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We consider a suspension of solid spheres in a viscoelastic suspending fluid. We use the second-
order fluid model to capture the first effects of viscoelasticity in the suspension, and a mean-field
cell model to express the influence of the solid particles. We create a semi-analytical constitutive
equation for the whole suspension, a second-order fluid with modified material parameters. We find
that, in simple shear, the ratio of first normal stress difference to shear stress is independent of
volume fraction, but that the second normal stress difference can change sign as the volume fraction
of solids increases. Our model is valid for all flows for which the second-order fluid expansion is
applicable.

I. INTRODUCTION

Suspensions of particles in a fluid matrix are ubiquitous in nature and industry, from blood to mud and from paint
to slurries. There is a real need for simple constitutive models for these systems, and their study goes back over a
century.

Particle suspensions, even in Newtonian fluid matrices, can show both shear thinning and shear thickening [e.g. 1].
Shear thickening is associated with jamming [2], and has been the focus of much recent theoretical and simulation
work [e.g. 3–5]. The current consensus is that either friction, or something resembling friction, between particles is
required for strong discontinuous shear thickening. Shear-thinning, on the other hand, can occur through breakdown
of weakly-attracted colloidal clusters [6], or by the exposure of the supposedly Newtonian matrix fluid to extreme
local shear rates at which it itself is shear-thinning [7].

Once the matrix fluid is explicitly non-Newtonian, the behaviour of the system becomes even more complex. The
next level of complexity is generalised Newtonian fluids – matrix fluids which can be described in terms of a single
scalar viscosity, whose value may depend on the local shear rate. Early experiments by Highgate and Whorlow
[8] using dilute suspensions in a shear-thinning matrix with no viscoelastic effects found that the viscosity of the
suspension could be captured well using an Einstein-like form as long as η0, the viscosity of the matrix fluid, was
chosen at the appropriate shear stress. Many subsequent papers [e.g. 9–11] have confirmed the existence of scaling
laws relating the rheology of the suspension to that of the suspending medium.

When viscoelasticity is added, the suspensions exhibit normal stresses in shear flow. At moderate concentrations,
the first normal stress difference N1 is observed to be positive whereas the second normal stress difference N2 is
negative; and the magnitude of both increases with the volume fraction of particles [12–15].

Recent theoretical work for dilute suspensions, [16], has shown that suspensions in a polymeric suspending fluid can
shear-thicken even when the fluid’s shear viscosity is constant, due to streamwise stretching of the polymers. Rapid
progress is also being made on simulating suspensions in a polymeric matrix fluid [17]. However, simulations, while
exceedingly useful, do not have the capability to yield a short, useable constitutive model that can be use as a rule of
thumb, or as an ingredient in larger-scale CFD simulations.

In this paper we will focus on the analytical modelling of suspension rheology. Research in this area began with Ein-
stein [18], who calculated the leading-order correction to the viscosity of a Newtonian fluid of viscosity η0 when solid
spheres are added at dilute volume fraction φ:

ηeff = η0 (1 + 5φ/2) . (1)

Because of its simplicity and useability, the “Einstein viscosity” (as it has become known) is widely used in many
areas, often as a first correction rather than a full constitutive model.

Many authors have attempted to extend this model. For Newtonian fluid matrices, where the task is to extend the
model to higher solids volume fractions, the only really effective analytical work is by Batchelor and Green [19], who
extended Einstein’s analysis to interacting pairs of spheres. They found that the system could still be represented by
a single scalar viscosity for each steady flow type; but that this number was indeterminate for some flows (including
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shear flow) which admit the possiblity of orbiting particles. Where the viscosity is well-defined, they calculated it in
terms of hydrodynamic functions J(s) and q(s) as

ηeff = η0

[
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2
φ+
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2
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∫ ∞
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J(s)q(s) ds

)
φ2

]
≈ η0

(
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5

2
φ+ 6.9φ2

)
. (2)

However, while the Einstein viscosity provides a reasonable approximation to experimentally observed viscosities for
volume fractions up to 10%, the addition of the Batchelor & Green correction term does not extend the range of
validity very far before terms of order φ3 and higher become important – and these terms are intractable to calculate
analytically.

We then move to empirical models. There are many of these, which use a variety of physical arguments to capture
the viscosity divergence close to maximum packing [e.g. 20, 21]. The most commonly used empirical model, largely
based on its simplicity, is the Krieger–Dougherty model [22]:

ηeff = η0

(
1− φ

φm

)−5φm/2

, (3)

an empirical model which mimics (1) for small φ and diverges as φ → φm, the maximum packing fraction. The
parameter φm depends on the particle shape and on the details of interactions between close particles; it is often
taken to be around φm = 0.64.

However, another important class of suspending matrices is viscoelastic fluids, and here the theoretical work is much
less well developed. All viscoelastic fluids are reducible, in the slow flow limit, to the second-order fluid, so that is a
natural place to start. There have been several erroneous attempts to extend the Einstein viscosity to second-order
fluids [23–28]; the correct analysis was carried out by Koch and Subramanian [29], yielding the full steady rheology
in terms of the properties η0, Ψ1 and Ψ2 of the suspending fluid:
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5

56
φ. (4)

The discrepancy between Koch and Subramanian [30] and the two later papers [27, 28] was finally resolved by Rallison
[31], who showed that a divergent integral inherent in the volume-average method had been neglected in both the
later papers and confirmed that the ensemble-average method used by [30] was correct.

In this paper we focus primarily on the dependence of fluid rheology on particle concentration. We will generate
a simple constitutive model – a second-order fluid itself – for concentrated suspensions in a second-order background
fluid.

In section II we introduce the cell model around which our analysis is based, and discuss our governing equations,
boundary conditions and solution strategy. In section III we solve the Newtonian flow problem and verify against
existing literature; we are then able to propose an empirical “fix” for the cell model to correct its viscosity predictions.
In section IV we solve the full second-order fluid system and give quantitative predictions for the rheology of a
suspension in a second-order fluid matrix. Finally, we present our conclusions in section V.

II. THE CELL MODEL

A. Introduction

In this paper we will use the cell model approach to produce a practical, semi-empirical model of the effect of solid
spherical particles on the rheology of a second-order fluid. We consider a suspension of identical, force-free, torque-
free, spherical particles, each of radius R0, at solids volume fraction φ. The key concept of the model is to allocate
to each particle a ‘sphere of influence’, as depicted schematically in Fig. 1, outside which the flow is unaffected by
the presence of the particle. We refer to this restricted volume as the ‘cellular fluid phase’. The outer sphere is not
a material surface, but provides a conceptual boundary, across which the nature of the flow may change. Each cell is
then considered to be suspended in a medium which has the same rheology as the macroscopic suspension.

The cell model concept was first introduced by Simha [32] and Happel [33], using a Newtonian background fluid, and
it is still widely used in more complex situations for which experiments or simulations may be more difficult [see, for
example, 34–37]. Mifflin [25] first attempted to apply the cell model to a non-Newtonian suspending fluid. However,
the attempt to find the dilute result with this model was unsuccessful due to an ill defined integral for dissipation,
which we discuss further in subsection II D. These models in their standard form are not expected to be accurate for
very concentrated suspensions: typically the model viscosity diverges as φ→ 1, where in reality flow will cease around
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r = R0b

r = R0

FIG. 1: Schematic of the cell model. The outer boundary is a virtual surface outside which the flow is unaffected by
the presence of the solid sphere. It remains fixed relative to the particle and does not deform with the flow.

φ = 0.64 and the maximum close packing fraction for identical spheres is φ = 0.74. However, when solved correctly
for Newtonian fluids, these models do reduce to the Einstein viscosity in the dilute limit.

The cell model is essentially a mean-field approximation: each particle feels the influence of the rest of the suspension
only as an average, rather than sampling the details of close interactions with neighbouring particles. As such, it can
never be fully accurate at high concentration; however, as mentioned above, we will propose an empirical modification
in section III which can improve its performance.

There is numerical evidence to suggest that the cell model is a valuable technique in calculating viscometric functions
in suspension. Yang and Shaqfeh [38] investigated the mechanism of shear thickening in dilute suspensions, using a
conformation tensor Cij to describe three models for the polymer stress: Oldroyd-B, Giesekus and FENE-P. For the
Oldroyd-B model, isocontours of Ckk at 10% of maximum value were plotted about a particle, and the length of the
wake used to define a spherical volume, akin to the sphere of influence in our investigation. The percentage of all
viscometric functions C12, C11 − C22 and C22 − C33 which are captured in this region close to the particle surface
were calculated and presented for O(1) values of Weissenberg number Wi. The results show that a large percentage
of the viscometric functions come from this volume close to the particle, and also that this percentage stays constant
with respect to Wi. This numerical analysis suggests to us that it is likely valid, at least in the dilute region, to apply
a cell model around particles in suspension.

Einarsson et al. [39] analytically investigated the rheology of a dilute suspension in an Oldroyd-B background fluid
to O(Wi2). They identified the contributions to velocity gradient about one particle in an infinite fluid phase, and
plotted this using an eigenvalue technique introduced by Chong et al. [40]. They found that the shear thickening
mechanism in their system was due to the ‘particle induced fluid stress in regions of flow around the particle with a
strong straining component’. These regions are given the name ‘hot spots’ in [39], and have a key identifying factor
of being near to the particle surface. Outside a certain radius from the centre of the solid particle, these regions cease
to make a contribution to the viscometric functions of the fluid matrix which, like the work above, suggests to us
that the rheology can be captured by considering a cell model about each particle in suspension. This analysis was
completed under the assumption of low solid volume fraction, and we will investigate how applicable the cell model
is at larger concentrations.

