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Abstract
We employ a rheological theory to show that circular Taylor Couette flow of a suspension of

non-Brownian spheres is less stable than that of a Newtonian fluid, at equal effective viscosity.

The destabilisation is related to the preferred orientation of the separation vector of the closely

interacting spheres, in the compressive direction of the base flow. The results agree qualitatively

with experimental observations from the literature.
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FIG. 1. The critical, effective Taylor number Ta [Eq. (1)] as a function of the sphere volume

fraction ϕ, Comparison between the experimental data of Ref. [4] (markers), the two-fluid theory

of Ref. [5] (solid line), and the present rheological theory (dashed line).

I. INTRODUCTION7

Taylor Couette flow (TCF) is the flow between two concentric cylinders. When the outer8

cylinder is fixed, and when the rotation speed of the inner cylinder exceeds a critical value,9

the flow undergoes a centrifugal instability, and develops an array of axisymmetric vortices10

[1]. A further increase of the rotation speed induces bifurcations into more complicated11

(wavy, oscillatory, etc.) vortices, and eventually into a state of fully developed turbulence.12

Owing to the connection with turbulence, and owing to the tractability by linear stability13

analysis, TCF is the subject of a vast amount of literature [2]. There is particular interest in14

TCF instability for non-Newtonian fluids. For instance, predicting experimentally measured15

onset conditions for instability provides a stringent test in the development of constitutive16

equations for complex fluids; see e.g. Ref. [3].17

In this work we study TCF of a suspension of non-Brownian spheres, which has experi-18

mentally been shown to be less stable than a Newtonian fluid, with equal effective viscosity19

[4]. These authors use a water-glycerol mixture, suspending density matched poly-methyl20

methacrylate spheres, with a radius of a = 115 µm, in the concentration rage 0 ≤ ϕ ≤ 0.321

and in a flow cell, with an inner radius of R1 = 100.3 mm, and an outer radius of R2 = 114.322

mm, i.e. a radius ratio of R2/R1 = 1.14. The sphere Reynolds number is γ̇a2/ν ∼ 10−2,23
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where ν is the suspending fluid kinematic viscosity, γ̇ = U/∆R is the shear rate, U = ΩR124

is the velocity of the inner cylinder, and Ω is the rotation speed of the inner cylinder. The25

experimental results are plotted as a function of the sphere volume fraction ϕ in Fig. 126

with the markers, where the onset of instability is expressed by the effective, critical Taylor27

number:28

Ta =
U∆R

νeff

√
∆R

R1

. (1)

Here ∆R = R2−R1 is the gap width between the cylinders, and νeff(ϕ) is the concentration29

dependent and shear rate invariant, effective suspension viscosity, which was measured in30

Ref. [4], and was parameterised by:31

νeff
ν

=

(
1− ϕ

0.55

)−1.83

. (2)

The reduction in the critical, effective Taylor number, observed in Fig. 1, indicates, that32

sphere suspensions are less stable than Newtonian liquids, with equivalent effective viscosi-33

ties. At small sphere concentrations ϕ, this effect is believed to be related to the slip between34

the solid and the fluid phase, and the associated, inhomogeneous spatial sphere distribution35

[6].36

At small ϕ, the destabilisation of TCF due to non-Brownian spheres has been captured37

by linear stability analysis of axisymmetric perturbations of the two fluid theory, using a38

radius ratio of R2/R1 = 1.18 [5]. Under the assumptions of ϕ ≪ 1, and a small sphere39

Reynolds number γ̇a2/ν ≪ 1, these authors adopt the following momentum equations for40

the liquid and solid phases:41

∂tu+ u ·∇u = −∇p+ ν∇2u+ ϕτ−1 (v − u) , (3a)
42

∂tv + v ·∇v = −∇p+ τ−1 (u− v) . (3b)

