Handout 12 Gaussian elimination

Notation

We can write a matrix-vector system as an **augmented matrix** with **row sums**:

$ \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 1 & -1 & 2 \end{array}\right) $	$\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix}$		$\left(1 \right)$	1	$ \begin{array}{c c} 1 & 6 \\ -1 & 1 \\ 2 & 5 \end{array} $	9
2 1 -1	$\begin{pmatrix} y \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}$	is equivalent to	2	1	-1 1	3
$\begin{pmatrix} 1 & -1 & 2 \end{pmatrix}$	$\left(z \right) \left(5 \right)$		$\begin{pmatrix} 1 \end{pmatrix}$	-1	2 5 /	7

Permitted actions

There are only two actions you can do in standard Gaussian elimination: they are:

- swap two rows;
- add (or subtract) a multiple of one row to a row below it.

We apply them to every element in a row including the "row-sum" number at the end.

Generalised row echelon form

- The first (furthest left) nonzero element of each row is to the right of the first nonzero element of the row above it.
- Any all-zero rows are at the bottom.

Standard Gaussian elimination

We write our system of equations as an augmented matrix (with row sums). Then we choose our first element: a_{11} , so i = 1 and j = 1 and repeat this process:

- 1. We have chosen element a_{ij} , i.e. element j of row i. We ignore all the rows above row i and all the columns to the left of column j from now on.
 - If $a_{ij} = 0$ but there is a non-zero element somewhere below a_{ij} in column j (say, row 4 for instance) then swap rows: $r_i \leftrightarrow r_4$.
 - If the whole of column j from row i down to the bottom is zero then choose $a_{i,j+1}$ as the next element and move on to the next stage.
 - If $a_{ij} \neq 0$ (maybe after the row swap above) then:
 - Subtract a multiple of row i from row i + 1 to create a zero in place j of row i + 1;
 - Subtract a multiple of row i from row i + 2 to create a zero in place j of row i + 2;
 - Repeat until column j is all zeros below row i.
 - Now choose element $a_{i+1,j+1}$ as the next element and move on to the next stage.
- 2. Repeat step 1 until we reach generalised row echelon form.

Determinants

Adding rows does not change the determinant of a matrix; swapping a pair of rows multiplies it by (-1). So:

- if our echelon form is an **upper triangular matrix** \underline{U} then its determinant is the product of its diagonal elements and our original determinant was det $(\underline{A}) = \pm \det(\underline{U})$.
- if our echelon form has a zero on the diagonal, then the original matrix had zero determinant.