There is some debate as to which boundary conditions to apply on the cell surface: a long-standing discrepancy
between the results of Simha [32] and Happel [33] on this issue has recently been clarified by Sherwood [41]. He
discusses the options used in the early literature: continuity of velocity [32] or continuity of tangential stress and
normal velocity [33]. Of the two, continuity of velocity has certain advantages: in particular, if the velocity is imposed
on the outer surface of the cell then the volume-averaged strain rate within the entire cell (including the solid region)
is automatically equal to E∞, which is not true of the stress-continuity case. Continuity of velocity will therefore be
our choice.
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B. Second-order fluid

We assume that the fluid is incompressible and that inertia may be neglected. Then the governing equations for
steady flow with velocity field v are mass conservation:

∇ · v = 0, (5)

and momentum balance:

∇ · σ = 0 (6)

in which the stress tensor σ for a second-order fluid is given by

σ = −pI + 2η0E + α0A + 4α1E ·E. (7)

Here p is the pressure, Eij the rate of strain tensor, and Aij is the second Rivlin–Ericksen tensor [42], defined using
the lower-convected derivative. Specifically, in terms of the velocity gradient

Lij = (∇v)ij = ∇jvi,

we define

E =
1

2

(
L + L>

)
(8)

and, for steady flows,

A = 2
(
v · ∇E + L> ·E + E · L

)
. (9)

The special case α0 = α1 = 0 gives us a Newtonian fluid of viscosity η0, for which equations (6) and (7) combine to
give the Stokes equation:

∇p = η0∇2v. (10)

Lengths scale with the particle radius R0, velocities with some typical velocity scale U , and stresses and pressures with
a typical Newtonian shear stress η0U/R0, these governing equations become (with dimensionless quantities denoted
with a star):

σ∗ij = −p∗δij + 2E∗ij +Wi
(
εA∗ij + 4E∗ikE

∗
kj

)
, (11)

in which we have introduced two dimensionless parameters: the Weissenberg number Wi = α1U/η0R0 (the ratio of
elastic to viscous forces) and ε = α0/α1, a material parameter of the second-order fluid model. We have chosen α0

for our definition of Wi, but some others use α1, so care needs to be taken in comparing results in this area.
Suppressing stars henceforth, our governing momentum equation becomes

−∇p+∇2v +Wi∇ · (εA + 4E ·E) = 0. (12)

C. Boundary conditions

We apply a background flow outside the cell which is linear in space:

u∞ = U∞ + Ω∞ · x + E∞ · x, (13)

in which Ω∞ is an antisymmetric tensor describing rotation, and E∞ a symmetric tensor capturing strain. We
consider the case of force-free, torque-free spheres, which translate and rotate passively with the fluid around them:
the solid sphere is therefore in rigid-body motion

usolid = U∞ + Ω∞ · x. (14)

For brevity, we choose to change our frame of reference to one translating with the particle at velocity U∞. This
leaves us with a simpler far-field flow:

u∞ = Ω∞ · x + E∞ · x (15)

and a boundary condition on the surface of the solid sphere

v = Ω∞ · x on r = 1. (16)

Finally, velocity continuity at the outer surface of the cell gives:

v = Ω∞ · x + E∞ · x on r = b. (17)
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D. Averaging technique

In order to calculate the effective rheology of the suspension, we need to find the bulk, or average, extra stress
generated by the particles. It was shown by Rallison [31] that a volume average [as applied by 27, for example] is
not suitable for use with a second-order fluid in the limit b → ∞, as it generates a divergent integral [neglected
by 27]. Instead we follow the technique introduced by Koch and Subramanian [30] and use an ensemble average,
followed by an application of the fluid cell model. We first average over all possible configurations of particles in
the suspension, and then invoke the cell model. This introduces the dependence of cell radius b into certain average
terms which appear in the calculation of bulk stress. For finite cell volume, the results are equivalent to a volume
average calculation, but in the limit b → ∞ our results can be verified against those of Koch and Subramanian [30]
but disagree with Greco et al. [27].

We will calculate the ensemble average of the deviatoric stress tensor over the whole suspension. We have to average
the stress over both the solid and fluid phase, which requires an equation for the stress inside the particles. Rigorously
therefore, we define σPij as the extra stress within the solid phase if the fluid constitutive equations applied within the
particle:

σPij = σij − [−pδij + 2Eij +Wi (εAij + 4EikEkj)] for r ≤ 1. (18)

In this way we may describe the stress within the entire suspension as the fluid stress with an extra stress term valid
only within the solid phase. Suppose that we have found the steady solution to equations (5) and (12) which satisfies

our boundary conditions (16–17). Then, denoting by Q̂ the deviatoric part of tensor Q, and the ensemble average of
quantity Q by 〈Q〉, we have

〈σ̂〉 = 2〈E〉+Wi
(
ε〈Â〉+ 4〈Ê ·E〉

)
+N

̂∫
V 1

〈σP 〉dV , (19)

with V 1 the volume of a single sphere of unit radius. The first two terms come directly from equation (11), noting
that the pressure contribution disappears from the deviatoric stress because it is isotropic. We also used here the
particle number density N , defined as the number of particles per unit volume of suspension: however, since each
particle has dimensionless volume 4π/3 we will write N = 3φ/4π.

All terms in (19) require some care due to the step change in E at the particle surface. Within the fluid phase
the rate of strain is calculated directly from the local velocity field, whereas in the solid phase it is identically zero.
Therefore it is necessary to show that no terms provide a singular contribution to the averaged stress tensor. Koch
and Subramanian [30] investigated this step change, and managed to prove analytically that the mean polymer stress
is both zero within the solid phase and non-singular at the surface. The net result is that neither of the first two
terms in (19) provide ill-posed averages and σP differs from σ only by an isotropic term.

The deviatoric stress tensor is therefore sufficient to determine the macroscopic rheology of the suspension as a
whole. After use of the divergence theorem, our expression for the ensemble averaged deviatoric stress reduces to

〈σ̂〉 = 2〈E〉+Wi
(
ε〈Â〉+ 4〈Ê ·E〉

)
+N Ŝ, (20)

in which S is the particle stresslet, defined as

Sij =
1

2

∫
r=1

(〈σik〉n̂j + 〈σkj〉n̂i) n̂k dS, (21)

where n̂ is the outer unit normal to the particle. Since the cell model isolates each particle from all others, the
average stress at the particle surface appearing in equation (21) is exactly the stress found by solving the fluid
governing equations, evaluated at r = 1.

The term 〈E〉 in (20) is well-behaved in the limit b → ∞, so in this case we can replace the ensemble average by
the volume average. The volume average is guaranteed, by the use of velocity continuity boundary conditions at the
outside of the cell, to return the far-field rate of strain E∞. The same is true of the antisymmetric part of the rate of
strain tensor Ω = 1

2 (L− L>), whose volume average is Ω∞.

In order to evaluate the remaining averages 〈Â〉 and 〈Ê ·E〉, which would diverge in the limit b→∞ if we attempted
to use a volume integral, we write the local variables v, E and Ω in terms of their mean values and the deviation
from those mean values:

vi = v∞i + v′i; Eij = E∞ij + E′ij ; Ωij = Ω∞ij + Ω′ij . (22)
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FIG. 2: Using the cell model for dense suspensions. There may be some fluid which is not contained within any cell;
the radius b of the sphere of influence now becomes a semi-empirical measure of how close neighbouring cells may be.

Writing

Aij = 2 [∇k (vkEij) + ΩkiEkj + EikΩkj + 2EikEkj ] , (23)

and noting that 〈v′i〉 = 〈E′ij〉 = 〈Ω′ij〉 = 0, we can rewrite the mean polymer stress term as

ε〈Âij〉+ 4〈 ̂EikEkj〉 = 2ε
[
〈∇k (vkEij)〉+ 〈 ̂ΩkiEkj〉+ 〈 ̂EikΩkj〉

]
+ 4(1 + ε)〈 ̂EikEkj〉

= 4ε ̂〈E′ikΩ′kj〉+ 4ε ̂E∞ikΩ∞kj + 4 (1 + ε) ̂〈E′ikE′kj〉+ 4(1 + ε) ̂E∞ikE∞kj . (24)

The convective term disappears under averaging since the gradient operator and ensemble average commute, and
the term 〈vkEij〉 is independent of position. We note also that equation (24) is a summation of the mean polymer
stress without solid phase and the extra polymer stress contribution from the particles, expressed as the two ensemble
averages remaining. These added terms can be reduced to integrals over the cellular fluid volume [30]:

〈E′ikΩ′kj〉 =
3φ

4π

∫
V b

E′ikΩ′kj dV ; 〈E′ikE′kj〉 =
3φ

4π

∫
V b

E′ikE
′
kj dV. (25)

Herein lies the difference between our use of the cell model and that of Mifflin [25]. While our analyses up until the
averaging process have been the same, instead of taking an ensemble average over the suspension, [25] considered a
dissipation integral D given by:

D =

∫
V b−V 1

Eij (εAij + 4EikEkj) dV. (26)

The issue, as first shown by Koch and Subramanian [30] is that at the sphere of influence r = b, there is a step change
in the strain rate from the calculated Eij inside the cell volume to E∞ij forced by the boundary conditions. This causes
an O(b) contribution to the integral from the convection term in Aij , which diverges in the dilute limit. Our method
avoids this problem in two distinct ways, firstly the ensemble averaging process as shown above guarantees that we
need not consider any integral over that convection term. Secondly, we take an average directly over the stress of
the suspension, and therefore need not consider the contraction of the stress with the rate of strain tensor, as needed
in (26).

E. Extension of the cell model

Previous authors who have worked with the cell model have assumed that each fluid element in the system is
contained within exactly one cell: thus there is a direct relationship between the solids volume fraction φ and the
dimensionless cell size, b, namely

φ = b−3.

While this is clearly appropriate in the dilute limit (for which the cell model with a Newtonian solvent fluid reproduces
the Einstein viscosity), we argue that this assumption should be relaxed when considering more concentrated systems.

Consider the dense system sketched in Fig. 2. We now use the sphere of influence to capture the region within
which the fluid must react to the central solid particle in order to present an unperturbed flow to the neighbouring
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cells. This extension is not an accurate depiction of concentrated suspensions (we take no account of the anisotropy
caused by the local interactions with neighbouring particles) but it does have the potential to capture the divergence
of viscosity at close packing φ → φm. As illustrated in Fig. 2, as φ → φm we impose b → 1. In general, we simply
decouple the two variables φ and b. The extra flexibility introduced by this decoupling will, as we will see later, allow
us to create suspension models which are both simple and physically plausible.

F. Solution strategy

Since the second-order fluid model is derived by taking the slow-flow limit of any viscoelastic fluid, it is reasonable
to consider that the Weissenberg number Wi should be small. Thus we can expand all variables Q as perturbation
series about the Newtonian case Wi = 0:

Q = Q0 +WiQ1 +O(Wi2). (27)

We solve at each order in turn; and as one might expect, the leading-order system is precisely that of a suspension in
a Newtonian fluid. We discuss the Newtonian case in §III and the full second-order fluid in §IV.

The governing equations become, at leading order:

∇ · v0 = 0, (28)

−∇p0 +∇2v0 = 0, (29)

with boundary conditions

v0 = 0 on r = 1,
v0 = u∞ on r = b

(30)

and at order Wi:

∇ · v1 = 0, (31)

−∇p1 +∇2v1 = −∇ ·
(
εA0 + 4E0 ·E0

)
, (32)

in which E0 and A0 are defined in terms of v0 as in equations (8) and (9), with boundary conditions

v1 = 0 on r = 1,
v1 = 0 on r = b.

(33)

III. NEWTONIAN MATRIX

In this section we will describe our method for calculating local velocity, pressure and stress fields as a function of
the boundary forcing data E∞ and Ω∞. We will deduce macroscopic viscosity values, reproducing results of [41], and
then show how we can use real suspension data to motivate an empirical relation between b and φ.