Here u is the fluid velocity, v is the (locally averaged) sphere velocity, p is the fluid pressure,43

and τ = 2a2/(9ν) is the sphere relaxation time. In steady shear flow, the effective viscosity of44

the two fluid theory [Eq. (3)] equals νeff = ν. Under time varying conditions, the magnitude45

of the interfacial drag force can be estimated, by ignoring the pressure term in Eq. (3b),46

and by assuming u = û cos (ωt), with û and ω constants, such that the sphere velocity is47

governed by: v̇ = τ−1 [û cos (ωt)− v], which is solved by:48

ϕτ−1 (u− v) = −ϕu̇, (4)
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where it was furthermore used that ωτ ≪ 1. Eq. (4) illustrates, that the interfacial drag49

force is independent of the sphere size, and ϕ is the only non-dimensional parameter that is50

introduced by the addition of the spheres.51

The results of the linear stability analysis of Eq. (3) in TCF, are plotted in Fig. 1 by the52

solid line [5]. The data agree well with the experiments of Ref. [4] (markers). The theory53

[Eq. (3)] however is restricted to small ϕ and the computations of Ref. [5] were performed for54

0 < ϕ < 0.05. For larger ϕ, sphere interactions play a role, and these effects are not captured55

by Eq. (3). These interactions give rise to extra stresses, which depend on the relative56

arrangement of the spheres, referred to as the microstructure; see e.g. Refs. [7, 8]. In this57

regard, it is known, that suspensions behave (generalised) Newtonian for ϕ ≲ 0.2, while for58

ϕ ≳ 0.2, the anisotropic microstructure gives rise to deviations from Newtonian behaviour,59

with substantial normal stresses in shear flow. In these dense systems, the dominant effect60

of the spheres is expected to be an extra stress, while the interfacial drag force, described61

by Eq. (3), is expected to play an inferior role, as well as the associated inhomogeneity62

in the spatial sphere distribution. In this work we use our previously developed sphere63

stress theory, to investigate whether the above mentioned non-Newtonian stresses, that are64

important at large ϕ, either have a stabilising or a destabilising effect on the circular TCF.65

II. HYDRODYNAMIC THEORY66

The theory ignores all non-hydrodynamic forces, and expresses the extra stress, in-67

duced by the lubrication forces between the spheres [7]. This assumption is valid for a68

negligible sphere Reynolds number γ̇a2/ν ≪ 1, and for the intermediate volume fractions69

0.2 < ϕ < 0.4, that are experimentally probed in Ref. [4], while at lower volume fractions70

the lubrication approximation fails, and at higher volume fractions direct contacts become71

important [8]. The purely hydrodynamic stress reads:72

σ = 2ναs : ⟨nnnn⟩, (5)

where s = 1
2

(
∇u+∇uT

)
is the rate of strain tensor, ∇u is the velocity gradient tensor,73

u is the velocity vector, α is the stress parameter, which depends on ϕ, and is further74

specified in Eq. (11a), and ⟨nnnn⟩ =
∫
Ψ(n)nnnnd2n, is the fourth order moment of the75

distribution Ψ of the sphere pair separation unit vector n (Fig. 2). In Eq. (5), there is no76
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FIG. 2. The sphere pair separation unit vector n.

explicit dependence of σ on the sphere radius a, since, in Stokesian systems, there are no77

variables to non-dimensionalise a with.7879

Under the assumption that Ψ is weakly anisotropic, ⟨nnnn⟩ can be expressed as a linear
function of the second order moment a = ⟨nn⟩ =

∫
Ψ(n)nnd2n as follows [9]:

⟨ninjnknl⟩ = − 1
35
⟨nmnm⟩ (δijδkl + δikδjl + δilδjk)

+ 1
7

(
δij⟨nknl⟩+ δik⟨njnl⟩+ δil⟨njnk⟩+ ⟨ninj⟩δkl + ⟨nink⟩δjl + ⟨ninl⟩δjk

)
,

such that the non-isotropic part of the sphere stress [Eq. (5)] reads:80

σ

2να
= − 2

35
s+ 2

7
(s · a+ a · s) . (6)

