
Ordinary Differential Equations

1 Introduction

A differential equation is an equation relating an independent variable, e.g. t, a dependent variable, y,
and one or more derivatives of y with respect to t:

dx

dt
= 3x y2 dy

dt
= et d2y

dx2
+ 3x2y2 dy

dx
= 0.

In this section we will look at some specific types of differential equation and how to solve them.

2 Classifying equations

We can classify our differential equation by four properties:

• Is it an ordinary differential equation?

• Is it linear?

• Does it have constant coefficients?

• What is the order?

Ordinary
An Ordinary Differential Equation or ODE has only one independent variable (for example, x, or t).
The alternative (with more than one) is called a partial differential equation and will not be covered in
this course.
Linearity
A differential equation is linear if every term in the equation contains none or exactly one of either the
dependent variable or its derivatives. There are no products of the dependent variable with itself or its
derivatives. Each term has at most one power of the equivalent of x or ẋ or ẍ or . . . ; or f(x) and its
derivatives.
Examples:

f(x)
df

dx
= −ω2x is not linear

df

dx
= f3(x) is not linear

d2f

dx2
= −x2f(x) + ex is linear.

Constant coefficients
A differential equation has constant coefficients if the dependent variable and all the derivatives are only
multiplied by constants.
Examples: which have constant coefficients?

3
df

dx
= −ω2x: yes

d2f

dx2
= −x2f(x) + ex: no

d2f

dx2
+ 3

df

dx
+ 2f(x) = sin xex: no.
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Finally, a “trick” one:

3ex df

dx
+ exf(x) = x3 does have constant coefficients: divide the whole equation by ex.

Order
The order of a differential equation is the largest number of derivatives (of the dependent variable) ever
taken.
Examples:

f(x)
df

dx
= −ω2x is 1st order

d2f

dx2
= −x2f(x)+ex is 2nd order

d2f

dx2
+3

d2f

dx2

df

dx
= 0 is 2nd order.

3 First order linear equations

First the general theory. A first order linear differential equation for y(x) must be of the form

dy

dx
+ p(x)y = q(x).

If there is something multiplying the dy/dx term, then divide the whole equation by this first.
Now suppose we calculate an integrating factor

I(x) = exp
(∫

p(x) dx

)
.

Just this once, we won’t bother about a constant of integration.
We multiply our equation by the integrating factor:

I(x)
dy

dx
+ I(x)p(x)y = I(x)q(x).

and then observe that

d
dx

(yI(x)) =
dy

dx
I(x) + y

dI

dx
=

dy

dx
I(x) + yp(x)I(x)

which is our left-hand-side. So we have the equation

d
dx

(yI(x)) = I(x)q(x)

which we can integrate (we hope):

yI(x) =
∫

I(x)q(x) dx + C

y =
1

I(x)

∫
I(x)q(x) dx +

C

I(x)
.

We sort out the constant C from the initial conditions at the end.
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Example

dy

dx
+ 2xy = 0 and y = 3 when x = 0.

Here the integrating factor will be

I(x) = exp
(∫

2xdx

)
= exp x2

and our equation is

ex2 dy

dx
+ 2xex2

y = 0.

d
dx

[
yex2

]
= 0 =⇒ yex2

= C =⇒ y = Ce−x2
.

The last thing we do is use the initial conditions: at x = 0, y = 3 but our form gives at x = 0, y = C so
we need C = 3 and

y = 3e−x2
.
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Example

x
dy

dx
+ 2y = sin x with y(π/2) = 0.

First we need to get the equation into a form where the first term is just dy/dx: so divide by x:

dy

dx
+

2
x

y =
sin x

x
.

Now we calculate the integrating factor:

I(x) = exp
(∫

2
x

dx

)
= exp (2 ln x) = exp ln (x2) = x2.

We multiply the whole system by x2:

x2 dy

dx
+ 2xy = x sin x

and now we can integrate:

d
dx

(x2y) = x sinx =⇒ x2y =
∫

x sin xdx + C
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which we can integrate by parts:

x2y = −x cos x +
∫

cos xdx + C = −x cos x + sin x + C

so the general solution is

y = −cosx

x
+

sin x

x2
+

C

x2
.

Finally, we use the initial condition y = 0 when x = π/2 to get

0 = −cos (π/2)
(π/2)

+
sin (π/2)
(π/2)2

+
C

(π/2)2
= 0 +

1
(π/2)2

+
C

(π/2)2
.

which means C = −1 and our solution is

y = −cos x

x
− 1− sin x

x2
.

Example

This time we will solve two different differential equations in parallel.

dy

dx
+ 3y = e−2x and

df

dx
+ 3f = e−3x

In this example, we don’t actually have variable coefficients – but that just makes it easier!

