2 Introduction to perturbation methods

2.1 What are perturbation methods?

Perturbation methods are methods which rely on there being a dimensionless parameter in the problem that is relatively small: $\varepsilon \ll 1$. The most common example you may have seen before is that of high-Reynolds number fluid mechanics, in which a viscous boundary layer is found close to a solid surface. Note that in this case the standard physical parameter Re is large: our small parameter is $\varepsilon=R e^{-1}$.

2.2 A real research example

This comes from my own research ${ }^{2}$. I will not present the equations or the working here: but the problem in question is the stability of a polymer extrusion flow. The parameter varied is wavelength: and for both very long waves (wavenumber $k \ll 1$) and very short waves ($k^{-1} \ll 1$) the system is much simplified. The long-wave case, in particular, gives very good insight into the physics of the problem.
If we look at the plot of growth rate of the instability against wavenumber (inverse wavelength):

we can see good agreement between the perturbation method solutions (the dotted lines) and the numerical calculations (solid curve): this kind of agreement gives confidence in the numerics in the middle region where perturbation methods can't help.

3 Regular perturbation expansions

We're all familiar with the principle of the Taylor expansion: for an analytic function $f(x)$, we can expand close to a point $x=a$ as:

$$
f(a+\varepsilon)=f(a)+\varepsilon f^{\prime}(a)+\frac{1}{2} \varepsilon^{2} f^{\prime \prime}(a)+\cdots
$$

For general functions $f(x)$ there are many ways this expansion can fail, including lack of convergence of the series, or simply an inability of the series to capture the behaviour of the function; but the paradigm of the expansion in which a

[^0]small change to x makes a small change to $f(x)$ is a powerful one, and the basis of regular perturbation expansions.
The basic principle and practice of the regular perturbation expansion is:

1. Set $\varepsilon=0$ and solve the resulting system (solution f_{0} for definiteness)
2. Perturb the system by allowing ε to be nonzero (but small in some sense).
3. Formulate the solution to the new, perturbed system as a series

$$
f_{0}+\varepsilon f_{1}+\varepsilon^{2} f_{2}+\cdots
$$

4. Expand the governing equations as a series in ε, collecting terms with equal powers of ε; solve them in turn as far as the solution is required.

3.1 Example differential equation

Suppose we are trying to solve the following differential equation in $x \geq 0$:

$$
\begin{equation*}
\frac{\mathrm{d} f(x)}{\mathrm{d} x}+f(x)-\varepsilon f^{2}(x)=0, \quad f(0)=2 \tag{1}
\end{equation*}
$$

Ignore the fact that we could have solved this equation directly! We'll use it as a model for more complex examples.
We look first at $\varepsilon=0$:

$$
\frac{\mathrm{d} f(x)}{\mathrm{d} x}+f(x)=0, \quad f(0)=2, \quad \Longrightarrow \quad f(x)=2 e^{-x}
$$

Now we follow our system and set

$$
f=2 e^{-x}+\varepsilon f_{1}(x)+\varepsilon^{2} f_{2}(x)+\varepsilon^{3} f_{3}(x)+\cdots
$$

where in order to satisfy the initial condition $f(0)=2$, we will have $f_{1}(0)=$ $f_{2}(0)=f_{3}(0)=\cdots=0$. Substituting into (1) gives

$$
\begin{array}{rlllll}
-2 e^{-x} & +\varepsilon f_{1}^{\prime}(x) & +\varepsilon^{2} f_{2}^{\prime}(x) & +\varepsilon^{3} f_{3}^{\prime}(x) & & \\
+2 e^{-x} & +\varepsilon f_{1}(x) & +\varepsilon^{2} f_{2}(x) & + & \varepsilon^{3} f_{3}(x) & \\
& -4 \varepsilon e^{-2 x} & -4 \varepsilon^{2} e^{-x} f_{1}(x) & -4 \varepsilon^{3} e^{-x} f_{2}(x) \\
& & & & \varepsilon^{3} f_{1}^{2}(x) & \\
& & & & & \\
& & \left.\varepsilon^{4}\right)
\end{array}
$$

and we can collect powers of ε :

$$
\begin{array}{rcrl}
\varepsilon^{0} & : & -2 e^{-x}+2 e^{-x} & =0 \\
\varepsilon^{1} & : & f_{1}^{\prime}(x)+f_{1}(x)-4 e^{-2 x} & =0 \\
\varepsilon^{2} & : & f_{2}^{\prime}(x)+f_{2}(x)-4 e^{-x} f_{1}(x) & =0 \\
\varepsilon^{3} & : & f_{3}^{\prime}(x)+f_{3}(x)-f_{1}^{2}(x)-4 e^{-x} f_{2}(x) & =0
\end{array}
$$

The order ε^{0} (or 1) equation is satisfied automatically. Now we simply solve at each order, applying the boundary conditions as we go along.