A. Solving the flow problem

Because of the linearity of the Stokes equations, the local velocity and pressure fields can only depend linearly on
the boundary forcing: thus, generically,

vi(x) = α
(1)
ijk(x)E∞jk + α

(2)
ijk(x)Ω∞jk, (34)

p(x) = β
(1)
jk (x)E∞jk + β

(2)
jk (x)Ω∞jk. (35)

Because of the spherical symmetry of the problem, the only distinguished vector direction is x, which means we can
specify the tensors α, β in terms of this vector and of unknown scalar functions of r = |x|:

vi = f(r)E∞ik xk + g(r)E∞jkxixjxk + h(r)Ω∞ikxk; (36)
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p = q(r)E∞jkxjxk. (37)

The inclusion of the rotation term Ω here is different from the standard method used in the literature. For a Newtonian
fluid this term could simply be eliminated by changing the frame of reference to one rotating with the flow; but when
we move on to the second-order fluid in section IV this term will become more important.

The velocity boundary conditions from equations (16–17) become the scalar set:

f(1) = 0, f(b) = 1; g(1) = 0, g(b) = 0; h(1) = 1, h(b) = 1. (38)

Substituting our new velocity forms into the mass conservation equation (5), we obtain the first-order differential
equation

f ′(r)

r
+ rg′(r) + 5g(r) = 0. (39)

We take the curl of the momentum equation (12) to eliminate the pressure, forming the vorticity equation. Substitution
of the velocity (36) then yields two equations (from the coefficients of the independent expressions depending on E
and Ω):

f ′′′(r)

r
+

4f ′′(r)

r2
− 4f ′(r)

r3
− 2g′′(r)− 12g′(r)

r
= 0;

h′′(r) +
4h′(r)

r
= 0.

(40)

Once these differential equations have been solved for f(r), g(r) and h(r) we can reconstruct the pressure function
q(r) using the original momentum equation:

q(r) =
η0

2

[
f ′′(r) +

4f ′(r)

r
+ 4g(r)

]
. (41)

Solving, we find the radial functions

f(r) = −5c1r
2

2
− 2c3

5r5
+ c4,

g(r) = c1 +
c2
r5

+
c3
r7
,

h(r) = 1,

q(r) = η0

(
−21c1

2
+

2c2
r5

) (42)

in which the constants ci are defined in terms of b:

c1 =
10b3 (1 + b)

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)
,

c2 = −
10b3

(
1 + b+ b2 + b3 + b4 + b5 + b6

)
(b− 1)

3
(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

,

c3 =
10b5

(
1 + b+ b2 + b3 + b4

)
(b− 1)

3
(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

,

c4 =
b3
(
25 + 25b+ 4b2 + 4b3 + 4b4 + 4b5 + 4b6

)
(b− 1)

3
(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

.

(43)

These and any further computations were calculated using the Mathematica software.
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FIG. 3: Solid line: The empirical function b(φ) defining the cell radius as a function of the solid volume fraction φ
in order to mimic the Krieger–Dougherty viscosity. We have taken φm as 0.64, the maximum random packing

fraction for monodisperse spheres. The dotted line shows the standard assumption b(φ) = φ−1/3.

B. Bulk stress

As discussed in section II D, we can write the average deviatoric stress in the system as

〈σ̂〉 = 2〈E〉+
3φ

4π
Ŝ, (44)

(which is equation (20) in the limit Wi→ 0), along with the stresslet definition from equation (21):

Sij =
1

2

∫
r=1

(σikn̂j + σkj n̂i) n̂kdS. (45)

Using the velocity functions (42) and their derived stresses, we obtain

〈σ̂ij〉 = 2

[
1 +

10b3
(
1 + b+ b2 + b3 + b4 + b5 + b6

)
φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

]
E∞ij . (46)

In dimensional terms, then,

ηeff = η0

[
1 +

10b3
(
1 + b+ b2 + b3 + b4 + b5 + b6

)
φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

]
. (47)

In the limit b → ∞, this reduces correctly to Einstein’s viscosity ηeff = 1 + 5φ/2; it also matches equation (30)
of Sherwood [41] if we make the additional assumption that φ = b−3.

However, in this work we have deliberately not assumed a relation between b and φ. The reason is simple: we wish
to use this freedom to make our predictions more physically plausible.

For a monodisperse suspension of spherical particles, it is well known that the Krieger–Dougherty relation (3)

ηeff = η0

(
1− φ

φm

)−5φm/2

(48)

gives viscosity predictions which are a good fit to experimental data [22]. We can choose the function b(φ) so that
our cell model’s effective viscosity precisely matches Krieger–Dougherty:

10b3
(
1 + b+ b2 + b3 + b4 + b5 + b6

)
φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)
=

(
1− φ

φm

)−5φm/2

− 1. (49)
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FIG. 4: Solid line: The function f(φ) is defined as the ratio between b(φ) and φ−1/3. The empirical function b(φ)
defines the cell radius as a function of the solid volume fraction φ in order to mimic the Krieger–Dougherty viscosity.
We have taken φm as 0.64, the maximum random packing fraction for monodisperse spheres. The dotted line shows

the same function f(φ) under the standard assumption b(φ) = φ−1/3.

This implicit expression for b cannot be solved analytically, but we graph the resulting function in Fig. 3. Its asymptotic
behaviour is

b(φ) ∼ 5

2

(
25

8
+

5

4φm

)−1/3

φ−1/3 as φ→ 0, (50)

b(φ) ∼ 1 +

(
35φm

1−5φm/2

2

)1/9

(φm − φ)
5φm/18

as φ→ φm (51)

and in table I we tabulate its value at intermediate concentrations. The ratio between b(φ) and φ−1/3, the assumed
value for b in the dilute limit is also plotted in Fig. 4. We also tabulate the values of φ1/3b(φ) at intermediate
concentrations in table II.

This empirical function b(φ) modifies the volume of fluid available to each particle within the mean-field approxi-
mation. As φ→ φm, in a real suspension system, the gap between each particle and its nearest neighbours decreases
to zero: this fit function captures that behaviour by reducing the volume of the cellular fluid phase to zero. We can
think of this, qualitatively, as using a proxy for many-body interactions, in a way that still fits within the mean-
field framework. It then makes sense to use the Krieger–Dougherty viscosity to choose b(φ) so that our resulting
constitutive model best fits experimental data.

We provide a plot in Fig. 5 which shows effective viscosity obtained using numerical analysis [43], dilute theory [30]

TABLE I: Numerical values for the empirical relation b(φ) defined in equation (49), taking φm = 0.64.

φ b(φ) φ b(φ) φ b(φ) φ b(φ) φ b(φ) φ b(φ) φ b(φ)
0.00 ∞ 0.10 2.947 0.20 2.236 0.30 1.863 0.40 1.602 0.50 1.387 0.60 1.168
0.01 6.669 0.11 2.842 0.21 2.190 0.31 1.833 0.41 1.579 0.51 1.366 0.61 1.141
0.02 5.255 0.12 2.748 0.22 2.146 0.32 1.804 0.42 1.557 0.52 1.346 0.62 1.111
0.03 4.562 0.13 2.664 0.23 2.105 0.33 1.777 0.43 1.535 0.53 1.325 0.63 1.074
0.04 4.121 0.14 2.587 0.24 2.066 0.34 1.750 0.44 1.513 0.54 1.304 0.64 1.000
0.05 3.805 0.15 2.517 0.25 2.028 0.35 1.724 0.45 1.492 0.55 1.283
0.06 3.562 0.16 2.452 0.26 1.992 0.36 1.698 0.46 1.470 0.56 1.261
0.07 3.367 0.17 2.393 0.27 1.958 0.37 1.673 0.47 1.449 0.57 1.239
0.08 3.205 0.18 2.337 0.28 1.925 0.38 1.649 0.48 1.428 0.58 1.216
0.09 3.067 0.19 2.285 0.29 1.893 0.39 1.625 0.49 1.408 0.59 1.193
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FIG. 5: A comparison of normalised effective viscosity ηeff/η0 in suspension between the numerical results of Yang
and Shaqfeh [43], the dilute theory [30] and our own results using b(φ). The numerical results are given by the

square data points, dilute theory by the solid lines and our cell model approach by the dashed lines. The matching
process which results in the empirical function b(φ) guarantees that ηeff is given precisely by the Krieger–Dougherty

equation (3). We show results at semi-dilute values of solid volume fraction φ = 0.05 and 0.1.

and the cell model approach for semi-dilute values of solid volume fraction. The numerical data points were obtained
by calculating flow quantities about one particle in the centre of a cubic domain, with an Oldroyd-B background fluid.
We observe that both theoretical approaches have a good comparison with the data points at φ = 0.05, although
the Krieger–Dougherty equation is slightly closer at all Wi. However, as we reach the higher value of solid volume
fraction φ = 0.1, our cell model approach combined with Krieger–Dougherty matching clearly fits the numerical data
better. We think that this improvement in reproducing numerical data, having started from dilute assumptions in
our analysis, is encouraging and may provide a means to predict other viscometric functions at larger concentrations
than φ� 1.

In the next section we will extend our analysis to a second-order suspending fluid. With the change of suspending
fluid comes a question as to whether close-pair interactions are comparably important in Newtonian and second-order
fluids. There is some evidence that they may not be - for example, viscoelastic fluids often show particle chaining, which
means they may have more close pairs than corresponding Newtonian fluids, and there is some far-field theoretical
work [44] predicting attractive interactions in a second-order fluid. However, given that the second-order fluid is
a first viscoelastic adjustment to the Newtonian model, it seems natural to use the effective volumes yielded by
Krieger–Dougherty as a starting point.

TABLE II: Numerical values for the ratio φ1/3b(φ) using the empirical relation b(φ) defined in equation (49), taking
φm = 0.64.

φ φ1/3 b φ φ1/3 b φ φ1/3 b φ φ1/3 b φ φ1/3 b φ φ1/3 b φ φ1/3 b
0.00 1.454 0.10 1.368 0.20 1.308 0.30 1.247 0.40 1.180 0.50 1.101 0.60 0.985
0.01 1.437 0.11 1.362 0.21 1.302 0.31 1.241 0.41 1.173 0.51 1.092 0.61 0.967
0.02 1.426 0.12 1.356 0.22 1.296 0.32 1.234 0.42 1.166 0.52 1.082 0.62 0.947
0.03 1.418 0.13 1.349 0.23 1.290 0.33 1.228 0.43 1.158 0.53 1.072 0.63 0.921
0.04 1.409 0.14 1.343 0.24 1.284 0.34 1.221 0.44 1.151 0.54 1.062 0.64 0.862
0.05 1.402 0.15 1.337 0.25 1.278 0.35 1.215 0.45 1.143 0.55 1.051
0.06 1.395 0.16 1.331 0.26 1.272 0.36 1.208 0.46 1.135 0.56 1.039
0.07 1.388 0.17 1.325 0.27 1.265 0.37 1.201 0.47 1.127 0.57 1.027
0.08 1.381 0.18 1.319 0.28 1.259 0.38 1.194 0.48 1.118 0.58 1.014
0.09 1.374 0.19 1.313 0.29 1.253 0.39 1.188 0.49 1.110 0.59 1.000
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IV. SECOND-ORDER FLUID MATRIX

In this section, we calculate the local velocity and pressure fields at O(Wi). They serve to find the perturbation
to the stresslet as defined in (21), which in turn contributes to the additional bulk stress. We will calculate the
macroscopic stress at this order of our perturbation series, and deduce values of both material parameters in bulk.
We then use our empirical b(φ) function to produce concentration dependent normal stress differences, and show their
behaviour in a simple shear flow.