In both cases, I(x) = exp
∫

3 dx = e3x.

e3x dy

dx
+ 3e3xy = ex and e3x df

dx
+ 3e3xf = 1.

d
dx

(
e3xy

)
= ex and

d
dx

(
e3xf

)
= 1.

e3xy = ex + C0 and e3xf = x + C1.

y = e−2x + C0e
−3x and f = xe−3x + C1e

−3x.

4 Homogeneous linear equations.

A homogeneous linear equation is one in which all terms contain exactly one power of the dependent
variable and its derivatives:

e.g.
d2y

dx2
+ 5

dy

dx
+ 6y = 0.

For these equations, we can add up solutions: so if f(x) is a solution and g(x) is a solution:

d2f

dx2
+ 5

df

dx
+ 6f = 0 and

d2g

dx2
+ 5

dg

dx
+ 6g = 0
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then so is af(x) + bg(x) for any constants a and b:

d2

dx2
[af(x) + bg(x)] + 5

d
dx

[af(x) + bg(x)] + 6[af(x) + bg(x)] = 0.

An nth order homogeneous linear equation will “always” (i.e. if it is well-behaved: don’t worry about
this detail) have exactly n independent solutions y1, . . . , yn and the general solution to the equation is

y = c1y1 + c2y2 + · · ·+ cnyn.

4.1 Special case: coefficients axr

Suppose we are given a differential equation in which the coefficient of the rth derivative is a constant
multiple of xr:

e.g. x2 d2y

dx2
+ 2x

dy

dx
− 6y = 0.

Then if we try a solution of the form y = xm we get

y = xm dy

dx
= mxm−1 d2y

dx2
= m(m− 1)xm−2

and if we put this back into the original equation we get

x2m(m− 1)xm−2 + 2mxxm−1 − 6xm = 0

xm(m(m− 1) + 2m− 6) = 0 xm(m2 + m− 6) = 0.

Now xm will take lots of values as x changes so we need

(m2 + m− 6) = 0 =⇒ (m− 2)(m + 3) = 0.

In this case we get two roots: m1 = 2 and m2 = −3. This means we have found two functions that work
as solutions to our differential equation:

y1 = xm1 = x2 and y2 = xm2 = x−3.

But we know that if we have two solutions we can use any combination of them so our general solution
is

y = c1x
2 + c2x

−3.

This works with an nth order ODE as long as the nth order polynomial for m has n different real roots.

Example

x2 d2y

dx2
− 6x

dy

dx
+ 10y = 0.

Try y = xm:

y = xm dy

dx
= mxm−1 d2y

dx2
= m(m− 1)xm−2.

m(m− 1)xm − 6mxm + 10xm = 0 =⇒ xm(m2 −m− 6m + 10) = 0 =⇒ xm(m− 5)(m− 2) = 0.

The general solution to this equation is

y = c1x
5 + c2x

2.
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4.2 Special case: constant coefficients.

Now suppose we have a homogeneous equation with constant coefficients, like this one:

d2y

dx2
+ 5

dy

dx
+ 6y = 0.

We try a solution y = eλx. This gives dy/dx = λeλx and d2y/dx2 = λ2eλx so

λ2eλx + 5λeλx + 6eλx = 0.

(λ2 + 5λ + 6)eλx = 0 for all x.

Just like the polynomial case, the function of x will not be zero everywhere so we need

λ2 + 5λ + 6 = 0 =⇒ (λ + 2)(λ + 3) = 0.

In this case we get two roots: λ1 = −2 and λ2 = −3. This means we have found two independent
solutions:

y1 = eλ1x = e−2x and y2 = eλ2x = e−3x,

and the general solution is
y = c1e

−2x + c2e
−3x.

Example

A third-order equation this time:
d3y

dx3
− d2y

dx3
− 2

dy

dx
= 0.

Trying y = eλx gives

λ3 − λ2 − 2λ = 0 =⇒ λ(λ2 − λ− 2) = 0 =⇒ λ(λ− 2)(λ + 1) = 0

which has three roots,
λ1 = 0 λ2 = 2 λ3 = −1.

The general solution is
y = c1e

0x + c2e
2x + c3e

−x = c1 + c2e
2x + c3e

−x.

Notice that we have three constants here: in general we will always have N constants in the solution to
an Nth order equation.

Example

Another second-order equation:
d2y

dx2
+ 2

dy

dx
+ 5y = 0.

Trying y = eλx gives
λ2 + 2λ + 5 = 0
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which has two roots,

λ =
−2±√4− 20

2
=
−2±√−16

2
= −1± 2i.

