid vorticity ω′
ϕ, i.e. to fluid rotation around n.61

Consequently n remains fixed and the rod generates no hydrodynamic stress.62

For a disk, the situation is sketched in Fig. 1b. In the base flow, the disk normal n63

points in the r-direction. A Taylor vortex perturbation ω′
ϕ rotates n away from the r-64

axis and towards the z-axis. The perturbation of the disk normal in the z-direction n′
z65

generates a stress perturbation σ′
ϕz ∼ sϕrnrn

′
z [Eq. (9) below]. This stress perturbation66

has an amplifying feedback on the Taylor vortex perturbation ω′
ϕ via ∂tu

′
ϕ ∼ ∂zσ

′
ϕz and67

∂tu
′
r ∼ (U/R)u′

ϕ [Eq. (8) below] and ω′
ϕ ∼ ∂zu

′
r.68
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II. EXPERIMENTS69

In this work we provide experimental evidence for the destabilising effect of TCF due to70

suspended, non-Brownian and (nearly) non-adhesive disks. To this end we use suspensions71

of mica flakes (Cornellius Ltd.) with a thickness of d ≈ 1 µm and a mass density of 2.9372

g cm−3. Fig. 2a shows the distribution of the major particle axis l which is obtained from73

20 micrographs, as shown in the inset of Fig. 2a. In addition to inducing hydrodynamic74

instability, the mica flakes also serve to visualise the flow structures. The reflectivity of the75

suspension depends on the relative orientation of the incoming and the outgoing light w.r.t76

to the orientation of the flakes, which in turn is governed by the various components of the77

fluid velocity gradient tensor [see Eq. (10) below].78

We examine one Newtonian fluid, i.e. with a very low flake concentration c = 10−4, and79

five suspensions with flake volume fractions ranging between c = 10−3 and c = 5×10−2. The80

suspending medium is a mixture of glycerol (volume fraction G), distilled water (volume81

fraction W) and aqueous food dye to aid flow visualisation (volume fraction 0.02). For82

c ≤ 10−2 and c ≥ 2× 10−2 we used (G,W) = (0.71, 0.27) and (0.9, 0.08) respectively, which83

correspond to a density and a viscosity of (ρ [g cm−3], ηs [Pa s]) of (1.18, 0.036) and (1.24,84

0.3), respectively. Here the more viscous liquid was used to suppress sedimentation effects85

at the higher mica concentrations.86

The steady shear viscosity ηeff of the suspensions is measured using a rotational rheometer87

(TA Instruments) equipped with a cone-and-plate geometry. The inset of Fig. 2b shows the88

measured intrinsic viscosity:89

[η] =
ηeff − ηs

cηs
, (3)

as a function of the shear rate γ̇ for the various suspensions. The shear rate range 5 ≤ γ̇ ≤ 10390

s−1 would correspond to a Taylor number [Eq. (1)] range in the TCF setup of approximately91

3 ≤ Ta ≤ 6 × 102. The measured [η] collapse for the various c, i.e. [η] is independent of92

c, causing overlapping (and therefore invisible) markers in the inset of Fig. 2b. Moreover,93

for c ≤ 2 × 10−2 we see that [η] is independent of γ̇, and for c = 5 × 10−2 there is slight94

shear thinning [η] ∼ γ̇−0.02. The suspensions are therefore (nearly) rate independent, which95

confirms absence of adhesion forces and the corresponding elastic behaviour.96

The cylinders in the TCF setup have length L = 155 mm and radii R1 = 21.66 mm and97

R2 = 27.92 mm which correspond to a radius ratio of R1/R2 = 0.77 and an aspect ratio98
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of L/∆R = 21.56. The flow cell is enclosed within a rectangular chamber in which water99

is recirculated, to keep the fluid temperature in the flow cell at 20 ± 0.1◦C [5]. The inner100

cylinder is accelerated from rest with a constant dΩ/dt. The flow cell is illuminated using101

a white light-emitting diode (SugarCUBE, Edmund Optics). We image a strip of the flow102

cell with a CMOS camera (Phantom Miro 340) at a frame rate of 60 s−1 and a resolution103

of 2224 × 16 pixels in the z and ϕ directions. Each image is averaged over the 16 pixels in104

the lateral (ϕ) direction, into an axial profile with 2224 pixels. The resulting profiles are105

combined into a matrix which is referred to as the light intensity map I(z,Ta). This map is106

a function of the height z and of the effective Taylor number Ta:107

Ta =
ρΩ

√
∆R3R1

ηeff
. (4)

Here ηeff is the measured, effective viscosity; see inset of Fig. 2b.108

In Fig. 3 we show I(z,Ta) for mica concentrations ranging from c = 10−4 to c = 5×10−2.109

