Ordinary Differential Equations

1 Introduction

A differential equation is an equation relating an independent variable, e.g. t, a dependent variable, y,
and one or more derivatives of y with respect to ¢:

dz dy d%y
= =3 227 — ot -7
at " a ¢ da?

d
+ 3x2y2d—y = 0.
X

In this section we will look at some specific types of differential equation and how to solve them.

2 Classifying equations
We can classify our differential equation by four properties:

e [s it an ordinary differential equation?
e Is it linear?
e Does it have constant coefficients?

e What is the order?

Ordinary
An Ordinary Differential Equation or ODE has only one independent variable (for example, z, or t).
The alternative (with more than one) is called a partial differential equation and will not be covered in
this course.

Linearity

A differential equation is linear if every term in the equation contains none or exactly one of either the
dependent variable or its derivatives. There are no products of the dependent variable with itself or its

derivatives. Each term has at most one power of the equivalent of z or & or & or ...; or f(x) and its
derivatives.
Examples:
d d d2
f(x)—f = —w?x is not linear dr _ f3(z) is not linear f_ —2?f(x) + €* is linear.

dx dx daz?

Constant coefficients

A differential equation has constant coefficients if the dependent variable and all the derivatives are only
multiplied by constants.

Examples: which have constant coefficients?

A &f

2
g = W yes Frci —2%f(z) +€®: mno j—xjg +3ﬂ

g +2f(x) = sinze”: no.



Finally, a “trick” one:

d
3e”3d—f + e”f(x) = 2* does have constant coefficients: divide the whole equation by e®.
x

Order

The order of a differential equation is the largest number of derivatives (of the dependent variable) ever
taken.

Examples:
d d? d? d?fd
f(a:)d—i = —w?x is 1st order d—fﬂ‘é = —2?f(x)+e” is 2nd order chJ;JrngcJ;dii = 0 is 2nd order.

3 First order linear equations

First the general theory. A first order linear differential equation for y(z) must be of the form

Dt ple)y = (o).

If there is something multiplying the dy/dz term, then divide the whole equation by this first.

Now suppose we calculate an integrating factor

I(z) = exp ( / p(@) dx).

Just this once, we won’t bother about a constant of integration.

We multiply our equation by the integrating factor:

1) 3 + Hapla)y = 1()ale)
and then observe that
Lyl = i)+ 3 = L) + ) @)

which is our left-hand-side. So we have the equation

which we can integrate (we hope):

yl(z) = /I(:c)q(x) dz +C

1 C
y= m/](z)q(z)dx—i— m

We sort out the constant C' from the initial conditions at the end.



Example

d
—y—|—2xy20 and y =3 when x=0.
dx
Here the integrating factor will be
I(x) = exp (/ 2z dm) = exp2?
and our equation is
2d
e &Y + 2xex2y =0.
dx
d 2 2 .2
d*[yew}:() = ye” =C e y==Ce ™.
x

The last thing we do is use the initial conditions: at x = 0, y = 3 but our form gives at t =0, y = C so

we need C = 3 and )

y = 3e

Example

d
xé + 2y =sinz with y(7w/2) = 0.

First we need to get the equation into a form where the first term is just dy/dz: so divide by x:

dy 2 sinx

dx acy x

Now we calculate the integrating factor:
I(z) =exp (/ % dx) =exp (2Inz) = expln (2?) = 2°.
We multiply the whole system by z2:
xQ% + 22y = xsinx
dx

and now we can integrate:

di(xzy)zxsinx = mzy:/msinxdx—l—c
x



which we can integrate by parts:
%y = —xcosx + /cosxdx +C = —xcosz +sinx + C

so the general solution is
cosz sinzx C

y=- -
x 2 2

Finally, we use the initial condition y = 0 when = = 7/2 to get

__cos(m/2)  sin(r/2) C _ 1 C
) R 75 R 7o R CF R PN
which means C' = —1 and our solution is

cosr 1—sinz
_ _ —

y:
x x

Example

This time we will solve two different differential equations in parallel.

d d
—y+3y:e_2w and —f—|—3f:e_3:”
dx dx

In this example, we don’t actually have variable coefficients — but that just makes it easier!