The general solution is then

y = Ae(−1+2i)x + Be(−1−2i)x = e−x[Ae2ix + Be−2ix]

where A and B will be complex constants: but if y is real (which it usually is) then we can write the
solution as

y = e−x[c1 sin 2x + c2 cos 2x].

Repeated roots

If our polynomial for λ has two roots the same, then we will end up one short in our solution. This
is similar to the case with a repeated eigenvalue in the previous section: there, we used a generalised
eigenvector and a function xeλx. Here we only need the xeλx part.

Example

Another third-order equation:
d3y

dx3
− 2

d2y

dx3
+

dy

dx
= 0.

Trying y = eλx gives

λ3 − 2λ2 + λ = 0 =⇒ λ(λ2 − 2λ + 1) = 0 =⇒ λ(λ− 1)2 = 0

which has only two distinct roots,
λ1 = 0 λ2 = λ3 = 1.

The general solution is
y = c1e

0x + c2e
x + c3xex = c1 + c2e

x + c3xex.

5 Inhomogeneous linear equations.

What happens if there is a term with none of the dependent variable? That is, loosely, a term on the
right hand side, or a function of x.

f2(x)
d2y

dx2
+ f1(x)

dy

dx
+ f0(x)y = g(x).

In the most general case we can’t do anything: but in one or two special cases we can.
If we already know the general solution to the homogeneous equation:

f2(x)
d2y

dx2
+ f1(x)

dy

dx
+ f0(x)y = 0 =⇒ y = c1y1(x) + c2y2(x)
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then all we need is a particular solution to the whole equation: one function u(x) that obeys

f2(x)
d2u

dx2
+ f1(x)

du

dx
+ f0(x)u = g(x).

Then the general solution to the whole equation is

y = c1y1(x) + c2y2(x) + u(x).

The solution to the homogeneous equation is called the complementary function or CF; the particular
solution u(x) is called the particular integral or PI. Finding it involves a certain amount of trial and
error!

Special case: Coefficients xr

In this case, we can only cope with one specific kind of RHS: a polynomial. We will see this by example:

x2 d2y

dx2
− 6x

dy

dx
+ 10y = 6x3.

The homogeneous equation in this case is one we’ve seen before:

x2 d2y

dx2
− 6x

dy

dx
+ 10y = 0 =⇒ y = c1x

5 + c2x
2.

Now as long as the power on the right is not part of the CF we can find the PI by trying a multiple
of the right hand side:

y = Ax3 =⇒ dy

dx
= 3Ax2 and

d2y

dx2
= 6Ax.

x2 d2y

dx2
− 6x

dy

dx
+ 10y = x26Ax− 6x3Ax2 + 10Ax3 = x3[6A− 18A + 10A] = −2Ax3

so for this to be a solution we need −2A = 6 so A = −3. Then the general solution to the full equation
is

y = c1x
5 + c2x

2 − 3x3.

A couple of words of warning about this kind of equation:

• If the polynomial for the power m has a repeated root then we fail

• If the polynomial for the power m has complex roots then we fail

• If a power on the RHS matches a power in the CF then we fail.

Special case: constant coefficients

Given a linear ODE with constant coefficients, we saw in the previous section that we can always find
the general solution to the homogeneous equation (using eλx, xeλx and so on), so we know how to find
the CF. There are a set of standard functions to try for the PI, but that part is not guaranteed.
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Example

d2y

dx2
− 3

dy

dx
+ 2y = e−x.

First we need the CF. Try y = eλx on the homogeneous equation:

λ2 − 3λ + 2 = 0 =⇒ (λ− 1)(λ− 2) = 0.

So there are two roots, λ1 = 1 and λ2 = 2. The CF is then

yCF = c1e
x + x2e

2x.

Next we need the PI. Since the RHS is e−x, we try the form

y = Ae−x dy

dx
= −Ae−x d2y

dx2
= Ae−x.

d2y

dx2
− 3

dy

dx
+ 2y = Ae−x + 3Ae−x + 2Ae−x = 6Ae−x

so we need A = 1/6 for this to work. Our PI is

yPI =
1
6
e−x

and the general solution is

y = c1e
x + x2e

2x +
1
6
e−x.

Example

dy

dx
+ 3y = e−3x.

This is only first-order: in fact we solved it in section 3 and the solution was

y = xe−3x + C1e
−3x.

Let us solve it the way we have just learned. First the CF: try y = eλx then

λ + 3 = 0

so λ = −3 and the CF is
yCF = C1e

−3x.

