
2 Introduction to perturbation methods

2.1 What are perturbation methods?

Perturbation methods are methods which rely on there being a dimensionless
parameter in the problem that is relatively small: ε � 1. The most common
example you may have seen before is that of high-Reynolds number fluid me-
chanics, in which a viscous boundary layer is found close to a solid surface.
Note that in this case the standard physical parameter Re is large: our small
parameter is ε = Re−1.

2.2 A real research example

This comes from my own research2. I will not present the equations or the
working here: but the problem in question is the stability of a polymer extru-
sion flow. The parameter varied is wavelength: and for both very long waves
(wavenumber k � 1) and very short waves (k−1 � 1) the system is much
simplified. The long-wave case, in particular, gives very good insight into the
physics of the problem.

If we look at the plot of growth rate of the instability against wavenumber
(inverse wavelength):

we can see good agreement between the perturbation method solutions (the
dotted lines) and the numerical calculations (solid curve): this kind of agree-
ment gives confidence in the numerics in the middle region where perturbation
methods can’t help.

3 Regular perturbation expansions

We’re all familiar with the principle of the Taylor expansion: for an analytic
function f(x), we can expand close to a point x = a as:

f(a+ ε) = f(a) + εf ′(a) + 1
2ε

2f ′′(a) + · · ·

For general functions f(x) there are many ways this expansion can fail, including
lack of convergence of the series, or simply an inability of the series to capture
the behaviour of the function; but the paradigm of the expansion in which a

2H J Wilson & J M Rallison. J. Non-Newtonian Fluid Mech., 72, 237–251, (1997)
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small change to x makes a small change to f(x) is a powerful one, and the basis
of regular perturbation expansions.

The basic principle and practice of the regular perturbation expansion is:

1. Set ε = 0 and solve the resulting system (solution f0 for definiteness)

2. Perturb the system by allowing ε to be nonzero (but small in some sense).

3. Formulate the solution to the new, perturbed system as a series

f0 + εf1 + ε2f2 + · · ·

4. Expand the governing equations as a series in ε, collecting terms with
equal powers of ε; solve them in turn as far as the solution is required.

3.1 Example differential equation

Suppose we are trying to solve the following differential equation in x ≥ 0:

df(x)

dx
+ f(x)− εf2(x) = 0, f(0) = 2. (1)

Ignore the fact that we could have solved this equation directly! We’ll use it as
a model for more complex examples.

We look first at ε = 0:

df(x)

dx
+ f(x) = 0, f(0) = 2, =⇒ f(x) = 2e−x.

Now we follow our system and set

f = 2e−x + εf1(x) + ε2f2(x) + ε3f3(x) + · · ·

where in order to satisfy the initial condition f(0) = 2, we will have f1(0) =
f2(0) = f3(0) = · · · = 0. Substituting into (1) gives

−2e−x + εf ′
1(x) + ε2f ′

2(x) + ε3f ′
3(x)

+2e−x + εf1(x) + ε2f2(x) + ε3f3(x)
− 4εe−2x − 4ε2e−xf1(x) − 4ε3e−xf2(x)

− ε3f2
1 (x) = O(ε4)

and we can collect powers of ε:

ε0 : −2e−x + 2e−x = 0
ε1 : f ′

1(x) + f1(x)− 4e−2x = 0
ε2 : f ′

2(x) + f2(x)− 4e−xf1(x) = 0
ε3 : f ′

3(x) + f3(x)− f2
1 (x)− 4e−xf2(x) = 0

The order ε0 (or 1) equation is satisfied automatically. Now we simply solve at
each order, applying the boundary conditions as we go along.
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Order ε terms.

f ′
1(x) + f1(x) = 4e−2x =⇒ f1(x) = −4e−2x + c1e

−x

and the boundary condition f1(0) = 0 gives c1 = 4:

f1(x) = 4(e−x − e−2x).

Order ε2 terms.

The equation becomes

f ′
2(x) + f2(x) = 4e−xf1(x) =⇒ f ′

2(x) + f2(x) = 16e−x(e−x − e−2x)

with solution
f2(x) = 8(−2e−2x + e−3x) + c2e

−x

and the boundary condition f2(0) = 0 gives c2 = 8:

f2(x) = 8(e−x − 2e−2x + e−3x).

Order ε3 terms.

The equation is f ′
3(x) + f3(x)− f2

1 (x)− 4e−xf2(x) = 0 which becomes

f ′
3(x) + f3(x) = 48(e−2x − 2e−3x + e−4x).

The solution to this equation is

f3(x) = 16(−3e−2x + 3e−3x − e−4x) + c3e
−x.

Applying the boundary condition f3(0) = 0 gives c3 = 16 so

f3(x) = 16(e−x − 3e−2x + 3e−3x − e−4x).