A. Solving the flow problem at O(Wi)

If we refer back to section II F, we see that (32) at order Wi is the Stokes equation with a forcing term which is
quadratic in the boundary data E∞ and Ω∞. Any pressure or velocity term at this order must therefore also have a
quadratic dependence on the boundary data, otherwise it will be a trivial solution. Thus generally

v1
i (x) = α

(1)
ijklm(x)E∞jkE

∞
lm + α

(2)
ijklm(x)E∞jkΩ∞lm,

p1(x) = β
(1)
jklm(x)E∞jkE

∞
lm + β

(2)
jklm(x)E∞jkΩ∞lm.

(52)

Note that there are no ΩΩ terms generated by the forcing term in equation (32), and therefore any dependence on
this tensor combination in v1

i (x) or p1(x) would be homogeneous.

As aforementioned in section III A, the spherical symmetry of the problem allows for only one choice of vector
direction x. Therefore, we can specify the tensors α, β in terms of this vector and unknown scalar functions of
r = |x|:

v1
i = V1(r)E∞jkE

∞
lmxixjxkxlxm + V2(r)E∞jkE

∞
kl xixjxl + V3(r)E∞jkE

∞
jkxi + V4(r)E∞jkE

∞
il xjxkxl + V5(r)E∞ikE

∞
kl xl

+ V6(r)E∞jkΩ∞klxixjxk + V7(r)E∞ikΩ∞klxl + V8(r)Ω∞ikE
∞
kl xl; (53)

p1 = P1(r)E∞jkE
∞
lmxjxkxlxm + P2(r)E∞jkE

∞
kl xjxl + P3(r)E∞jkE

∞
jk + P4(r)E∞jkΩ∞klxjxl. (54)

The governing equations which these scalar functions must satisfy are unwieldy, and are provided in appendix A.
Their solution yields the radial functions

V1(r) = − C1

11r11
+ C2 −

C10

18r9
+

11 (1 + ε) c1c2
6r5

+
7 (1 + ε) c1c3

2r7
+

8 (1 + ε) c22
r10

− 4 (1 + ε) c2c3
r12

+
7 (2 + 3ε) c3c4

r9
,

V2(r) =
4C1

99r9
− 4 (7C2 + C11) r2

63
− C3

7r7
+ C4 −

C12

10r5
+

(53 + 27ε) c21
21

+
17 (1 + ε) c1c2

9r3

+
(162 + 215ε) c1c3 − 10 (3 + 5ε) c2c4

5r5
− 6 (1 + ε) c22

r8
+

4 (1 + ε) c2c3
r10

,

V3(r) = − 2C1

693r7
+

2 (5C2 + 2C11) r4

315
+

9C3 + C10

315r5
− (3C4 + C13) r2

15
− C5

3r3
+ C6 +

(83 + 135ε) c21r
4

210
− 28 (1 + ε) c1c2

9r

− (11 + 20ε) c1c4r
2

5
+

2 (1 + ε) c22
3r6

− 2 (2 + 3ε) c3c4
5r5

,

V4(r) =
4C1

99r9
− 2 (2C2 − C11) r2

9
− C7

7r7
+ C8 −

(11− 15ε) c21r
2

6
+

11 (1 + ε) c1c2
9r3

− 3 (1 + ε) c22
r8

+
2 (1 + ε) c2c3

r10
,

V5(r) = − 8C1

693r7
+

4 (2C2 − C11) r4

63
+

2 (9C3 + 9C7 + 2C10)

315r5
− (2C4 + 2C8 − C13) r2

5
+ C9 −

(125 + 177ε) c21r
4

42

+
56 (1 + ε) c1c2

9r
+

3 (11 + 20ε) c1c4r
2

5
+

2 (1 + ε) c22
r6

− 8 (2 + 3ε) c3c4
5r5

,

V6(r) = 0, V7(r) = 0, V8(r) = 0,
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P1(r) = −C10

9r9
+ C11 +

(79 + 120ε) c1c2
r5

+
2 (59 + 78ε) c1c3 − 20 (1 + 2ε) c2c4

r7
+

2 (6 + 5ε) c22
r10

+
2 (8 + 11ε) c2c3

r12

+
18 (2 + 3ε) c23

5r14
,

P2(r) =
4C10

63r7
− 4C11r

2

7
− C12

5r5
+ C13 +

6 (72 + 143ε) c21r
2

7
− 2 (23 + 36ε) c1c2

r3
+

2 (1 + 2ε) c22
r8

+
8 (8 + 11ε) c2c3

5r10

+
24 (2 + 3ε) c23

5r12
,

P3(r) = − 2C10

315r5
+

2C11r
4

35
+

C12

15r3
− C13r

2

3
+

(1089 + 2120ε) c21r
4

140
− 4 (59 + 78ε) c1c3 − 40 (1 + 2ε) c2c4

15r3

− 14 (1 + 2ε) c1c4r
2 +

4 (2 + 3ε) c23
25r10

,

P4(r) = −21εc1 +
4εc2
r5

(55)

with two sets of constants: ci given in equation (43) and Ci, new at this order, which are provided in appendix B.
In the case of one spherical particle in an infinite volume of second-order background fluid, the solution for pressure

and velocity functions is given by Peery [45]. We find that our solutions (55) match [45] under the dilute limit b→∞,
less a constant pressure term E∞jkE

∞
jk . Since there are no boundary conditions on the pressure and only its gradient

plays a role in the governing momentum equations, this constant pressure term difference between our solutions is of
no consequence.

As discussed in subsection II A, Einarsson et al. [39] provided an analysis on the so-called ‘hot spots’, which are
regions about the surface of a particle within which the straining part of a flow dominates. The suspending fluid in
their case was Oldroyd-B, and the flow profile was simple shear. To demonstrate these hot spots, they provided a
plot of the velocity gradient using an eigenvalue technique [40], which as well as locating these areas with a strong
straining component, also demonstrates their close proximity to the particle. We have performed a similar analysis on
our velocity gradient tensor to O(Wi), and found a very similar profile: strong areas of strain fore and aft the particle
and rotation dominated areas above and below. This qualitative agreement shows that, for at least the dilute case,
the general profile of analytical results found in an infinite fluid can be equally captured using a bounded spherical
domain.

B. O(Wi) correction to bulk stress

We saw in section II D that up to O(Wi), the symmetric deviatoric stress in the system can be written as

〈σ̂〉 = 2〈E〉+Wi
(
ε〈Â〉+ 4〈Ê ·E〉

)
+

3φ

4π
Ŝ (56)

from equation (20), with the definitions of second order Rivlin-Ericksen tensor A and stresslet S given in equations (23)
and (21) respectively. While the mean polymer stress term here depends only on the Newtonian flow, we must take the
O(Wi) contribution to the local pressure and velocity fields to find the stresslet term. Therefore, using the solutions
for velocity (42) and (55) in the Newtonian and second order matrices respectively, we are able to calculate the average
stress in the form

〈σ̂ij〉 = 2
ηeff

η0
E∞ij +Wi

(
Σ0

̂E∞ikΩ∞kj + Σ1
̂E∞ikE∞kj) . (57)

The effective viscosity ηeff is that given in equation (47). The new constitutive functions Σ0 and Σ1 are provided
explicitly in appendix C. They depend on the second-order fluid parameters α0 and α1 and, of course, on the cell
radius b.

In section III B we found the effective viscosity of our suspension in a Newtonian background fluid, which is the one
material function. At second order, we have introduced two more parameters α0 and α1, which in bulk correspond
to two further material functions

α0,eff =
Σ0

4ε
α0, α1,eff =

Σ1 − Σ0

4
α1 (58)
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given in dimensional terms as functions of Σ0, Σ1 and the initial constants α0, α1.
Explicitly then, we obtain

α0,eff =

[
1 +

10b3
(
1 + b+ b2 + b3 + b4 + b5 + b6

)
φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

]
α0, (59)

α1,eff =

[
1 +

Λφ φ

7(b− 1)
4
(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

3

]
α1 (60)

in which we have introduced

Λφ = 15b3
(
−32− 256b− 1152b2 − 3140b3 − 4960b4 − 3336b5 + 4802b6 + 18964b7 + 34140b8 + 45760b9 + 53768b10

+59004b11 + 59508b12 + 52185b13 + 37320b14 + 20800b15 + 8900b16 + 2880b17 + 640b18 + 80b19
)

+ 10b3 (88

+704b+ 3168b2 + 10060b3 + 25040b4 + 49344b5 + 78442b6 + 104852b7 + 122604b8 + 128848b9 + 123128b10

+104844b11 + 75892b12 + 44597b13 + 20304b14 + 6640b15 + 1460b16 + 288b17 + 64b18 + 8b19
)
ε.

(61)

We note here that α0,eff/α0 = ηeff/η0, which can be seen in equations (47) and (59).
In the limit b→∞, these functions reduce to

α0,eff =

(
1 +

5φ

2

)
α0, α1,eff =

[
1 +

5 (15 + ε)φ

28

]
α1 (62)

and our constitutive stress functions behave as

Σ0 = 4ε+ 10εφ, Σ1 = 4 (1 + ε) +
75 (1 + ε)φ

7
(63)

which matches equations (68) and (69) of [30].

C. Model for a macroscopic suspension

As we saw in section II B, the governing equation for a second-order fluid is

σ = −pI + 2η0E + α0A + 4α1E ·E, (64)

from equation (7). Using this equation, we have calculated the local stress about a single particle, and further
calculated the bulk value for stress over the whole suspension. In addition, we found that in bulk, the material
parameters η0, α0 and α1 take on effective values ηeff , α0,eff and α1,eff respectively, all of which represent the parameters
for our suspension at the macroscopic level. Thus, we find that a suspension of spherical particles in second-order
fluid can be described fully by its dimensional stress equation

σ = −p∞I + 2ηeffE∞ + α0,effA∞ + 4α1,effE∞ ·E∞. (65)

Hence, in non-dimensional terms the symmetric deviatoric stress is

σ̂ij = 2
ηeff

η0
E∞ij +Wi

[
4ε
α0,eff

α0

̂E∞ikΩ∞kj + 4

(
α1,eff

α1
+ ε

α0,eff

α0

) ̂E∞ikE∞kj] . (66)

We now build on the work of section III B, where we chose a function b(φ) to match our effective viscosity to the
empirical Krieger–Dougherty equation. Putting this value of b(φ) into equations (59) and (60) results in material
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FIG. 6: The normalised effective material functions α0,eff/α0 and α1,eff/α1 as a function of solid volume fraction φ
using our Krieger–Dougherty matching b(φ) shown in Fig. 6a and 6b respectively. We have taken φm as 0.64, the
maximum random packing fraction for monodisperse spheres. In 6a, we see that the graph coincides exactly with
the Krieger–Dougherty form (which we imposed for viscosity). We have taken two choices of parameter in 6b to

show the divergent behaviour: ε = −7/14, the solid line and ε = −9/14, the dashed line.

functions which will be dependent solely on the parameter ε and the concentration φ, shown in Figures 6a and 6b
respectively. All results presented in the rest of this section will use this semi-empirical relation of b(φ).

