Finding $\mu\left(\Delta_{E}\right)$ via root numbers

Holly Green

Goal: For an elliptic curve E over \mathbb{Q}, find $(-1)^{\mathrm{rank}} E / \mathbb{Q}$ or $w_{E / \mathbb{Q}}$ without factorising Δ_{E}.
Will do so by studying the distribution of the root number of a particular family of quadratic twists.

1 Motivation

One of the basic general problems in analytic number theory is to try to understand the Möbius function, defined on natural numbers as

$$
\mu(n)= \begin{cases}(-1)^{\# \text { distinct prime factors of } n} & \text { for } n \text { square-free, } \\ 0 & \text { otherwise }\end{cases}
$$

Its importance can be seen from its connection to the Riemann-Zeta function, i.e. (the Dirichlet series which generates the Möbius function) for $s \in \mathbb{C}$ with $\operatorname{Re} s>1$,

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}
$$

In fact, we can reformulate the notorious Riemann hypothesis as

$$
\text { 'for each } \varepsilon>0, \sum_{1 \leq n \leq x} \mu(n)=O\left(x^{\frac{1}{2}+\varepsilon}\right) . '
$$

Calculating $\mu(n)$ boils down to finding the number of distinct prime factors of n, a calculation which costs \sqrt{n}. This is clearly inefficient for large values of n so we look for a more cost effective method.

Consider an elliptic curve over \mathbb{Q} given by

$$
E: y^{2}=x^{3}+a x+b(=f(x))
$$

We have that $\Delta_{E}=-16\left(4 a^{3}+27 b^{2}\right)$ and will assume that this quantity is square-free.
The 'global' root number of E is defined via the product of 'local' root numbers, i.e.

$$
w_{E / \mathbb{Q}}=-\prod_{p \mid \Delta_{E}} w_{E / \mathbb{Q}_{p}}
$$

where

$$
w_{E / \mathbb{Q}_{p}}= \begin{cases}-1 & \text { split multiplicative reduction at } p \\ 1 & \text { non-split multiplicative reduction at } p\end{cases}
$$

(noting that at no primes do we have additive reduction due to Δ_{E} being square-free).
Using the characterisation of multiplicative reduction type at a prime $p \mid \Delta_{E}$ via Legendre symbols, i.e.

$$
E \text { has split multiplicative reduction at } p \Leftrightarrow\left(\frac{-c_{6}}{p}\right)=+1
$$

our expression for $w_{E / \mathbb{Q}}$ becomes

$$
w_{E / \mathbb{Q}}=-(-1)^{\# \text { distinct prime factors of } \Delta_{E}} \prod_{p \mid \Delta_{E}}\left(\frac{-c_{6}}{p}\right)=-\mu\left(\Delta_{E}\right)\left(\frac{-c_{6}}{\Delta_{E}}\right)
$$

where we use the 'Jacobi symbol'. The upshot of this is that the quantity we're interested in can be determined from $w_{E / \mathbb{Q}}$ through

$$
\mu\left(\Delta_{E}\right)=-w_{E / \mathbb{Q}}\left(\frac{-c_{6}}{\Delta_{E}}\right) .
$$

Such a Jacobi symbol is quick to compute (incurring a cost of only $\log \Delta_{E}$), so if we know $w_{E / \mathbb{Q}}$ (or assuming the parity conjecture, the parity of $\operatorname{rank} E / \mathbb{Q}$) then we have a quicker way to find $\mu\left(\Delta_{E}\right)$ - hence our goal.

2 Quadratic twists

For $d \in \mathbb{Z}$ square-free, consider the quadratic twist of E by d, i.e.

$$
E_{d}: d y^{2}=x^{3}+a x+b
$$

If $\operatorname{gcd}\left(d, \Delta_{E}\right)=1$, it can be shown [1] that

$$
w_{E / \mathbb{Q}}=w_{E_{d} / \mathbb{Q}} \cdot \operatorname{sign}(d) \cdot\left(\frac{d}{\Delta_{E}}\right) .
$$

Similarly to what we saw previously, the means that $w_{E / \mathbb{Q}}$ can be determined from $w_{E_{d} / \mathbb{Q}}$ in a computation of $\operatorname{cost} \log \Delta_{E}$.

The Minimalists conjecture refers to the distribution of the rank within a 'suitably random' family of elliptic curves (where suitably random is a term that has no precise definition), i.e. a family of twists. It should provide an indication of how $w_{E_{d} / \mathbb{Q}}$ behaves, and if we're lucky, this should tell us what $w_{E / \mathbb{Q}}$ is.

The conjecture can be interpreted in 2 ways, both of which are quite vague. A more precise statement says:

Conjecture 2.1 (Minimalists Conjecture A). For 100% of curves within the family,

$$
\operatorname{rank} E / \mathbb{Q}=0 \text { or } 1
$$

Whereas a weaker statement is:
Conjecture 2.2 (Minimalists Conjecture B). For 100% of curves within the family, the rank is 'as small as possible' subject to the root number.

We can assert which formulation is valid upon choosing a particular family.
Consider the family of twists arising from taking $d=f(n)$ for $n \in \mathbb{Z}$, i.e.

$$
\mathcal{F}=\left\{E_{f(n)} \mid n \in \mathbb{Z} \text { or some interval }\right\}
$$

An observation is that amongst this family the rank is almost always at least 1 : obvious rational points are given by $(n, \pm 1)$ and these typically have infinite order.

This implies that statement A is incorrect - it it were true, 100% of curves in this family would have rank 1 which computational evidence contradicts.

3 An Example

An explicit example is given by taking

$$
E: y^{2}+y=x^{3}-x^{2}
$$

this elliptic curve has $\Delta_{E}=-11$. A linear transformation to short Weierstrass form gives

$$
f(x)=x^{3}-\frac{1}{3} x+\frac{19}{108}
$$

and preserves Δ_{E}.

- Varying n from -10000 to 10000 gives an equal distribution of root numbers, i.e. 50% of the $w_{E_{f(n)} / \mathbb{Q}}$ are +1 and 50% are -1 .
- Varying n from 0 to 10000 gives an unequal distribution of root numbers, i.e. 37% of the $w_{E_{f(n)} / \mathbb{Q}}$ are +1 and 63% are -1 .
- Varying n from 0 to 10000 within a fixed congruence class gives:
- 100% of $w_{E_{f(n)} / \mathbb{Q}}$ are +1 when n is $1,6,7$ or $8 \bmod 11$
- 100% of $w_{E_{f(n)} / \mathbb{Q}}$ are -1 when n is $0,2,4,5,9,10 \bmod 11$
- 4% of the $w_{E_{f(n)} / \mathbb{Q}}$ are +1 and 96% are -1 when n is $3 \bmod 11$

Other examples, for curves of small discriminant, show that there are usually a small number of congruence classes that misbehave. Unfortunately I was unable to find a pattern amongst the misbehaving congruence classes that would describe this further.

I was also able to observe that when the conductor of the curve in question becomes large, we obtain an equal distribution of root numbers when varying n from 0 to 10000 . Therefore, being able to determine $w_{E / \mathbb{Q}}$ via probabilistic methods is hopeless.

References

[1] Dokchitser, V., "Root numbers of non-abelian twists of elliptic curves". Proceedings of the London Mathematical Society, 91 (2), pp.300-324, 2005.