Order ε terms.

$$
f_{1}^{\prime}(x)+f_{1}(x)=4 e^{-2 x} \quad \Longrightarrow \quad f_{1}(x)=-4 e^{-2 x}+c_{1} e^{-x}
$$

and the boundary condition $f_{1}(0)=0$ gives $c_{1}=4$:

$$
f_{1}(x)=4\left(e^{-x}-e^{-2 x}\right)
$$

Order ε^{2} terms.

The equation becomes

$$
f_{2}^{\prime}(x)+f_{2}(x)=4 e^{-x} f_{1}(x) \Longrightarrow f_{2}^{\prime}(x)+f_{2}(x)=16 e^{-x}\left(e^{-x}-e^{-2 x}\right)
$$

with solution

$$
f_{2}(x)=8\left(-2 e^{-2 x}+e^{-3 x}\right)+c_{2} e^{-x}
$$

and the boundary condition $f_{2}(0)=0$ gives $c_{2}=8$:

$$
f_{2}(x)=8\left(e^{-x}-2 e^{-2 x}+e^{-3 x}\right)
$$

Order ε^{3} terms.

The equation is $f_{3}^{\prime}(x)+f_{3}(x)-f_{1}^{2}(x)-4 e^{-x} f_{2}(x)=0$ which becomes

$$
f_{3}^{\prime}(x)+f_{3}(x)=48\left(e^{-2 x}-2 e^{-3 x}+e^{-4 x}\right)
$$

The solution to this equation is

$$
f_{3}(x)=16\left(-3 e^{-2 x}+3 e^{-3 x}-e^{-4 x}\right)+c_{3} e^{-x} .
$$

Applying the boundary condition $f_{3}(0)=0$ gives $c_{3}=16$ so

$$
f_{3}(x)=16\left(e^{-x}-3 e^{-2 x}+3 e^{-3 x}-e^{-4 x}\right)
$$

The solution we have found is:

$$
\begin{aligned}
f(x)=2 e^{-x}+4 \varepsilon\left(e^{-x}-e^{-2 x}\right)+ & 8 \varepsilon^{2}\left(e^{-x}-2 e^{-2 x}+e^{-3 x}\right) \\
& +16 \varepsilon^{3}\left(e^{-x}-3 e^{-2 x}+3 e^{-3 x}-e^{-4 x}\right)+\cdots
\end{aligned}
$$

This is an example of a case where carrying out a perturbation expansion gives us an insight into the full solution. Notice that, for the terms we have calculated,

$$
f_{n}(x)=2^{n+1} e^{-x}\left(1-e^{-x}\right)^{n}
$$

suggesting a guessed full solution

$$
f(x)=\sum_{n=0}^{\infty} \varepsilon^{n} 2^{n+1} e^{-x}\left(1-e^{-x}\right)^{n}=2 e^{-x} \sum_{n=0}^{\infty}\left[2 \varepsilon\left(1-e^{-x}\right)\right]^{n}=\frac{2 e^{-x}}{1-2 \varepsilon\left(1-e^{-x}\right)} .
$$

Having guessed a solution, of course, verifying it is straightforward: this is indeed the correct solution to the ODE of equation (1).

3.2 Example eigenvalue problem

We will find the first-order perturbations of the eigenvalues of the differential equation

$$
y^{\prime \prime}+\lambda y+\varepsilon y^{2}=0
$$

in $0<x<\pi$, with boundary conditions $y(0)=y(\pi)=0$.
[Exercise: repeat this with the final term as εy (easy) or εy^{3} (harder).]
First we look at the case $\varepsilon=0$:

$$
y^{\prime \prime}+\lambda y=0
$$

This has possible solutions:

$$
\begin{array}{ll}
\lambda<0 & y=A \cosh [x \sqrt{-\lambda}]+B \sinh [x \sqrt{-\lambda}] \\
\lambda=0 & y=A x+B \\
\lambda>0 & y=A \cos [x \sqrt{\lambda}]+B \sin [x \sqrt{\lambda}]
\end{array}
$$

The first two solutions can't satisfy both boundary conditions. The third must have $A=0$ to satisfy the condition $y(0)=0$, and the second boundary condition leaves us with

$$
B \sin [\pi \sqrt{\lambda}]=0 \quad \Longrightarrow \quad \lambda=m^{2}, \quad m=1,2, \ldots
$$