In both cases, I(x) = exp / 3dz = €37,

d d
32 Y + 337y = e® and esm—f + 33 f =1.
dx dx
d 3z T d 3z
a(e y) =e and @(e f)=1
3Ty = e* + () and e f =x+ C.
y=e 2 4 Che 3 and f=xe 3 + Cre 3",

4 Homogeneous linear equations.

A homogeneous linear equation is one in which all terms contain exactly one power of the dependent

variable and its derivatives: 2 q
Yy Yy
.g. — +5—=+6y=0.
¢ da? + dz +oy

For these equations, we can add up solutions: so if f(x) is a solution and g(x) is a solution:

d2f  _df d?g  _dg



then so is af(x) + bg(x) for any constants a and b:

L laf () + bg(a)] + 5. [af(x) + bg(a)] + 6[af (x) + by(a)] = 0.

An nth order homogeneous linear equation will “always” (i.e. if it is well-behaved: don’t worry about
this detail) have exactly n independent solutions yi, ..., ¥, and the general solution to the equation is

Yy =ci1y1+cy2 + -+ Cn¥Yn.

4.1 Special case: coefficients az”

Suppose we are given a differential equation in which the coefficient of the rth derivative is a constant
multiple of x":

?y ,, dy
2
g r°— +2r— — 6y =0.
“& T2 + T Y
Then if we try a solution of the form y = 2™ we get
d d?
y=a" % = ma™ ! —dxg =m(m —1)z™ 2

and if we put this back into the original equation we get
w*m(m — 1)z 2 + 2maz™ ' — 62™ =0
2" (mim —1)+2m—6)=0 ™ (m?* +m —6) = 0.
Now x™ will take lots of values as x changes so we need
(m*+m—6)=0 = (m —2)(m+3) =0.

In this case we get two roots: m; = 2 and mo = —3. This means we have found two functions that work
as solutions to our differential equation:

2

yp=a"™ ==z and Yo = ™2 = x5,

But we know that if we have two solutions we can use any combination of them so our general solution
is
Yy = clx2 + 021'73.

This works with an nth order ODE as long as the nth order polynomial for m has n different real roots.

Example
m2@—6x@+10 =0
dz? dx y="u
Try y =a™:
d d?
y=z™m ﬁ = ma™ ! dixig =m(m —1)z™ 2

m(m —1)z™ — 6ma™ + 102™ =0 = 2™ (m* —m —6m+10) =0 = 2™(m —5)(m —2) = 0.
The general solution to this equation is

Yy = cle + 021'2.



4.2 Special case: constant coefficients.

Now suppose we have a homogeneous equation with constant coefficients, like this one:

d’y _dy
Y5 L6y =o.
T2 T Ty

We try a solution y = e**. This gives dy/dz = A\e*® and d?y/dz? = A\2e? so

A2eM 4 5NN 4 6 = 0.

(A2 45X +6)eM =0 for all z.
Just like the polynomial case, the function of z will not be zero everywhere so we need
M 45N +6=0 = A+2)(A+3)=0.
In this case we get two roots: A\; = —2 and Ay = —3. This means we have found two independent
solutions:
Y = e)\la: — e—2z and Yo = ekzw _ 6_3$,

and the general solution is

Y =cre 2 + cpe ",
Example
A third-order equation this time:

dy Ay dy

dz3  de® “dr

Trying y = e gives
MoX—20=0 = MM -)2-2)=0 = AA-2)A+1)=0

which has three roots,

The general solution is
xr

y = 16" + 26" + c3e7" = ¢ + 26*® + c3e ",
Notice that we have three constants here: in general we will always have N constants in the solution to
an Nth order equation.

Example

Another second-order equation:
d’y | dy
— +2— +5y=0.
dx? + dx +oY
Trying y = e’* gives
M +2X0+5=0



which has two roots,

A =—-1+£2.

. —2+4-20 -2+4/-16
o 2 n 2

The general solution is then
y= Ae("1+20)z 4 po(—1-2i)z _ e—z[A€2iz + Be—2i:c]

where A and B will be complex constants: but if y is real (which it usually is) then we can write the
solution as
y = e “[c1 8in 2z + ¢ cos 2z].