Now look for the PI. The RHS is e−3x so our first thought might be to try Ae−3x. But this is the CF:
so we know when we try it we will get zero! So instead (motivated by knowing the answer in this case)
we multiply by x and try

y = Axe−3x dy

dx
= Ae−3x − 3Axe−3x

dy

dx
+ 3y = Ae−3x − 3Axe−3x + 3Axe−3x = Ae−3x.

so we need A = 1 and we end up with the same solution we got last time.
In general, if the RHS matches the CF (or part of the CF) then we will multiply by x to get our trial
function for the PI.
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Example

This time we have initial conditions as well: remember we always use these as the very last thing we
do.

d3y

dx3
+ 2

d2y

dx2
+

dy

dx
= 2x with y = 3,

dy

dx
= −4 and

d2y

dx2
= 4 at x = 0.

First we find the CF. Try y = eλx:

λ3 + 2λ2 + λ = 0 =⇒ λ(λ2 + 2λ + 1) = 0 =⇒ λ(λ + 1)2 = 0.

This has only two distinct roots: λ1 = 0, λ2 = λ3 = −1. Therefore the CF is:

yCF = c1 + c2e
−x + c3xe−x.

Now we look for the PI. The RHS is x so we try a function

y = Ax + B =⇒ dy

dx
= A =⇒ d2y

dx2
=

d3y

dx3
= 0.

This makes
d3y

dx3
+ 2

d2y

dx2
+

dy

dx
= 0 + 0 + A

and no value of A can make this equal to x. What do we do when it fails?

• If the trial function fails, try multiplying by x.

[Note: in this case we could have predicted this because the B of our trial function is part of the CF.]
We want one more power of x so we try

y = Cx2 + Ax =⇒ dy

dx
= 2Cx + A =⇒ d2y

dx2
= 2C and

d3y

dx3
= 0.

d3y

dx3
+ 2

d2y

dx2
+

dy

dx
= 0 + 4C + 2Cx + A

so we need
2Cx + 4C + A = 2x which means C = 1, A = −4.

Our general solution is
y = c1 + c2e

−x + c3xe−x + x2 − 4x.

Now we apply the initial conditions:

y = c1 + c2e
−x + c3xe−x + x2 − 4x =⇒ y(0) = c1 + c2 = 3

dy

dx
= −c2e

−x + c3e
−x − c3xe−x + 2x− 4 =⇒ dy

dx
(0) = −c2 + c3 − 4 = −4

d2y

dx2
= c2e

−x − 2c3e
−x + c3xe−x + 2 =⇒ d2y

dx2
(0) = c2 − 2c3 + 2 = 4

The solution to this linear system is c2 = −2, c3 = −2, c1 = 5 so our final answer is

y = 5− 2e−x − 2xe−x + x2 − 4x.
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Table of functions to try for PI

f(x) Conditions on CF First guess at PI
αekx λ = k not a root Aeλx

αekx λ = k a root Axeλx

αekx λ = k a double root Ax2eλx

sin kx λ = ik not a root A cos kx + B sin kx
cos kx λ = ik not a root A cos kx + B sin kx
sin kx λ = ik a root Ax cos kx + Bx sin kx
sin kx λ = ik a double root Ax2 cos kx + Bx2 sin kx
xn λ = 0 not a root Axn + Bxn−1 + · · ·+ C
xn λ = 0 a root Axn+1 + Bxn + · · ·+ Cx
xn λ = 0 a double root Axn+2 + Bxn+1 + · · ·+ Cx2
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6 Summary of differential equations
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Beyond
this

course

Integrating
factor
method

CF & PI
using
eλx

CF & PI
using
xm

First-order linear ODEs

To solve an equation of the form
dy

dx
+ p(x)y = q(x), we calculate an integrating factor I(x) = e

R
p(x) dx

and multiply by it:
dy

dx
e

R
p dx+p(x)ye

R
p dx =

d
dx

(
ye

R
p dx

)
= q(x)e

R
p dx.

We integrate both sides: ye
R

p dx =
∫

q(x)e
R

p dx dx+C =⇒ y = e−
R

p dx

∫
q(x)e

R
p dx dx+Ce−

R
p dx.

Linear ODEs with constant coefficients

To solve an equation of the form a
d2y

dx2
+b

dy

dx
+cy = f(x) we calculate the CF, by trying solutions of the

form y = eλx for the homogeneous equation (RHS=0). If there is a repeated root we use eλx and xeλx:

yCF = c1e
λ1x + c2e

λ2x or yCF = c1e
λx + c2xeλx.

We calculate the PI, which is any solution to the original equation, by a system of trial and error. In
general we try something of the same form as f(x); if this overlaps with the CF at all then we multiply
by x. The general solution is y = yCF + yPI.

Linear ODEs with xn-type coefficients

To solve an equation of the form ax2 d2y

dx2
+ bx

dy

dx
+ cy = xn we calculate the CF, by trying solutions of

the form y = xm for the homogeneous equation. As long as the roots m are real, different and not equal
to n this is OK. Then we use y = Axn as the PI.
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