We noted previously that the ratio α0,eff/α0 is identical to ηeff/η0. Therefore, as a direct consequence of our effective
viscosity matching in section III B, the graph in Fig. 6a is precisely the plot of the Krieger–Dougherty viscosity. We
see a similar profile in Fig. 6b for α1,eff/α1, except that the function value increases with decreasing absolute value of
ε.

Ho and Leal [46] state based on experimental results that for real, homogeneous fluids ε ≤ −0.5, so we take this
as the upper limit for ε. Further, we investigate the macroscopic suspension to reason a lower limit for ε, which
involves considering the effective parameter εeff = α0,eff/α1,eff . Since both α0,eff and α1,eff are non-singular at all
concentrations less than jamming, we expect the same behaviour for effective parameter εeff , implying that α1,eff ,
given in equation (60) must not change sign. This occurs at values of ε for which α1,eff/α1 diverges to −∞ in the
jamming limit, b→ 1. It can be shown analytically using Residue analysis that

α1,eff

α1
=

3 (9 + 14ε)φ

175(b− 1)
4 +O

[
1

(b− 1)
3

]
, (67)

i.e. our effective parameter α1,eff will change sign for ε < −9/14 as we approach the maximum sphere packing limit.
We therefore consider the range of ε to be ε ∈ (−9/14,−1/2).

D. Behaviour in shear flow

The first and second normal stress differences, denoted by N1 and N2 respectively are defined by

N1 = σxx − σyy, N2 = σyy − σzz (68)

for a unidirectional flow in direction x̂ with shear gradient varying in ŷ. One such background flow which satisfies
these definitions is

u∞ = γ̇(y, 0, 0) (69)

with γ̇ dimensionless shear rate, acting on our solid particle suspension in second-order fluid. We can calculate the
macroscopic N1 and N2 directly from the symmetric deviatoric stress equation (66). Therefore, we shall simply
calculate the constitutive matrices in the stress equation directly from the boundary data.
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The velocity field given in (69) generates the following matrices for velocity gradient L∞, rate of strain E∞ and
rate of rotation Ω∞;

L∞ =

0 γ̇ 0
0 0 0
0 0 0

 , E∞ =

 0 γ̇/2 0
γ̇/2 0 0
0 0 0

 , Ω∞ =

 0 γ̇/2 0
−γ̇/2 0 0

0 0 0

 .

We will also need the quadratic tensor combinations

̂E∞ ·Ω∞ =
γ̇2

4

−1 0 0
0 1 0
0 0 0

 , ̂E∞ ·E∞ =
γ̇2

12

1 0 0
0 1 0
0 0 −2

 (70)

which govern the O(Wi) term.
Using the matrices above, equation (68) yields

N1 = −2γ̇2ε
α0,eff

α0
Wi, N2 = γ̇2

(
α1,eff

α1
+ 2ε

α0,eff

α0

)
Wi (71)

which match the normal stress differences given in equations (72) and (73) of [29] in the dilute limit. In dimensional
terms, we calculate

N1,dim = −2α0,eff γ̇
2
dim, N2,dim = (α1,eff + 2α0,eff) γ̇2

dim (72)

for γ̇dim the dimensional shear rate.
There are numerical results in the literature introduced by Yang et al. [47] at the dilute end of solid volume fraction,

and a comparison of our results and theirs are shown in table III. The N0
1 and N0

2 presented in the table are the
values of first and second normal stress difference in the absence of a solid phase. The numerical simulation assumes a
Giesekus background fluid, with domain a cube and a sphere of diameter D0 at its centre, with each edge of the cube
having a length between 12D0 and 24D0. We consider the cube with shorter sides of length 12D0, which will give a
larger solid volume fraction, although admittedly it is still very small at φ = 0.0003. The results in table III show a
clear correlation, both in terms of magnitude and sign, with a largest difference between any two results of 25% at
the higher end of Wi. In all cases, the difference from a material function to its value in purely fluid phase is expected
to be orders of magnitude smaller than the value, since we are in the dilute limit. Nevertheless, the low percentage
difference suggests that a cell model approach as outlined in this paper can predict the behaviour of a suspension in
viscoelastic fluid, for at least low solid volume fraction.

The components of first and second normal stress difference, normalised by γ̇2Wi are shown in Fig. 7 at φ = 0.01 and
compared against those presented in [47]. The total values of N1 and N2 come directly from equation (71), and their
components are stress in the absence of particles, extra mean polymer stress and stresslet contributions shown in blue,

red and purple respectively. These terms correspond to 4ε ̂E∞ ·Ω∞+ 4(1 + ε) ̂E∞ ·E∞, 4ε ̂〈E′ ·Ω′〉+ 4 (1 + ε) ̂〈E′ ·E′〉
TABLE III: Table showing the dependence of all material functions on Weissenberg number, along with a direct

comparison to Yang et al. [47]. The corresponding choice of parameter is ε = −8/14 to compare with the numerical
results, and we take φ = 0.0003.

Wi Author (ηeff − η0)/η0 (N1 −N0
1 )/γ̇2 (N2 −N0

2 )/γ̇2

0.0175 Escott 7.580 · 10−4 1.516 · 10−5 −1.488 · 10−6

Yang 7.397 · 10−4 1.464 · 10−5 −1.255 · 10−6

0.0350 Escott 7.580 · 10−4 3.032 · 10−5 −2.975 · 10−6

Yang 7.397 · 10−4 2.932 · 10−5 −2.441 · 10−6

0.0700 Escott 7.580 · 10−4 6.064 · 10−5 −5.951 · 10−6

Yang 7.365 · 10−4 5.760 · 10−5 −4.484 · 10−6
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FIG. 7: The individual components to first and second bulk normal stress differences at solid volume fraction
φ = 0.01 from our analysis and from Yang et al. [47] are shown in Fig. 7a and 7b respectively. The normalised N1 is
presented as a cumulative total, whereas N2 directly shows the sizes of each individual term. The blue bar shows the

stress contribution from the fluid phase in the absence of particles, the red shows the extra mean polymer stress
contribution due to the solid phase and the purple shows the stresslet term. We note here that the bulk stress

contribution (blue) in Fig. 7a is the dominant term, with its value given directly from the y axis. The actual values
of the extra mean polymer stress and stresslet are shown in the labels to the right of their respective bars. All
components are normalised by γ̇2Wi with ε = −0.3198 and −0.500977 for N1 and N2 respectively. The inertial

stress terms present in [47] have been omitted from both charts.

and 3φŜ1/4π from our analysis in subsection II D. We can see that the first normal stress difference is dominated by
its term in the absence of a solid phase, the only other non-zero contribution being from the stresslet. This agrees
with the analysis performed by Koch and Subramanian [30], who showed via a general argument that N1 can only

be influenced by terms with a dependence on Ω∞, which both ̂〈E′ikΩ′kj〉 and ̂〈E′ikE′kj〉 do not. The precise values for
these two ensemble averages are provided, along with the stresslet contribution in appendix D.

We also observe that N2/γ̇
2Wi in total differs very little from its value without a solid phase. Both the extra

mean polymer stress term and stresslet terms are non-zero, have roughly the same magnitude at both values of φ but
crucially increase and decrease the stress difference respectively. These two competing terms overall provide a small
negative contribution, which increases the magnitude of the normalised stress difference as a whole by approximately
10%.

Fig. 7 also shows the work of Yang et al. [47], who provides the same component breakdown for a numerically
based investigation with a Giesekus suspending fluid at φ = 0.01. Qualitatively, the analytical and numerical results
show very similar characteristics, in most cases differing only in magnitude. Both our component graphs show a
dominant bulk fluid stress term to normalised N1 and an overall negative N2 value which is small in magnitude.
Both investigations also show competing extra mean polymer stress and stresslet terms for N2, in which the extra
mean polymer stress term provides slightly more. As aforementioned, the magnitude of the second normal stress
differences are apart by approximately 60%, and also the stresslet contribution to N1 is twice the value of its numerical
counterpart. Further, there is a non-zero contribution from the extra polymer stress in [47] to N1 which we predict to
be zero. While there are distinct differences between the two, we should note that the numerical analysis was taken
at Wi = 1 which violates our assumption that Wi is a small perturbation parameter, so we do not expect there to be
an exact correlation between the two results. However, we consider the qualitative agreement between the results a
good step towards validating the cell model approach.

We scale these normal stress differences with the shear stress σxy, and find

N1

σxy
= −2γ̇εWi,

N2

σxy
= γ̇

(
α1,eff

α0

η0

ηeff
+ 2ε

)
Wi (73)

the second of which is shown in Fig. 8. From the first expression in equation (73), it is clear that our first normal
stress difference N1 can only be positive. Further, as seen in Fig. 8, the second normal stress difference is negative for
the large majority of concentrations. However, using the cell model proxy, we predict a change in sign of N2 at some
solid volume fraction for parameter ε ∈ (−7/14,−9/14).
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FIG. 8: The second normal stress difference N2 scaled by γ̇, Wi and σxy the shear rate, Weissenberg number and
shear stress respectively. The four choices of parameter ε are −7/14 the solid blue line, −23/42 the dashed blue line,
−25/42 the solid red line and −9/14 the dashed red line. It shows the scaled N2 as a function of solid volume

fraction φ using our Krieger–Dougherty matching b(φ), having taken φm = 0.64 as the maximum random packing
fraction for monodisperse spheres.

The only choice of solvent parameters for which N2 does not change sign is ε = −0.5, the so-called Weissenberg
fluid. It is defined as a second-order fluid for which there is zero second normal stress difference i.e. N0

2 = 0. In
this case, adding particles results in a positive N2/σxy which, as seen in Fig. 8, will increase with concentration and
diverge as it approaches packing.

Yang et al. [47] performed a numerical investigation of the second normal stress difference in dilute suspensions
over a range of Weissenberg numbers, which they compared against the theory provided by [30]. We show the results
from both papers at Weissenberg number Wi = 0.1 and our semi-analytic solution for the same value of ε in Fig 9.
We see that there is a good correlation between the results, both qualitatively and quantitatively; there is a change in
sign for all results in the range of concentration φ ∈ [0.015, 0.025]. In particular, our results and those of Yang et al.
[47] are in good agreement, both showing a change of sign at roughly φ = 0.0175, a linear trend for increasing solid
volume fraction and similar negative values in the absence of solid particles.