Repeated roots

If our polynomial for A has two roots the same, then we will end up one short in our solution. This
is similar to the case with a repeated eigenvalue in the previous section: there, we used a generalised
eigenvector and a function ze**. Here we only need the ze** part.

Example

Another third-order equation:
&y d’y  dy

da3 @—de_o'

Trying y = e gives
M_2X24A=0 = AN -22+1)=0 = AA-1?2=0
which has only two distinct roots,
A =0 A2 =A3 =1

The general solution is
= 1" 4 c9e” + cyze® = ¢ + coe” + cyxe®.

5 Inhomogeneous linear equations.

What happens if there is a term with none of the dependent variable? That is, loosely, a term on the
right hand side, or a function of x.

2
Fal0) L3+ R+ o)y = 9(2).

In the most general case we can’t do anything: but in one or two special cases we can.
If we already know the general solution to the homogeneous equation:
d?y dy

f2($)@+f1($)a+fo(z)y:0 = y = c1y1(z) + oy ()



then all we need is a particular solution to the whole equation: one function «(z) that obeys

d%u du

fo(@) g + @) T+ folahu = g(o).

Then the general solution to the whole equation is
y = cay1(z) + caya () + ulx).

The solution to the homogeneous equation is called the complementary function or CF; the particular
solution u(x) is called the particular integral or PI. Finding it involves a certain amount of trial and
error!

Special case: Coefficients x"

In this case, we can only cope with one specific kind of RHS: a polynomial. We will see this by example:

d?y dy
2 _ 3

The homogeneous equation in this case is one we’ve seen before:
2
2 d7y 2

d
x@—ﬁxﬁ—FlOy:O - y = c12° + o’

Now as long as the power on the right is not part of the CF we can find the PI by trying a multiple
of the right hand side:
d2y

d
y= A’ = é =3A42? and T2 = 6Azx.
A%y dy 2 2 3 3 3
i 61‘@ + 10y = 2“6 Az — 623Ax° 4+ 10Az° = 2°[6A — 184 4+ 104] = —2Ax
so for this to be a solution we need —2A = 6 so A = —3. Then the general solution to the full equation

is
Yy = clx5 + 02302 — 323,

A couple of words of warning about this kind of equation:
e If the polynomial for the power m has a repeated root then we fail
e If the polynomial for the power m has complex roots then we fail

e If a power on the RHS matches a power in the CF then we fail.

Special case: constant coefficients

Given a linear ODE with constant coefficients, we saw in the previous section that we can always find
the general solution to the homogeneous equation (using e**, ze*® and so on), so we know how to find
the CF. There are a set of standard functions to try for the PI, but that part is not guaranteed.



Example

d’y dy
— —3—=+2y=e".
dz? dx rTay=c
First we need the CF. Try y = e** on the homogeneous equation:
M —3\+2=0 = A—1(A-2)=0.

So there are two roots, Ay = 1 and Ay = 2. The CF is then
yor = c1e” + r9e%”.

Next we need the PI. Since the RHS is e™, we try the form

- dy o —
Yy = Ae a = —Ae @ = Ae .
d? d
€Yy 3% +2y = Ae ™ +3Ae™ " + 247" =6Ae”"
dx? dx

so we need A = 1/6 for this to work. Our PI is

]' —x
= —e
Ypr1 6

and the general solution is

—x

1
y = c1e” + x0e> + 66

Example

dy -3
— 43y = z,
dx toy=e

This is only first-order: in fact we solved it in section 3 and the solution was
y = ze 3" + Cre 3.
Let us solve it the way we have just learned. First the CF: try y = e* then
A+3=0
so A = —3 and the CF is
yor = Cre™ %",

Now look for the PI. The RHS is e 3% so our first thought might be to try Ae~3*. But this is the CF:
so we know when we try it we will get zero! So instead (motivated by knowing the answer in this case)
we multiply by x and try

d
y = Aze 3" Y — Ae™3% _3Age3®
dz
d
el +3y = Ae 3% — 3Axe 3% 4 3Axe 3" = Ae 3%,

dx
so we need A = 1 and we end up with the same solution we got last time.

In general, if the RHS matches the CF (or part of the CF) then we will multiply by x to get our trial
function for the PI.