In xy-shear flow with shear rate γ̇:81

s =
γ̇

2


0 1 0

1 0 0

0 0 0

 , (7)

the distribution Ψ is assumed a superposition of isotropic and preferred alignment with the82

compressive axis nc = (−1, 1, 0)/
√
2 [10]:83

a =
1− β

3
δ + βncnc =


1
3
+ β

6
−β

2
0

−β
2

1
3
+ β

6
0

0 0 1
3
− β

3

 , (8)

where β is the anisotropy parameter. Combining Eqs. (6, 8), gives the following stress in84
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shear flow:85

σ

2ν ˙γα
=


−β

7
(5β+7)
105

0

(5β+7)
105

−β
7

0

0 0 0

 , (9)

which reduces to a Newtonian stress for β = 0, and which corresponds to the following86

effective viscosity:87

νeff
ν

− 1 =
σ12

νγ̇
= α

2(5β + 7)

105
, (10a)

and the following, relative, second normal stress difference:88

ζ2 =
σ22 − σ33

σ12

= − 15β

5β + 7
, (10b)

and the first normal stress difference is zero by construction ζ1 = (σ11 − σ22)/σ12 = 0, in89

qualitative agreement with the experimental literature. In this work we tune α and β as:90

α =
5 (3− 2ϕ2)

2

[(
1− ϕ

0.55

)−1.83

− 1

]
, (11a)

and:91

β =
14ϕ2

5 (3− 2ϕ2)
, (11b)

such that Eq. (10) corresponds to the empirical effective suspension viscosity νeff/ν [Eq.92

(2)], and relative, second normal stress difference:93

ζ2 = −2ϕ2. (12)

It is emphasised that with Eq. (11), the theory [Eqs. (6, 8)] exactly reproduces experimen-94

tally measured shear stress and second normal stress difference. It is noted, that contact95

forces may result in a positive first normal stress difference [8]. Here we ignore these ef-96

fects, and restrict our focus to purely hydrodynamic systems, for which the non-Newtonian97

rheology is dominated by the second normal stress difference, i.e. |ζ2| ≫ |ζ1|, as is usually98

observed in shear rate invariant sphere suspensions [11–14].99

III. STABILITY ANALYSIS100

TCF is described in cylindrical coordinates: r, θ, z = 1, 2, 3, and is governed by the101

continuity equation:102

∇ · u = 0, (13)
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and the momentum equation:103

∂tu = ∇ ·
[
−uu− pδ + ν

(
∇u+∇uT

)
+ σ

]
. (14)

The velocity gradient tensor in cylindrical coordinates reads:104

∇iuj =


∂rur ∂ruθ ∂ruz

−r−1uθ r−1ur 0

∂zur ∂zuθ ∂zuz

 . (15)

We compute the linear stability of the laminar solution to Eqs. (6, 8, 13, 14), w.r.t.105

axisymmetric perturbations, that are harmonic functions of z, with a wavenumber k. Al-106

though non-axisymmetric modes are observed in the experiments of Ref. [4], axisymmetric107

modes serve the purpose of the present work, of elucidating the basic destabilising mecha-108

nism of the particle stress, due to the anisotropic microstructure. We decompose the fluid109

velocity: u = U(r)+u′(r, t) exp(ikz), into a base state, denoted by a capital letter: U , and110

a perturbation, denoted by a prime: u′ exp(ikz).111

The base state has a Newtonian character, which corresponds to a shear rate invariant112

and position invariant effective viscosity νeff , which is given by Eq. (2). The correspond-113

ing velocity field: U = Uθeθ, is governed by the azimuthal component of the momentum114

equation [Eq. (14)]: (∂r + 2r−1) (∂r − 2r−1)Uθ = 0, which gives:115

Uθ =
Ωr

1−R2
2/R

2
1

+
R2

1Ω/r

1−R2
1/R

2
2

. (16)