A comparison between our calculated formulae for N1 and N2 in suspension and the experimental values found
in Dai et al. [15] is given in Fig. 10. The experiments were completed for a suspension of solid spheres in a Boger
background fluid, with a suspending viscosity of 2.16Pa s, mean particle diameter 42.3µm and standard deviation of
0.63µm in size. We observe that in both Figs. 10a and 10b, our analytical solutions have a close matching with [15]
up to approximately φ = 0.25. At this point, the behaviour of the experimental values drastically changes and grows
exponentially in magnitude in the negative direction. However, our equations for normal stress differences given
in (71) remain positive (for ε = −1/2) and don’t show any clear exponential behaviour in the range of solid volume
fraction given.

The cell model approach has provided us with equations (71) for N1 and N2 which show similar behaviour to
experiments up to approximately φ = 0.25. The clear difference in both qualitative and quantitative behaviour
after this point highlights the limits of the cell model in dense suspensions, where solid mechanics become far more
important to viscometric functions. Such physical considerations as particle contacts and inertia have been neglected
in this model, which even in Newtonian suspending fluid, play a vital role to the viscometric functions. As shown in
Figs. 10, their contribution becomes dominant past a certain concentration, which causes the clear disparity between
our solutions and the experimental data [15].

E. Which interparticle distance is appropriate?

Whilst we have engineered a decoupling of b and φ with the intention of matching effective viscosity to the Krieger–
Dougherty equation, we could elect to use the mean interparticle distance instead. In our case, assuming that the
mean distance between particles d is measured from surface to surface, the correct choice of cell radius is b = 1 + d/2.
It is notoriously difficult in experimentation to measure the mean distance between particles in a fluid suspension,
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FIG. 9: The second normal stress difference N2 scaled by γ̇, Wi and σxy the shear rate, Weissenberg number and
shear stress respectively. The results of Escott & Wilson are shown against the data points from Yang et al. [47]

and Koch and Subramanian [30] for three values of solid volume fraction, along with their respective linear
regression lines. The value of ε which matches that of [47] is ε = −0.500977.

and recent work has gone into its measurement. Park [48] has developed an image processing method for measuring
the mean interparticle distance, and applied it to two large choices of solid volume fraction φ = 0.4 and 0.5. We have
taken these data points and converted them to values of the non-dimensionalised cell radius. We then calculated the
bulk material functions at these two values of φ, along with the percentage difference between the two, and the results
are shown in table IV. We choose ε = −23/42 as it is within the parameter range detailed in subsection IV D, and
the normalised N2 changes sign at this value between φ = 0.4 and 0.5 as shown in Fig. 8.

The value of cell radius b found using the mean interparticle distance underpredicts our numerical matching at both
discrete values of concentration, which results in an increase in effective viscosity. We also see that, at these high solid
volume fractions, the difference between b using the Krieger–Dougherty matching and the optical method in [48] is
relatively small, at most 11.39% for our discrete concentrations. However, it is clear that this small disparity between
the values causes a large change in the effective viscosity and bulk normal stress differences, the maximum difference
being in second normal stress difference at φ = 0.4. Here we see that N2 using our Krieger–Dougherty matching
defined in (49) is less than a sixth the magnitude of that we calculate based on mean interparticle distance, and also
changes sign. Its expected that the normalised N1 should have no difference between the two choices of b, as can be
seen directly by equation (73).

There is available experimental data from Dai et al. [15] giving the effective viscosity for a suspension of spherical
particles in Boger suspending fluid. The solid volume fraction varies from 0 to 0.4 at intervals of 0.5 or 0.1, so we
can directly compare the two predictions against the data at their most jammed concentration. The one data point
is given by their zero shear rate viscosity at φ = 0.4, which is estimated from the results at lowest shear rates tested.

TABLE IV: Values for b, bulk material functions and their normalised counterparts using the Krieger–Dougherty
matching and mean interparticle distance in the measure of cell volume. We take φm = 0.64, ε = −23/42 and

normalise by σxy. Note that we define % difference of two numbers x and y as % Diff(x, y) = |(x− y)/Max[x, y]|.

φ Method b ηeff/η0 N1/γ̇
2 Wi N1/γ̇ Wi σxy N2/γ̇

2 Wi N2/γ̇ Wi σxy

0.4 Krieger–Dougherty matching 1.602 4.803 5.261 1.095 -0.037 -0.008
Mean interparticle distance 1.420 8.097 8.868 1.095 0.255 0.032
% Difference 11.39 40.68 40.68 0 114.4 124.3

0.5 Krieger–Dougherty matching 1.387 11.38 12.46 1.095 0.519 0.046
Mean interparticle distance 1.313 17.02 18.64 1.095 1.338 0.079
% Difference 5.303 33.14 33.14 0 61.20 41.96
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FIG. 10: The first and second normal stress differences from our analytics and the experiments of Dai et al. [15] are
given in Figs. 10a and 10b respectively. N1 and N2 are scaled with γ̇2, and shown over a range of solid volume

fraction up to φ = 0.4. We consider the choice of parameter ε = −1/2 based on the ratio N2/N1 = 0 at φ = 0 found
experimentally [15]. Our Weissenberg number here is Wi = 0.116 based on the value of N1 in the absence of a solid

phase.

Based on a suspending viscosity of 2.16Pa s, calculated at γ̇ = 3.16 s−1, the relative viscosity of the suspension in
[15] at φ = 0.4 is 22.14. This figure is larger than both predictions, approximately by a factor of 5 and 2.5 for the
Krieger–Dougherty matching and mean interparticle distance methods respectively. Whilst the latter prediction is
closer to the experimental value, both predictions have a % difference larger than 60%. This is another example
demonstrating the limitations of the cell model approach in more packed suspensions. The disparity between the
experimental value [15] and both calculated values of ηeff/η0 is due to contributions from inertial effects and particle
contacts, which we have either neglected in the formulation or been unable to capture with a cell model approach. In
our analysis at φ = 0.4, either 63% or 78% of the effective viscosity, using the empirical b(φ) and mean interparticle
distance respectively, comes from processes which are not purely hydrodynamic.

The normalised second normal stress difference, given in the final column of table IV is directly comparable to
Fig. 8. The values for Krieger–Dougherty matching are as expected and change sign between our two discrete solid
volume fractions. However, what we see from the same calculation using the mean interparticle distances in [48]
are two positive values for N2/γ̇ Wi σxy, both greater in magnitude. This suggests that the normalised N2 using the
values for b from [48] does indeed change sign, but at a solid volume fraction lower than predicted by our matching
approach.

At the dilute end of the concentration, there is a direct comparison to be made with the work of Yang et al.
[47] who considered a lattice approach to numerical simulation using a Giesekus suspending fluid. We have given a
comparison already with this data in table III using the empirical b(φ) function at solid volume fraction φ = 0.0003.
The alternative option is to take b defined by the mean interparticle distance d, which given that the suspension is very
dilute, will be the distance between two particles. Since we consider the cubic lattice in [47] to have sides of length
12D0, with D0 diameter of the particle, our corresponding non-dimensional value of b will be 12. The percentage
difference between the methods after calculating (ηeff − η0) /η0,

(
N1 −N0

1

)
/γ̇2 and

(
N2 −N0

2

)
/γ̇2 were 0.3%, 0.3%

and 0.08% respectively.
These results are expected given that we are in the dilute region. The actual values of the extra contributions

to viscometric functions above are exceptionally similar between methods of choosing b, to such a degree that the
differences are O(10−5) at maximum. Nevertheless, we find that for both the effective viscosity and first normal stress
difference, the mean interparticle distance method has a greater disparity with the numerical data [47]. In the case
of N2 however, its prediction is closer to the numerical value than that of the Krieger–Dougherty matching process.

V. CONCLUSIONS

We have investigated in this paper the rheology of a suspension of solid spheres in a second-order fluid, using a
cell model to capture the effects of finite solid concentration. We provide the general result for all steady linear
background flows and evaluate the rheology in a simple shear flow.
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Using an empirical method to determine the appropriate cell volume at any volume fraction, we can match the
viscosity to the Krieger–Dougherty relation and deduce the behaviour of the other material functions. The macroscopic
behaviour of the suspension is thus characterised as a second-order fluid itself, with material parameters adjusted for
volume fraction of solids. We find that the first normal stress parameter scales exactly as the Krieger–Dougherty
expression: that is, the ratio of N1 to shear viscosity for the suspension is the same as for the background fluid.
The second normal stress difference, on the other hand, which is typically negative for the matrix fluid, can become
positive as the solid volume fraction is increased.

In the case of a dilute suspension, our predictions for viscometric functions in a simple shear flow coincide precisely
with the correct theoretical values [30]. We have shown in subsection III B that our predictions for effective viscosity
at semi-dilute solid volume fractions φ = 0.05 and 0.1 improve on the dilute theory [30] under comparison with the
numerical work of Yang and Shaqfeh [43]. At larger values of solid volume fraction, we have made comparisons
between our work and experiments [15], for two methods of deriving the cell volume. Both the Krieger–Dougherty
matching and mean interparticle distance methods fall short of the observed experimental value by more than 60%.
A better prediction is achieved by using the mean interparticle distance in finding the cell volume, however it is well
known that capturing this value experimentally is extremely difficult.
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APPENDIX A: DIFFERENTIAL EQUATIONS GOVERNING THE SCALAR FUNCTIONS FOR A
SECOND-ORDER FLUID

The differential equations governing the scalar velocity and pressure functions Vk(r) and Pk(r) as defined in equa-
tion (55) are:

rV1
′(r) + 7V1(r) +

V4
′(r)

r
= 0,

rV2
′(r) + 5V2(r) + 2V4(r) +

V5
′(r)

r
= 0,

rV3
′(r) + 3V3(r) + V5(r) = 0,

rV9
′(r) + 5V9(r) + 2V10(r) +

V11
′(r)

r
− V12

′(r)

r
= 0

(A1)

from the continuity equation,

P1
′′(r) +

10P1
′(r)

r
= Z1(r),

P2
′′(r) +

6P2
′(r)

r
+ 8P1(r) = Z2(r),

P3
′′(r) +

2P3
′(r)

r
+ 2P2(r) = Z3(r),

P6
′′(r) +

6P6
′(r)

r
= 0

(A2)

from the stress equation, and

V1
′′(r) +

12V1
′(r)

r
=
P1
′(r)

r
− z1(r),

V2
′′(r) +

8V2
′(r)

r
+ 8V1(r) =

P2
′(r)

r
− z2(r),

V3
′′(r) +

4V3
′(r)

r
+ 2V2(r) =

P3
′(r)

r
− z3(r),

V4
′′(r) +

8V4
′(r)

r
+ 8V1(r) = 4P1(r)− z4(r),

V5
′′(r) +

4V5
′(r)

r
+ 4V2(r) + 4V4(r) = 2P2(r)− z5(r),
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V9
′′(r) +

8V9
′(r)

r
=
P6
′(r)

r
− z9(r),

V11
′′(r) +

4V11
′(r)

r
+ 2V9(r) = P6(r)− z11(r),

V12
′′(r) +

4V12
′(r)

r
− 2V9(r) + 4V10(r) = −P6(r)− z12(r)