The solution we have found is:

f(x) = 2e−x + 4ε(e−x − e−2x) + 8ε2(e−x − 2e−2x + e−3x)

+ 16ε3(e−x − 3e−2x + 3e−3x − e−4x) + · · ·

This is an example of a case where carrying out a perturbation expansion gives
us an insight into the full solution. Notice that, for the terms we have calculated,

fn(x) = 2n+1e−x(1− e−x)n,

suggesting a guessed full solution

f(x) =

∞∑
n=0

εn2n+1e−x(1− e−x)n = 2e−x
∞∑

n=0

[2ε(1− e−x)]n =
2e−x

1− 2ε(1− e−x)
.

Having guessed a solution, of course, verifying it is straightforward: this is
indeed the correct solution to the ODE of equation (1).
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3.2 Example eigenvalue problem

We will find the first-order perturbations of the eigenvalues of the differential
equation

y′′ + λy + εy2 = 0

in 0 < x < π, with boundary conditions y(0) = y(π) = 0.
[Exercise: repeat this with the final term as εy (easy) or εy3 (harder).]

First we look at the case ε = 0:

y′′ + λy = 0

This has possible solutions:

λ < 0 y = A cosh [x
√
−λ] +B sinh [x

√
−λ]

λ = 0 y = Ax+B

λ > 0 y = A cos [x
√
λ] +B sin [x

√
λ]

The first two solutions can’t satisfy both boundary conditions. The third must
have A = 0 to satisfy the condition y(0) = 0, and the second boundary condition
leaves us with

B sin [π
√
λ] = 0 =⇒ λ = m2, m = 1, 2, . . .

Now we return to the full problem, posing regular expansions in both y and λ:

y = sinmx+ εy1 + · · ·

λ = m2 + ελ1 + · · ·

Substituting in, we obtain for the differential equation:

−m2 sinmx + m2 sinmx = 0
εy′′1 + εm2y1 + ελ1 sinmx + ε sin2 mx = 0

As we would expect, the order 1 equation is already satisfied, along with the
boundary conditions.

Order ε

The ODE at order ε becomes

y′′1 +m2y1 = −λ1 sinmx− sin2 mx = −λ1 sinmx+
1

2
cos 2mx− 1

2
.

We expect a solution of the form

y1 = A sinmx+B cosmx+ Cx cosmx+D cos 2mx+ E

and substituting this form back in to the left hand side gives us

−2Cm sinmx− 3m2D cos 2mx+ Em2 = −λ1 sinmx+
1

2
cos 2mx− 1

2
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which fixes C = λ1/2m, D = −1/6m2, E = −1/2m2. The solution is

y1 = A sinmx+B cosmx+
λ1

2m
x cosmx− 1

2m2
− 1

6m2
cos 2mx.

Now we apply the boundary conditions to determine the eigenvalue: y(0) = 0
gives

0 = B − 1

2m2
− 1

6m2
B =

2

3m2

and then the condition y(π) = 0 becomes:

0 =
2

3m2
(−1)m +

λ1

2m
π(−1)m − 1

2m2
− 1

6m2

which simplifies to determine λ1:

λ1 =
4

3mπ
[(−1)m − 1] =

−8

3mπ

{
0 m even
1 m odd

Thus the eigenvalues become

λ = 1− 8ε

3π
, 4, 9− 8ε

9π
, 16, 25− 8ε

15π
, · · ·

3.3 Warning signs

As I mentioned earlier, the Taylor series model of function behaviour does not
always work. The same is true for model systems: and a regular perturbation
expansion will not always capture the behaviour of your system. Here are a few
of the possible warning signs that things might be going wrong:

One of the powers of ε produces an insoluble equation
By this I don’t mean a differential equation with no analytic solution: that
is just bad luck. Rather I mean an equation of the form x1 + 1 − x1 = 0
which cannot be satisfied by any value of x1.

The equation at ε = 0 doesn’t give the right number of solutions
An nth order ODE should have n solutions. If the equation produced
by setting ε = 0 has less solutions then this method will not give all the
possible solutions to the full equation. This happens when the coefficient
of the highest derivative is zero when ε = 0. Equally, for a PDE, if the
solution you find at ε = 0 cannot satisfy all your boundary conditions,
then a regular expansion will not be enough.

The coefficients of ε can grow without bound
In the case of an expansion f(x) = f0(x)+εf1(x)+ε2f2(x)+· · · , the series
may not be valid for some values of x if some or all of the fi(x) become
very large. Say, for example, that f2(x) → ∞ while f1(x) remains finite.
Then εf1(x) is no longer strictly larger than ε2f2(x) and who knows what
even larger terms we may have neglected. . .
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