Handout 12 Gaussian elimination

Notation

We can write a matrix-vector system as an augmented matrix with row sums:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & -1 \\
1 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
6 \\
1 \\
5
\end{array}\right) \quad \text { is equivalent to } \quad\left(\begin{array}{rrr|r|}
1 & 1 & 1 & 6 \\
2 & 1 & -1 & 1 \\
1 & -1 & 2 & 5
\end{array}\right) \begin{aligned}
& 9 \\
& 3 \\
& 7
\end{aligned}
$$

Permitted actions

There are only two actions you can do in standard Gaussian elimination: they are:

- swap two rows;
- add (or subtract) a multiple of one row to a row below it.

We apply them to every element in a row including the "row-sum" number at the end.

Generalised row echelon form

- The first (furthest left) nonzero element of each row is to the right of the first nonzero element of the row above it.
- Any all-zero rows are at the bottom.

Standard Gaussian elimination

We write our system of equations as an augmented matrix (with row sums). Then we choose our first element: a_{11}, so $i=1$ and $j=1$ and repeat this process:

1. We have chosen element $a_{i j}$, i.e. element j of row i. We ignore all the rows above row i and all the columns to the left of column j from now on.

- If $a_{i j}=0$ but there is a non-zero element somewhere below $a_{i j}$ in column j (say, row 4 for instance) then swap rows: $r_{i} \leftrightarrow r_{4}$.
- If the whole of column j from row i down to the bottom is zero then choose $a_{i, j+1}$ as the next element and move on to the next stage.
- If $a_{i j} \neq 0$ (maybe after the row swap above) then:
- Subtract a multiple of row i from row $i+1$ to create a zero in place j of row $i+1$;
- Subtract a multiple of row i from row $i+2$ to create a zero in place j of row $i+2$;
- Repeat until column j is all zeros below row i.
- Now choose element $a_{i+1, j+1}$ as the next element and move on to the next stage.

2. Repeat step 1 until we reach generalised row echelon form.

Determinants

Adding rows does not change the determinant of a matrix; swapping a pair of rows multiplies it by (-1). So:

- if our echelon form is an upper triangular matrix $\underline{\underline{U}}$ then its determinant is the product of its diagonal elements and our original determinant was $\operatorname{det}(\underline{\underline{A}})= \pm \operatorname{det}(\underline{\underline{U}})$.
- if our echelon form has a zero on the diagonal, then the original matrix had zero determinant.