The perturbations are governed by the continuity equation [Eq. (13)]:116

(
∂r + r−1

)
u′
r + iku′

z = 0, (17)

and by the linearised momentum equations [Eq. (14)]:117

∂tu
′
r = −∂rp

′ + ν
(
∂2
r + r−1∂r − r−2 − k2

)
u′
r + 2r−1Uθu

′
θ +

(
∂r + r−1

)
σ′
rr + ikσ′

zr − r−1σ′
θθ,

(18)118

∂tu
′
θ = ν

(
∂2
r + r−1∂r − r−2 − k2

)
u′
θ −

[(
∂r + r−1

)
Uθ

]
u′
r +

(
∂r + 2r−1

)
σ′
rθ + ikσ′

zθ, (19)

and:119

∂tu
′
z = −ikp′ + ν

(
∂2
r + r−1∂r − k2

)
u′
z +

(
∂r + r−1

)
σ′
rz + ikσ′

zz, (20)
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and the perturbed stress [Eq. (6)] reads:120

σ′

2να
= − 2

35
s′ + 2

7
(s′ · a+ a · s′) , (21)

where s = 1
2

(
∇u+∇uT

)
, and the cylindrical components of the velocity gradient ∇u are121

given in Eq. (15), and the cylindrical components of the conformation tensor a are identical122

to the Cartesian components, which are given in Eq. (8). We numerically solve the r-123

dependent velocity perturbations u′ using Chebyshev discretisation on 30 collocation points124

[15]. We fix the Couette cell radius ratio to: R2/R1 = 1.14, similar as in the experimental125

study of Ref. [4].126

The velocity perturbation evolution equations [Eqs. (16 - 21)] including the boundary127

conditions (u′ = 0 on the walls) are written in matrix form:128

M1 · ∂tq′ = M2 · q′, (22)

and the growth rates are found by solving the corresponding generalised eigenvalue problem129

in FORTRAN using the ZGGEV routine from the LAPACK library. For all cases discussed130

below, the eigenvalue of the most unstable axisymmetric mode is real-valued, i.e. non-131

oscillatory.132

The rotation rate Ω is varied to find the onset of instability, which correspond to a sign133

change of the largest eigenvalue. The onset point is expressed by the effective, critical Taylor134

number Ta [Eq. (1)].135

IV. RESULTS136

Fig. 3 shows the computed Ta as a function of the spanwise wavenumber k∆R/π for137

Newtonian flow (sphere volume fraction ϕ = 0) and for a suspension with ϕ = 0.5. It is seen,138

that for both cases, the minimum, critical, effective Taylor number occurs at k∆R/π ≈ 1.139

It is furthermore seen, that the spheres are destabilising, i.e. for ϕ = 0.5, the predicted,140

critical, effective Taylor number is reduced by roughly 40%.141

Fig. 4 shows the velocity components of the most unstable mode, in Newtonian flow142

(ϕ = 0) at the critical Taylor number of Ta ≈ 44, and in a suspension with ϕ = 0.5, at the143

critical, effective Taylor number of Ta ≈ 28. Note that these modes are normalised, and144

their magnitude has no physical significance. In both cases, the modes are similar, and are145
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FIG. 3. The computed, critical, effective Taylor number Ta [Eq. (1)] as a function of the spanwise

wavenumber k∆R/π, for Newtonian flow (sphere volume fraction ϕ = 0; solid line) and for a

suspension with ϕ = 0.5 (dashed line). The vertical line indicates the minima of the curves.