The figure shows that, above a critical Taylor number Tac, the circular base flow transitions110

into a vortical flow, indicated by the appearance of bright and dark bands in I(z,Ta).111

These bands are (nearly) horizontal which shows that the vortices are axisymmetric and112

non-oscillatory.113

For the Newtonian suspension, with negligible mica concentration c = 10−4 (Fig. 3a),114

the instability starts at both ends in the form of Ekman vortices. Since these end effects115

are not associated with the Taylor vortices, we disregard the end regions in the subsequent116

analysis. For c = 5× 10−2 (Fig. 3d) sedimentation effects are manifested by the dark region117

in the lower half. These regions are also disregarded from the subsequent analysis.118

In the more concentrated suspensions (Figs. 3b-d) faint ridges appear for Ta > Tac119

which gradually become more distinct as Ta is increased further. This indicates that at120

Ta = Tac the Taylor vortex strength is relatively weak and it grows for Ta > Tac. This121

gradual development of the Taylor vortex strength is not observed in the Newtonian system122

(Fig. 3a) nor in similar measurements of solutions of flexible or rod-like polymers; see e.g.123

Ref. [5].124

The light intensity map for c = 10−2 in Fig. 3b shows another interesting feature; as125

Ta is increased, the number of vortices (indicated by the number of bright and dark bands)126

abruptly decreases at several points. These events correspond to the merger of two adjacent127

vortices. A close-up of such a vortex merger event is provided in the inset of Fig. 3b. This128
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FIG. 3. Light intensity maps I(z,Ta) using dΩ∗/dt∗ ≈ 0.7 [Eq. (6)] for mica suspensions with

concentrations of c = 10−4 (a), c = 10−2 (b), c = 2 × 10−2 (c) and c = 5 × 10−2 (d). The light

intensity maps show the onset of instability as the appearance of the banded structures above a

critical speed, indicated by the dashed white lines. The inset of (b) shows a close-up of a vortex

merger event.

phenomenon has also been observed in solutions of polymers [5, 25]. It is noted that these129

sudden jumps are likely due to the finite L/∆R of the TCF setup, while for L/∆R → ∞130

these changes are expected to be continuous.131

The onset of instability corresponds to critical values, kc and Tac, of the axial vortical132

wavenumber k and of the effective Taylor number [Eq. (4)]. To determine kc and Tac. the133

I(z,Ta) (Fig. 3) are first filtered over Ta with a filter-width of ∆Ta ≈ 1. This is to improve134

the statistical significance of the variations of I(z,Ta) with Ta. Then for each value of Ta,135
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FIG. 4. The maximum Îm (arbitrary units) of the Fourier transformed light intensity map [Eq. (5)]

and the corresponding wavenumber km as functions of Ta for c = 10−4 and dΩ∗/dt∗ ≈ 0.7 (a), and

for c = 10−2 and dΩ∗/dt∗ ≈ 0.1 (b), dΩ∗/dt∗ ≈ 0.7 (c) and dΩ∗/dt∗ ≈ 7 (d). The critical Taylor

number Tac is indicated with the vertical dotted lines, which correspond to the growth onset of

Îm.

we compute the Fourier transform:136

Î(k,Ta) =

∫
exp(izk)I(z,Ta)dz. (5)

For each Ta we determine the maximum Îm of Î(k,Ta) as a function of k, excluding the137

k = 0 mode. The maximum Îm occurs at wavenumber km.138

Fig. 4a shows Îm and km as functions of Ta for the Newtonian system (Fig. 3a) using139

c = 10−4 and a non-dimensional ramp-up speed of dΩ∗/dt∗ ≈ 0.7 [26]:140

dΩ∗

dt∗
=

ρ2R1∆R3

η2eff

dΩ

dt
. (6)

As Ta passes the critical value Tac, indicated by the vertical dotted line, Îm starts growing141

which corresponds to the onset of Taylor vortices. We find a critical Taylor number of Tac ≈142

46 which is very close to the theoretical value of Tac ≈ 48 [24]. The critical wavenumber kc is143

determined as km at Ta = Tac, which gives kc∆R/π ≈ 0.92, which is close to the theoretical144

value of kc∆R/π ≈ 1.0. The agreement between experimental results and literature values145

confirms that the non-dimensional ramp-up speed of dΩ∗/dt∗ ≈ 0.7 is sufficiently slow to146

ensure quasi steady conditions, i.e. the results are not affected by the finite acceleration147

rate.148

Figs. 4b-d show Îm and km as functions of Ta for c = 10−2 (Fig. 3b) and for three values149

for dΩ∗/dt∗. It can be seen that for dΩ∗/dt∗ ≈ 0.1 and 0.7 the critical values Tac and kc are150