Example

This time we have initial conditions as well: remember we always use these as the very last thing we

do.
d3y d?y dy . dy dy
@4‘2@ 522.’15 Wlthy:3,£:—4and@:4atx:0

First we find the CF. Try y = e*:
Mi2X2 4+ A=0 = AN +22 +1)=0 = M)A +1)2=0.
This has only two distinct roots: A\; = 0, Ay = A3 = —1. Therefore the CF is:

Yor = €1 + coe” ¥ 4 cgwe” ",

Now we look for the PI. The RHS is = so we try a function

dy d2y d3y
y TEE = dz — dz?2  da3
This makes & &2
Yy Yy Yy
—— +2—=+-==0+0+4
dz3 + dz? + dz T+

and no value of A can make this equal to x. What do we do when it fails?
e If the trial function fails, try multiplying by x.

[Note: in this case we could have predicted this because the B of our trial function is part of the CF.]

We want one more power of z so we try

dy d2y d3y
— 2 2 = —_ = _— =
y=Cx"+ Arx = g 20+ A = 2 2C" and P 0.
d’y d%y  dy
—— 42— 4+ ==04+4C+2Cx+ A
dx3+ dx2+dx +4C +2Cx +
so we need
2Cr+4C+ A =2z which means C =1, A = —4.

Our general solution is
y=c1+coe " + czze  + x® — 4.

Now we apply the initial conditions:

y=ci+coe " fezze P+t —dr = y(0)=c;+cx=3

dy dy

—~Z = —cye T tcze T —czxe T+ 2 —4 = (0)=—co+cz3—4=—-4

dz dx
d? d?
d—;; =coe ¥ —2c3e F fcgre™ +2 @ — d—x:g(O) =cy—203+2=4
The solution to this linear system is co = —2, ¢3 = —2, ¢; = 5 so our final answer is

y="5—2e"%—2ze * + 2% —4z.

10



Table of functions to try for PI

fx) Conditions on CF First guess at PI

ae®® X =k not a root Ae®

aek® A=k aroot Ager®

aek® X =k a double root | AzZe*

sinkx A =ik not a root Acoskx + Bsinkzx
coskr A =ik not a root Acoskx + Bsinkx
sinkx A\ =ik a root Az coskr + Bxrsinkx
sinkx A =ik a double root | Az?coskx + Bx?sinkx
™ A =0 not a root Az™ + Bz 14+ ... 4+ C
" A =0 a root Az™ 4 Ba" + ... + Cx
" A =0 a double root | Az"t2 4+ Bzt ... 4 Cx?

11




6 Summary of differential equations

Is it an ODE? No

Yes Beyond
this
Yes @inear? No course
No

Are the coefficients
powers of x matching

Does it have
constant

Is it first order?

coefficients? the derivatives?
Yes
Yes Yes
Integrating CF & PI CF & PI
factor using using
method er ™

First-order linear ODEs

d
To solve an equation of the form d—y + p(z)y = q(z), we calculate an integrating factor I(z) = e/P(*)d®
x

% (yefpdx) = q(x)efpdm.

We integrate both sides:  ye/?d* = /q(m)efpd“' dz+C = y=e Jrd® / q(q:)efpdx dz+Ce JPdz,

d
and multiply by it: diyefp Az (z)yed P 4w =
x

Linear ODEs with constant coeflicients

d? d
To solve an equation of the form ad—g—l—bd—y—l—cy = f(x) we calculate the CF, by trying solutions of the
x x
form y = e** for the homogeneous equation (RHS=0). If there is a repeated root we use e** and ze*:
yor = 1M 4 cpe2® or yor = 1™ + coze™.

We calculate the PI, which is any solution to the original equation, by a system of trial and error. In
general we try something of the same form as f(x); if this overlaps with the CF at all then we multiply
by x. The general solution is y = ycr + ypr.

Linear ODEs with z"-type coefficients

d? d

Qd—g + bxd—y + cy = " we calculate the CF, by trying solutions of
x x

the form y = 2™ for the homogeneous equation. As long as the roots m are real, different and not equal

to n this is OK. Then we use y = Az™ as the PI.

To solve an equation of the form ax

12