(A3)

from the momentum equation, in which

Z1(r) = −20 (79 + 120ε) c1c2
r7

− 28 [(59 + 78ε) c1c3 − 10 (1 + 2ε) c2c4]

r9
+

20 (6 + 5ε) c22
r12

+
72 (8 + 11ε) c2c3

r14

+
252 (2 + 3ε) c23

r16
,

Z2(r) = 12 (72 + 143ε) c21 +
4 (227 + 348ε) c1c2

r5
+

16 [(59 + 78ε) c1c3 − 10 (1 + 2ε) c2c4]

r7
+

16 (9 + 11ε) c22
r10

+
96 (8 + 11ε) c2c3

r12
+

432 (2 + 3ε) c23
r14

,

Z3(r) = (279 + 548ε) c21r
2 − 4 (23 + 36ε) c1c2

r3
− 8 [(59 + 78ε) c1c3 − 10 (1 + 2ε) c2c4]

5r5
− 84 (1 + 2ε) c1c4

+
4 (1 + 2ε) c22

r8
+

16 (8 + 11ε) c2c3
5r10

(A4)

and

z1(r) = −5 (68 + 109ε) c1c2
r7

− 14 [(52 + 71ε) c1c3 − 10 (1 + 2ε) c2c4]

r9
− 20 (2 + ε) c22

r12
− 72 (2 + 3ε) c2c3

r14

− 252 (2 + 3ε) c23
5r16

+
126 (2 + 3ε) c3c4

r11
,

z2(r) = 6 (13 + 37ε) c21 +
2 (73 + 112ε) c1c2

r5
+

2 [(148 + 201ε) c1c3 − 10 (3 + 5ε) c2c4]

r7
− 16 (2 + 3ε) c22

r10

− 24 (5 + 7ε) c2c3
r12

− 228 (2 + 3ε) c23
5r14

− 56 (2 + 3ε) c3c4
r9

,

z3(r) = 5 (3 + 8ε) c21r
2 − 10 (1 + ε) c1c2

r3
− 2 [(44 + 59ε) c1c3 − 10 (1 + ε) c2c4]

5r5
− 2 (3 + 8ε) c1c4 −

8 (1 + ε) c2c3
5r10

− 8 (2 + 3ε) c23
5r12

+
4 (2 + 3ε) c3c4

r7
,

z4(r) = 3 (11− 15ε) c21 +
4 (79 + 120ε) c1c2

r5
+

4 [(111 + 149ε) c1c3 − 20 (1 + 2ε) c2c4]

r7
+

8c22
r10

+
12 (3 + 5ε) c2c3

r12

+
72 (2 + 3ε) c23

5r14
− 56 (2 + 3ε) c3c4

r9
,

z5(r) = 12 (17 + 29ε) c21r
2 − 4 (23 + 36ε) c1c2

r3
− 4 [(162 + 215ε) c1c3 − 5 (3 + 5ε) c2c4]

5r5
+ 6 (11 + 20ε) c1c4

+
4 (1 + 2ε) c22

r8
+

24 (3 + 5ε) c2c3
5r10

+
48 (2 + 3ε) c23

5r12
+

16 (2 + 3ε) c3c4
r7

,

z9(r) = −20εc2
r7

, z11(r) = −21εc1 +
4εc2
r5

, z12(r) = 21εc1 −
4εc2
r5

(A5)

with constants ci given in equation (43).

APPENDIX B: EXPLICIT VALUES OF THE CONSTANTS FOUND IN SCALAR FUNCTIONS FOR A
SECOND-ORDER FLUID

The constants Ci found in the second order velocity and pressure solutions, as introduced in equation (55) have the
general form
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Ci = µi1,1 (b, ε) c21 + µi1,2 (b, ε) c1c2 + µi1,3 (b, ε) c1c3 + µi1,4 (b, ε) c1c4 + µi2,2 (b, ε) c22 + µi2,3 (b, ε) c2c3 + µi2,4 (b, ε) c2c4

+ µi3,3 (b, ε) c23 + µi3,4 (b, ε) c3c4 + µi4,4 (b, ε) c24 (B1)

with constants ci provided in equation (43). All values of µ can be described as

µia,b (b, ε) =
λia,b (b, ε)

κi (b)
(B2)

for the denominator functions

κ1 (b) = b
(
4 + 16b+ 40b2 + 80b3 + 140b4 + 224b5 + 336b6 + 399b7 + 336b8 + 224b9 + 140b10 + 80b11 + 40b12

+16b13 + 4b14
)
,

κ2 (b) = κ7 (b) = κ8 (b) = b2κ1 (b) ,

κ3 (b) =
κ4 (b)

b2
= b2

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

)
κ1 (b) ,

κ5 (b) = κ6 (b) = κ9 (b) = b5
(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

)
,

κ10 (b) = κ11 (b) =
κ1 (b)

b
,

κ12 (b) = κ13 (b) = κ5 (b)

(B3)

and all non-zero values of λ:

λ1
1,2 (b, ε) = −121b7

2

(
8 + 32b+ 80b2 + 125b3 + 140b4 + 125b5 + 80b6 + 32b7 + 8b8

)
(1 + ε) ,

λ1
1,3 (b, ε) = −693b5

10

(
4 + 16b+ 40b2 + 80b3 + 140b4 + 175b5 + 140b6 + 80b7 + 40b8 + 16b9 + 4b10

)
(1 + ε) ,

λ1
2,2 (b, ε) = 198b2

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 56b5 + 84b6 + 84b7 + 56b8 + 35b9 + 20b10 + 10b11 + 4b12 + b13

)
(1

+ε) ,

λ1
2,3 (b, ε) = −1188

5

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 56b5 + 84b6 + 105b7 + 105b8 + 84b9 + 56b10 + 35b11 + 20b12

+10b13 + 4b14 + b15
)

(1 + ε) ,

λ2
1,2 (b, ε) = −22b3

3

(
1 + 4b+ 10b2 + 20b3 + 28b4 + 28b5 + 20b6 + 10b7 + 4b8 + b9

)
(1 + ε) ,

λ2
1,3 (b, ε) = −14b3

5

(
5 + 20b+ 36b2 + 44b3 + 44b4 + 36b5 + 20b6 + 5b7

)
(1 + ε) ,

λ2
2,2 (b, ε) = 2b2

(
7 + 12b+ 15b2 + 16b3 + 15b4 + 12b5 + 7b6

)
(1 + ε) ,

λ2
2,3 (b, ε) =

4

5

(
7 + 28b+ 43b2 + 52b3 + 55b4 + 52b5 + 43b6 + 28b7 + 7b8

)
(1 + ε) ,

λ3
1,1 (b, ε) = 35b8

(
3 + 12b+ 20b2 + 20b3 + 12b4 + 3b5

) (
4 + 16b+ 40b2 + 80b3 + 140b4 + 224b5 + 336b6 + 339b7

+336b8 + 224b9 + 140b10 + 80b11 + 40b12 + 16b13 + 4b14
)

(1 + ε) ,

λ3
1,2 (b, ε) = −b7

(
2544 + 16212b+ 58464b2 + 153800b3 + 323200b4 + 565996b5 + 853668b6 + 1113396b7 + 1223215b8

+1113396b9 + 853668b10 + 565996b11 + 323200b12 + 153800b13 + 58464b14 + 16212b15 + 2544b16
)

(1

+ε) ,

λ3
1,3 (b, ε) = −84b5

5

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

) (
8 + 32b+ 80b2 + 160b3 + 280b4 + 385b5 + 420b6

+385b7 + 280b8 + 160b9 + 80b10 + 32b11 + 8b12
)

(1 + ε) ,

λ3
2,2 (b, ε) = −16b2

(
32 + 256b+ 1152b2 + 3665b3 + 9160b4 + 19250b5 + 35640b6 + 59650b7 + 90440b8 + 122258b9

+143597b10 + 143597b11 + 122258b12 + 90440b13 + 59650b14 + 35640b15 + 19250b16 + 9160b17

+3665b18 + 1152b19 + 256b20 + 32b21
)

(1 + ε) ,
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λ3
2,3 (b, ε) = −8

5

(
148 + 1184b+ 5328b2 + 17060b3 + 43240b4 + 92820b5 + 176400b6 + 303555b7 + 476160b8 + 677150b9

+864492b10 + 980713b11 + 980713b12 + 864492b13 + 677150b14 + 476160b15 + 303555b16

+176400b17 + 92820b18 + 43240b19 + 17060b20 + 5328b21 + 1184b22 + 148b23
)

(1 + ε) ,

λ4
1,1 (b, ε) = −b5

(
8 + 32b+ 80b2 + 125b3 + 140b4 + 125b5 + 80b6 + 32b7 + 8b8

) (
4 + 16b+ 40b2 + 80b3 + 140b4 + 224b5

+336b6 + 399b7 + 336b8 + 224b9 + 140b10 + 80b11 + 40b12 + 16b13 + 4b14
)

(1 + ε) ,

λ4
1,2 (b, ε) = −2b5

63

(
556 + 4448b+ 10080b2 + 2387b3 − 38756b4 − 114114b5 − 170992b6 − 127914b7 − 26540b8

−26540b9 − 127914b10 − 170992b11 − 114114b12 − 38756b13 + 2387b14 + 10080b15 + 4448b16

+556b17
)

(1 + ε) ,

λ4
1,3 (b, ε) = 2b5

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

) (
7 + 28b+ 52b2 + 68b3 + 76b4 + 76b5 + 68b6 + 52b7

+28b8 + 7b9
)

(1 + ε) ,

λ4
2,2 (b, ε) =

2b2

7

(
32 + 256b+ 812b2 + 1648b3 + 2324b4 + 3045b5 + 5516b6 + 11049b7 + 17584b8 + 20573b9 + 17584b10

+11049b11 + 5516b12 + 3045b13 + 2324b14 + 1648b15 + 812b16 + 256b17 + 32b18
)

(1 + ε) ,

λ4
2,3 (b, ε) =

4

35

(
72 + 576b+ 2212b2 + 5600b3 + 10740b4 + 17605b5 + 29120b6 + 50307b7 + 80176b8 + 107819b9

+119196b10 + 107819b11 + 80176b12 + 50307b13 + 29120b14 + 17605b15 + 10740b16 + 5600b17

+2212b18 + 576b19 + 72b20
)

(1 + ε) ,

λ5
1,1 (b, ε) = 3b8

(
5 + 20b+ 36b2 + 44b3 + 44b4 + 36b5 + 20b6 + 5b7

)
(1 + ε) ,

λ5
1,2 (b, ε) = −69b7

7

(
8 + 17b+ 20b2 + 17b3 + 8b4

)
(1 + ε) ,

λ5
1,3 (b, ε) = −3b5

5

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

)
(1 + ε) ,

λ5
2,2 (b, ε) = −16b2

7

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 35b5 + 20b6 + 10b7 + 4b8 + b9

)
(1 + ε) ,

λ5
2,3 (b, ε) = −24

35

(
3 + 12b+ 30b2 + 60b3 + 105b4 + 140b5 + 140b6 + 105b7 + 60b8 + 30b9 + 12b10 + 3b11