Now we return to the full problem, posing regular expansions in both y and λ :

$$
\begin{gathered}
y=\sin m x+\varepsilon y_{1}+\cdots \\
\lambda=m^{2}+\varepsilon \lambda_{1}+\cdots
\end{gathered}
$$

Substituting in, we obtain for the differential equation:

$$
\begin{array}{ccc}
-m^{2} \sin m x & + & m^{2} \sin m x \\
\varepsilon y_{1}^{\prime \prime} & +\varepsilon m^{2} y_{1}+\varepsilon \lambda_{1} \sin m x+\varepsilon \sin ^{2} m x & =0 \\
& =0
\end{array}
$$

As we would expect, the order 1 equation is already satisfied, along with the boundary conditions.

Order ε

The ODE at order ε becomes

$$
y_{1}^{\prime \prime}+m^{2} y_{1}=-\lambda_{1} \sin m x-\sin ^{2} m x=-\lambda_{1} \sin m x+\frac{1}{2} \cos 2 m x-\frac{1}{2}
$$

We expect a solution of the form

$$
y_{1}=A \sin m x+B \cos m x+C x \cos m x+D \cos 2 m x+E
$$

and substituting this form back in to the left hand side gives us

$$
-2 C m \sin m x-3 m^{2} D \cos 2 m x+E m^{2}=-\lambda_{1} \sin m x+\frac{1}{2} \cos 2 m x-\frac{1}{2}
$$

which fixes $C=\lambda_{1} / 2 m, D=-1 / 6 m^{2}, E=-1 / 2 m^{2}$. The solution is

$$
y_{1}=A \sin m x+B \cos m x+\frac{\lambda_{1}}{2 m} x \cos m x-\frac{1}{2 m^{2}}-\frac{1}{6 m^{2}} \cos 2 m x .
$$

Now we apply the boundary conditions to determine the eigenvalue: $y(0)=0$ gives

$$
0=B-\frac{1}{2 m^{2}}-\frac{1}{6 m^{2}} \quad B=\frac{2}{3 m^{2}}
$$

and then the condition $y(\pi)=0$ becomes:

$$
0=\frac{2}{3 m^{2}}(-1)^{m}+\frac{\lambda_{1}}{2 m} \pi(-1)^{m}-\frac{1}{2 m^{2}}-\frac{1}{6 m^{2}}
$$

which simplifies to determine λ_{1} :

$$
\lambda_{1}=\frac{4}{3 m \pi}\left[(-1)^{m}-1\right]=\frac{-8}{3 m \pi} \begin{cases}0 & m \text { even } \\ 1 & m \text { odd }\end{cases}
$$

Thus the eigenvalues become

$$
\lambda=1-\frac{8 \varepsilon}{3 \pi}, 4,9-\frac{8 \varepsilon}{9 \pi}, 16,25-\frac{8 \varepsilon}{15 \pi}, \cdots
$$

3.3 Warning signs

As I mentioned earlier, the Taylor series model of function behaviour does not always work. The same is true for model systems: and a regular perturbation expansion will not always capture the behaviour of your system. Here are a few of the possible warning signs that things might be going wrong:

One of the powers of ε produces an insoluble equation
By this I don't mean a differential equation with no analytic solution: that is just bad luck. Rather I mean an equation of the form $x_{1}+1-x_{1}=0$ which cannot be satisfied by any value of x_{1}.

The equation at $\varepsilon=0$ doesn't give the right number of solutions
An nth order ODE should have n solutions. If the equation produced by setting $\varepsilon=0$ has less solutions then this method will not give all the possible solutions to the full equation. This happens when the coefficient of the highest derivative is zero when $\varepsilon=0$. Equally, for a PDE, if the solution you find at $\varepsilon=0$ cannot satisfy all your boundary conditions, then a regular expansion will not be enough.

The coefficients of ε can grow without bound

In the case of an expansion $f(x)=f_{0}(x)+\varepsilon f_{1}(x)+\varepsilon^{2} f_{2}(x)+\cdots$, the series may not be valid for some values of x if some or all of the $f_{i}(x)$ become very large. Say, for example, that $f_{2}(x) \rightarrow \infty$ while $f_{1}(x)$ remains finite. Then $\varepsilon f_{1}(x)$ is no longer strictly larger than $\varepsilon^{2} f_{2}(x)$ and who knows what even larger terms we may have neglected...

[^0]: ${ }^{2}$ H J Wilson \& J M Rallison. J. Non-Newtonian Fluid Mech., 72, 237-251, (1997)