close to one another, i.e. Tac ≈ 19.7 and 21.6 and kc ≈ 1.55 and 1.51, while for the larger151
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dΩ∗/dt∗ ≈ 7, the critical values deviate somewhat, i.e. Tac ≈ 26.0 and kc ≈ 1.38. These152

results show that for c = 10−2, dΩ∗/dt∗ ≈ 0.7 is sufficiently slow to obtain critical values153

that are (nearly) independent of dΩ∗/dt∗. It is finally noted that the vortical wavelength km154

in Figs. 4b-c show discontinuous jumps which are associated with the vortex merger events,155

as shown in Fig. 3b.156

III. THEORY157

We now compare the experimental results to the theoretical model of Ref. [1]. The model158

is based on the well-known constitutive equations for dilute suspensions of spheroids which159

are given by the continuity equation [27]:160

∇ · u = 0, (7)

and the momentum equation:161

ρ∂tu = ∇ ·
(
−ρuu− pδ + ηs

(
∇u+∇uT

)
+ σ

)
. (8)

The spheroid stress σ:162

σ

ηs
= 2α1s+ 2α2s : aa+ α3 (s · a+ a · s) + α4Dr

(
a− 1

3
δ
)
, (9)

depends on the microstructure a = ⟨nn⟩. Here n is the unit vector along the spheroid polar
axis and ⟨· · · ⟩ is the average that is weighted with the probability density function of n.
The microstructure tensor a evolves as:

∂ta = −u ·∇a+∇uT · a+ a ·∇u

+ (B − 1) (s · a+ a · s)− 2Bs : aa−Dr

(
a− 1

3
δ
)
. (10)

Here u is the velocity, ρ is the suspension mass density, p is the pressure, s = 1
2

(
∇u+∇uT

)
163

is the rate of strain tensor, Dr is the rotary diffusivity which is added to mimic the effects164

of hydrodynamic interactions between the non-Brownian disks, c is the spheroid volume165

fraction, ra = a/b is the aspect ratio, a is the polar radius b is the equatorial radius, αi are166

material constants that depend on c and ra and B = (r2a − 1)/(r2a + 1). The cases: ra < 1,167

ra = 1 and ra > 1 correspond to oblate spheroids (disks), spheres and prolate spheroids168

(rods), respectively.169
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In order to estimate the effective aspect ratio that corresponds to the size distribution in170

Fig. 2a, we use that the disk stress σ scales with the disk major axis cubed [27]. Therefore171

the relevant particle dimension is the cube root of the third moment of this distribution172

leff = ⟨l3⟩1/3 ∼ 102 µm, giving an aspect ratio of r−1
a = leff/d ∼ 102.173

In the dilute theory [Eqs. (7-10)] hydrodynamic interactions are not taken into account174

rigorously. The number of these interactions per particle is proportional to the volume175

fraction of the disk-circumscribing spheres ∼ cr−1
a . In the present work, we consider mica176

suspensions with concentrations up to cr−1
a ∼ 5, for which hydrodynamic interactions are177

expected to be important. We model these effects with the rotary diffusion terms (Dr terms)178

in Eqs. (9-10). Theoretical and experimental studies have shown that rotary diffusion is179

an adequate model for hydrodynamic interactions between rods [28–32]. For disks on the180

other hand there are no equivalent studies and at present it is not clear if interactions can181

adequately be modelled by rotary diffusion. Below, we shed some light on this issue by182

comparing the theoretical model [Eqs. (7-10)] to experimental data, for both steady shear183

flow and for the TCF instability.184

First we show in Fig. 2b the theoretical [Eqs. (7-10)] intrinsic viscosity [η] [Eq. (3)] in185

the steady shear flow of a suspension of oblate spheroids with an aspect ratio of r−1
a = 102186

as a function of the rotary Péclet number [Eq. (2)]. The theoretical viscosity in Fig. 2b187

decreases as a function of Pe. For Pe ≈ 22 the model matches the experimental data [η] ≈ 10188

(inset of Fig. 2b). We re-emphasise that the mica flakes are non-Brownian and that rotary189

diffusion is used as a model for the effects of hydrodynamic interactions between the disks.190

We further note that the (near) shear rate γ̇ invariance of [η] (inset in Fig. 2b) indicates a191

constant rotary Péclet number [Eq. (2)], i.e. Dr ∼ γ̇.192

We now present linear stability analysis of the cylindrical coordinate version of Eqs.193

(7-10), with respect to axisymmetric perturbations u′(r) exp(ikz) exp(λt) where k is the194

axial wavenumber and λ is the growth rate. The axisymmetry of the instability modes195

is experimentally observed in Figs. 3a-b. Details of the stability analysis are given in196