dominated by the azimuthal velocity component. The the ratio of the cross-stream velocity146

fluctuations to the azimuthal velocity fluctuations is slightly larger in the suspension than147

in the Newtonian flow.148

Fig. 1 shows the computed, critical, effective Taylor number for the suspension (dashed149

line) as a function of the sphere volume fraction ϕ. The figure shows, that, when compared150

at equal νeff/ν, the spheres have a destabilising effect for ϕ ≳ 0.2, and a negligible effect151

for ϕ ≲ 0.2. This concentration dependence correlates with the non-Newtonian nature of152

the suspension, which is characterised by the second normal stress difference ζ2 [Eq. (12)],153

which is non-negligible, only for ϕ ≳ 0.2.154

The destabilisation can be understood by the alignment of the microstructure with the155

base deformation [Eq. (8)]. To this end, we introduce an alternative definition for the156

effective “base flow viscosity” νeff , as the ratio of the dissipation of the base kinetic energy,157

due to the total (sphere plus solvent) stress and due to the solvent stress:158

νeff − 1 =
S : Σ

2νS : S
. (23)

By inserting for S the expression for the base deformation rate [Eq. (7)] and for Σ the159

expression for the base particle stress [Eq. (9)], Eq. (23) reduces to Eq. (10a). Similarly,160

we introduce the effective “vortex viscosity” ν ′, which is based on the dissipation of the161
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FIG. 4. (top) Most unstable eigenmode in Newtonian flow, i.e. using a sphere volume fraction of

ϕ = 0, and a Taylor number [Eq. (1)] at the critical value of Ta ≈ 44. (bottom) Most unstable

axisymmetric eigenmode in a sphere suspension, using a sphere volume fraction of ϕ = 0.5, and an

effective Taylor number [Eq. (1)] at the critical value of Ta ≈ 28.

perturbed kinetic energy:162

ν ′ − 1 =
s′ : σ′

2νs′ : s′
. (24)

Inserting the expressions for the perturbed stress σ′ [Eqs. (8, 21)] into Eq. (24) gives:163

ν ′ − 1 = α

[
2

15
+

4β

7

(
−1

3
+ ξ

)]
,

where the alignment factor:164

ξ =
s′ : (s′ · ncnc)

s′ : s′
,
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measures the deformation of the secondary flow in the compressive direction of the base165

flow. For perfectly aligned biaxial deformation, we see that ξ = 1
2

and ν ′ = νeff . Since166

the secondary flow deformation is not perfectly aligned with the base flow deformation, we167

see that ξ < 1
2
. This means, that νeff > ν ′, i.e. the spheres impose more friction to the168

base flow than to the secondary vortices. Since the instability involves the dynamics of the169

vortices, we may model the onset by Ta′ ≈ 44, where Ta′ is the critical Taylor number,170

that is based on ν ′, i.e. Ta′ = (U∆R/ν ′)
√
∆R/R1. Since νeff > ν ′, this corresponds171

to a critical Taylor number based on νeff , that is smaller than the Newtonian value, i.e.172

Ta = (U∆R/νeff)
√

∆R/R1 < 44, which explains the destabilising effect.173

The theoretical results in Fig. 1 (dashed line) show less destabilisation, as compared to174

the experiments in Ref. [4] (markers). As discussed above, part of the discrepancy may be175

explained by sphere inertia. Another possible cause for the discrepancy is the assumption of176

axisymmetry of the instability modes. For small volume fractions ϕ < 0.05, this assumption177

agrees with the experiments of Ref. [4], and in this regime the discrepancy is therefore178

most likely due to neglecting inertia. This is confirmed by the agreement between the179

axisymmetric two-fluid theory [5], and the experimental data for ϕ < 0.05 (see Fig. 1. At180

larger ϕ, the two-fluid theory does not hold, and to better capture this regime, we propose181

for future work, a non-axisymmetric stability analysis, that includes both particle inertia182

and particle stress, by combining the two fluid theory [Eq. (3)], with our particle stress183

theory [Eqs. (6, 8)].184

V. CONCLUSIONS185

In conclusion, we have theoretically predicted a destabilisation of the circular Taylor Cou-186

ette flow w.r.t. axisymmetric perturbations, due to the presence of non-Brownian spheres.187

The non-Newtonian character of the suspension base flow, is characterised by the second188

normal stress difference, while the first normal stress difference is assumed zero. The desta-189

bilisation can be understood by the alignment between the microstructure and the base190

deformation.191
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