)
(1 + ε) ,

λ6
1,1 (b, ε) =

b5

2

(
4 + 16b+ 40b2 + 80b3 + 140b4 + 175b5 + 140b6 + 80b7 + 40b8 + 16b9 + 4b10

)
(1 + ε) ,

λ6
1,2 (b, ε) =

46b5

7

(
3 + 12b+ 20b2 + 20b3 + 12b4 + 3b5

)
(1 + ε) ,

λ6
2,2 (b, ε) = −8b2

21

(
5 + 20b+ 29b2 + 32b3 + 29b4 + 20b5 + 5b6

)
(1 + ε) ,

λ6
2,3 (b, ε) = −4

7

(
3 + 12b+ 23b2 + 32b3 + 35b4 + 32b5 + 23b6 + 12b7 + 3b8

)
(1 + ε) ,

λ7
1,2 (b, ε) = −77b7

3

(
4 + 16b+ 40b2 + 65b3 + 80b4 + 85b5 + 80b6 + 65b7 + 40b8 + 16b9 + 4b10

)
(1 + ε) ,

λ7
1,3 (b, ε) = −49b5

5

(
8 + 32b+ 80b2 + 160b3 + 280b4 + 385b5 + 420b6 + 385b7 + 280b8 + 160b9 + 80b10 + 32b11 + 8b12

)
× (1 + ε) ,

λ7
2,2 (b, ε) = −28b2

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 56b5 + 84b6 + 120b7 + 120b8 + 84b9 + 56b10 + 35b11 + 20b12 + 10b13

+4b14 + b15
)

(1 + ε) ,

λ7
2,3 (b, ε) = −56

5

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 56b5 + 84b6 + 120b7 + 165b8 + 165b9 + 120b10 + 84b11 + 56b12

+35b13 + 20b14 + 10b15 + 4b16 + b17
)

(1 + ε) ,

λ8
1,2 (b, ε) = −55b3

9

(
5 + 20b+ 50b2 + 100b3 + 148b4 + 172b5 + 172b6 + 148b7 + 100b8 + 50b9 + 20b10 + 5b11

)
(1 + ε) ,

λ8
1,3 (b, ε) = −7b3

(
7 + 28b+ 52b2 + 68b3 + 76b4 + 76b5 + 68b6 + 52b7 + 28b8 + 7b9

)
(1 + ε) ,
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λ8
2,2 (b, ε) = 5b2

(
9 + 16b+ 21b2 + 24b3 + 25b4 + 24b5 + 21b6 + 16b7 + 9b8

)
(1 + ε) ,

λ8
2,3 (b, ε) = 6

(
3 + 12b+ 19b2 + 24b3 + 27b4 + 28b5 + 27b6 + 24b7 + 19b8 + 12b9 + 3b10

)
(1 + ε) ,

λ9
1,1 (b, ε) = −3b5

2

(
4 + 16b+ 40b2 + 80b3 + 140b4 + 175b5 + 140b6 + 80b7 + 40b8 + 16b9 + 4b10

)
(1 + ε) ,

λ9
1,2 (b, ε) = −138b5

7

(
3 + 12b+ 20b2 + 20b3 + 12b4 + 3b5

)
(1 + ε) ,

λ9
2,2 (b, ε) =

8b2

7

(
5 + 20b+ 29b2 + 32b3 + 29b4 + 20b5 + 5b6

)
(1 + ε) ,

λ9
2,3 (b, ε) =

12

7

(
3 + 12b+ 23b2 + 32b3 + 35b4 + 32b5 + 23b6 + 12b7 + 3b8

)
(1 + ε) ,

λ10
1,2 (b, ε) = 231b4

(
4 + 16b+ 40b2 + 65b3 + 80b4 + 85b5 + 80b6 + 65b7 + 40b8 + 16b9 + 4b10

)
(1 + ε) ,

λ10
1,3 (b, ε) =

441b2

5

(
8 + 32b+ 80b2 + 160b3 + 280b4 + 385b5 + 420b6 + 385b7 + 280b8 + 160b9 + 80b10 + 32b11 + 8b12

)
× (1 + ε) ,

λ10
2,2 (b, ε) =

252

b

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 56b5 + 84b6 + 120b7 + 120b8 + 84b9 + 56b10 + 35b11 + 20b12 + 10b13

+4b14 + b15
)

(1 + ε) ,

λ10
2,3 (b, ε) =

504

5b3
(
1 + 4b+ 10b2 + 20b3 + 35b4 + 56b5 + 84b6 + 120b7 + 165b8 + 165b9 + 120b10 + 84b11 + 56b12 + 35b13

+20b14 + 10b15 + 4b16 + b17
)

(1 + ε) ,

λ10
3,4 (b, ε) = 126

(
4 + 16b+ 40b2 + 80b3 + 140b4 + 224b5 + 336b6 + 399b7 + 336b8 + 224b9 + 140b10 + 80b11 + 40b12

+16b13 + 4b14
)

(2 + 3ε) ,

λ11
1,1 (b, ε) =

3

4

(
4 + 16b+ 40b2 + 80b3 + 140b4 + 224b5 + 336b6 + 339b7 + 336b8 + 224b9 + 140b10 + 80b11 + 40b12

+16b13 + 4b14
)

(11− 15ε) ,

λ11
1,2 (b, ε) =

605

6

(
1 + 4b+ 10b2 + 20b3 + 28b4 + 28b5 + 20b6 + 10b7 + 4b8 + b9

)
(1 + ε) ,

λ11
1,3 (b, ε) =

77

2

(
5 + 20b+ 36b2 + 44b3 + 44b4 + 36b5 + 20b6 + 5b7

)
(1 + ε) ,

λ11
2,2 (b, ε) = −55

2b

(
7 + 12b+ 15b2 + 16b3 + 15b4 + 12b5 + 7b6

)
(1 + ε) ,

λ11
2,3 (b, ε) = −11

b3
(
7 + 28b+ 43b2 + 52b3 + 55b4 + 52b5 + 43b6 + 28b7 + 7b8

)
(1 + ε) ,

λ12
1,1 (b, ε) = −30b8

(
5 + 20b+ 36b2 + 44b3 + 44b4 + 36b5 + 20b6 + 5b7

)
(1 + ε) ,

λ12
1,2 (b, ε) =

690b7

7

(
8 + 17b+ 20b2 + 17b3 + 8b4

)
(1 + ε) ,

λ12
1,3 (b, ε) = 2b5

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

)
(172 + 225ε) ,

λ12
2,2 (b, ε) =

160b2

7

(
1 + 4b+ 10b2 + 20b3 + 35b4 + 35b5 + 20b6 + 10b7 + 4b8 + b9

)
(1 + ε) ,

λ12
2,3 (b, ε) =

48

7

(
3 + 12b+ 30b2 + 60b3 + 105b4 + 140b5 + 140b6 + 105b7 + 60b8 + 30b9 + 12b10 + 3b11

)
(1 + ε) ,

λ12
2,4 (b, ε) = −20b5

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

)
(3 + 5ε) ,

λ13
1,1 (b, ε) =

21b5

2

(
8 + 32b+ 80b2 + 125b3 + 140b4 + 125b5 + 80b6 + 32b7 + 8b8

)
(1 + ε) ,

λ13
1,2 (b, ε) = 138b5

(
1 + 4b+ 4b2 + b3

)
(1 + ε) ,

λ13
1,4 (b, ε) = −3b5

(
4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6

)
(11 + 20ε) ,

λ13
2,2 (b, ε) = −24b2

(
1 + 4b+ 5b2 + 4b3 + b4

)
(1 + ε) ,

λ13
2,3 (b, ε) = −12

5

(
9 + 36b+ 65b2 + 80b3 + 65b4 + 36b5 + 9b6

)
(1 + ε) .

(B4)
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APPENDIX C: BULK STRESS COEFFICIENTS IN A SECOND-ORDER FLUID MATRIX

The bulk stress coefficients Σ0 and Σ1 found in equation (57) are

Σ0 = 4ε

[
1 +

10b3
(
1 + b+ b2 + b3 + b4 + b5 + b6

)
φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

]
,

Σ1 = 4 (1 + ε) +
Σφ φ

7(b− 1)
4
(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

3

(C1)

for the coefficient of solid volume fraction

Σφ = 60b3
(
−32− 256b− 1152b2 − 3140b3 − 4960b4 − 3336b5 + 4802b6 + 18964b7 + 34140b8 + 45760b9 + 53768b10

+59004b11 + 59508b12 + 52185b13 + 37320b14 + 20800b15 + 8900b16 + 2880b17 + 640b18 + 80b19
)

+ 120b3
(
−8− 64b− 288b2 − 660b3 − 240b4 + 2896b5 + 10353b6 + 21436b7 + 32580b8 + 40280b9 + 43712b10

+43236b11 + 38812b12 + 30660b13 + 20320b14 + 10800b15 + 4500b16 + 1440b17 + 320b18 + 40b19
)
ε.

(C2)

APPENDIX D: EXTRA BULK STRESS CONTRIBUTIONS FROM THE MEAN POLYMER STRESS
AND STRESSLET TERMS

The bulk extra stress contributions come from both the mean polymer stress and the stresslet as given in equa-
tions (24) and (21) respectively. The mean polymer stress terms are

4ε ̂〈E′ikΩ′kj〉 = −
60b3

(
1 + b+ b2 + b3 + b4 + b5 + b6

)
ε φ

7(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)
̂E∞ikE∞kj ,

4 (1 + ε) ̂〈E′ikE′kj〉 =
20b3

(
1 + b+ b2 + b3 + b4 + b5 + b6

)
(1 + ε)φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)
̂E∞ikE∞kj (D1)

which introduces the relationship ̂〈E′ ·Ω′〉 = −3 ̂〈E′ ·E′〉/7 using the ensemble averaging process and cell model as
detailed in section II. The stresslet term is

3φ

4π
Ŝ1
ij =

40b3
(
1 + b+ b2 + b3 + b4 + b5 + b6

)
ε φ

(b− 1)
3

(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)
̂E∞ikΩ∞kj

+
Sφ φ

7(b− 1)
4
(4 + 16b+ 40b2 + 55b3 + 40b4 + 16b5 + 4b6)

3
̂E∞ikE∞kj (D2)

for the coefficient

Sφ = 20b3
(
16 + 128b+ 576b2 + 2620b3 + 10880b4 + 30648b5 + 61789b6 + 97436b7 + 127284b8 + 145288b9 + 153296b10

+152148b11 + 137980b12 + 109172b13 + 71304b14 + 36640b15 + 14660b16 + 4608b17 + 1024b18 + 128b19
)

+ 40b3
(
8 + 64b+ 288b2 + 1460b3 + 6640b4 + 20304b5 + 44597b6 + 75892b7 + 104844b8 + 123128b9 + 128848b10

+122604b11 + 104852b12 + 78442b13 + 49344b14 + 25040b15 + 10060b16 + 3168b17 + 704b18 + 88b19
)
ε.

(D3)
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