Ref. [1]. Briefly, we discretise Eqs. (7-10) using the Chebyshev collocation method on 30197

collocation points. After computing the base state, we compute λ by numerically solving198

the corresponding generalised eigenvalue problem. All λ are found to be real-valued, i.e.199

non-oscillatory, in agreement with the experimental observations in Figs. 3a-b.200

To match the experimental system, we use a radius ratio of R1/R2 = 0.77, a disk aspect201

10
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FIG. 5. The critical Taylor number Tac (black lines and squares) and the critical vortical wavenum-

ber kc (grey lines and triangles), normalised by their Newtonian values, plotted versus the disk

concentration c. Comparison between experimental data (markers) using dΩ∗/dt∗ ≈ 0.7 [Eq. (6)]

and theory (lines) . The theory uses an aspect ratio of r−1
a = 102 and a rotary Péclet number of

Pe = 1×102 (solid lines), Pe = 1×103 (dashed lines), Pe = 1×104 (dotted lines) and Pe = 1×105

(dash-dotted lines).

ratio of r−1
a = 102 and we vary the disk concentration between c = 10−4 and c = 10−1 and202

the rotary Péclet number between Pe = 102 and Pe = 105. For each c and Pe we vary the203

wavenumber k of the perturbation and for each k we vary the rotation speed Ω. We thereby204

find the critical wavenumber kc and the critical Taylor number Tac that mark the transition205

between positive and negative λ, i.e. the onset of instability.206

Fig. 5 shows good qualitative agreement between the computed and measured Tac and kc207

as functions of c. The experimentally measured kc show a slight discontinuity between c =208

10−2 and c = 2× 10−2 which is likely due to the change in the suspending medium (see Sec.209

II) and the corresponding changes in sedimentation and inter-particle adhesion. These effects210

are considered weak, however, since the measured Tac (Fig. 5) does not show a discontinuity.211

The experimental data for Tac agree well with the numerical results for 103 ≲ Pe ≲ 104. This212

range is beyond the value of Pe ≈ 22, that was required to match the constitutive model213

to experiments for steady shear flow (Fig. 2b). This discrepancy highlights that rotary214

diffusion is not an accurate model for hydrodynamic interactions between disks. Indeed215

hydrodynamic interactions between disks are more complicated than a mere randomising216
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effect. These interactions may also produce the opposite effect of suppressing rotation due to217

steric constraints [33]. Nevertheless there is good qualitative agreement between the theory218

and the experimental data, in both Tac and kc as functions of c. This agreement supports219

our theoretical finding [1] that Taylor Couette flow can be destabilised by anisotropic viscous220

stresses due to suspended disks-shaped particles.221

0 0.5 1
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1
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0 0.5 1
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0
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1
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FIG. 6. Real part (black) and imaginary part (grey) of the theoretically computed Taylor vortex in

a Newtonian system (a) and in a disk suspension (b), using an aspect ratio of r−1
a = 102, a rotary

Péclet number of Pe = 3× 103 and a concentration of c = 10−2.

Fig. 6 shows the theoretically computed velocity profiles of the Taylor vortices with c = 0222

and Ta = Tac ≈ 48 and with c = 10−2 and Ta = Tac ≈ 24. Compared to the Newtonian223

Taylor vortex (6a), the Taylor vortex in the disk suspension (6b) has a suppressed cross224

stream velocity. These results agree qualitatively with the light intensity maps in Fig. 3,225

showing that the Newtonian Taylor vortex has a relatively large intensity immediately at226

Ta = Tac which stays roughly constant for Ta > Tac, whereas the non-Newtonian Taylor227

vortex, using c = 10−2, has a relatively small intensity at Ta = Tac which increases for228

Ta > Tac.229
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IV. CONCLUSIONS230

We have previously theoretically predicted that Taylor Couette flow can be destabilised by231

anisotropic viscous stresses, induced by suspended disk-shaped particles [1]. These particles232

redirect the transfer of azimuthal momentum from the radial to the axial direction. The233

theory was based on the well-known constitutive equations of dilute, i.e. non-interacting,234

spheroid suspensions.235

In this work we have provided experimental evidence for this destabilisation mechanism,236

using suspensions of mica flakes. In order to match the theory to the experimental data237

we have included a rotary diffusion term to the constitutive equations which models the238

hydrodynamic interactions between the disks. With this modification, there is good qual-239

itative agreement between theory and experiment in the concentration dependence of the240

critical speed for instability onset and of the Taylor vortex size. Quantitative differences241

between the theory and the experiments reflect the imperfection of modelling hydrodynamic242

interactions using rotary diffusion.243

This new destabilisation mechanism has a range of potential industrial applications, e.g.244

to enhance mixing in chemical reactors or to enhance heat transfer in drilling equipment.245
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