Introduction to root numbers and the parity conjecture

Holly Green
University College London

November 15th, 2022

Overview and notation

- Motivation
- What are root numbers?
- Parity phenomena

Notation

- E is an elliptic curve
- K is a number field
$\square \mathcal{K}$ is a local field, e.g. $\mathbb{C}, \mathbb{R}, \mathbb{Q}_{p}$ or $K_{v}(v$ a place of $K)$

Motivation

Let E / K be an elliptic curve over a number field.

Birch and Swinnerton-Dyer conjecture

Assuming that $L(E, s)$ has an analytic continuation to \mathbb{C},

$$
\operatorname{rank}(E)=\operatorname{ord}_{s=1} L(E, s)
$$

Conjectural functional equation

Assuming that $L(E, s)$ has an analytic continuation to \mathbb{C},

$$
L(E, s)=w(E) L(E, 2-s) \times(\text { stuff }), \quad w(E) \in\{ \pm 1\}
$$

The sign in the functional equation is conjectured to be the global root number:
Definition (Global root number)

$$
w(E / K)=\prod_{v \text { place of } K} w\left(E / K_{v}\right)
$$

Local root numbers

Let \mathcal{K} be a local field (i.e. $\mathbb{C}, \mathbb{R}, \mathbb{Q}_{p}$).

For characters (David)

Let χ be a 1-dimensional continuous ℓ-adic representation over \mathcal{K}. The local root number $w(\chi, \psi, d x)$ (w.r.t. ψ and $d x$) is defined in terms of ϵ-factors:

$$
\epsilon(\chi, \psi, d x)=\frac{\chi\left(\pi_{\mathcal{K}}^{n(\psi)}\right)}{\left\|\pi_{\mathcal{K}}^{n(\psi)}\right\|} \int_{\mathcal{O}_{\mathcal{K}}} d x \quad \text { and } \quad w(\chi, \psi, d x)=\frac{\epsilon(\chi, \psi, d x)}{|\epsilon(\chi, \psi, d x)|}
$$

For representations (Jamie)

Let ρ be a finite dimensional representation continuous ℓ-adic representation over \mathcal{K}. Extend the definition of ϵ-factors so that various properties are satisfied (multiplicativity, inductivity, $\ldots)$, then define $w(\rho, \psi, d x)$ as above.

To define the root number of an elliptic curve E / \mathcal{K}, need to associate to it a representation.

Local root numbers for abelian varieties

Let E / \mathcal{K} then $E\left[\ell^{n}\right] \cong\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2}$. Write $E[\ell]=\left\langle P_{1}, Q_{1}\right\rangle$. For $n \geq 2$, find $\left\langle P_{n}, Q_{n}\right\rangle=E\left[\ell^{n}\right]$ with

$$
\ell P_{n}=P_{n-1}, \quad \ell Q_{n}=Q_{n-1}
$$

For $g \in G_{\mathcal{K}}, g\left(P_{n}\right)=\left(a_{1}+\ldots+a_{n} \ell^{n-1}\right) P_{n}+\left(b_{1}+\ldots+b_{n} \ell^{n-1}\right) Q_{n}$ and $g\left(Q_{n}\right)=\ldots$
Then $\rho_{E / \mathcal{K}}: G_{\mathcal{K}} \rightarrow \mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$ is the ℓ-adic representation of E / \mathcal{K}.
For general $A / \mathcal{K}, A\left[\ell^{n}\right] \cong\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2 \operatorname{dim} A}$. Similarly we get $\rho_{A / \mathcal{K}}: G_{\mathcal{K}} \rightarrow G L_{2 \operatorname{dim} A}\left(\mathbb{Q}_{\ell}\right)$.

- Last week: Yuan told us that $\rho_{E / \mathcal{K}}$ is independent of ℓ

$$
w(E / \mathcal{K}):=w\left(\rho_{E / \mathcal{K}}^{*}, \psi, d x\right)
$$

- $w(E / \mathcal{K})$ is independent of ψ and $d x$
- $w(E / \mathcal{K}) \in\{ \pm 1\}$
- $w(E / \mathcal{K})=-1$ when \mathcal{K} is Archimedean, (more generally $\left.w(A / \mathcal{K})=(-1)^{\operatorname{dim} A}\right)$.

Computing root numbers

Recall that the global root number is $w(E / K)=\prod_{v} w\left(E / K_{v}\right)$.

Elliptic curves (Sven)

Let E / K be a semistable elliptic curve over a number field. It turns out that,

$$
w(E / K)=(-1)^{m_{K}+u_{K}}
$$

- $m_{K}=\#\{$ primes where E has split multiplicative reduction\},
- $u_{K}=\#\{$ infinite places $\}$.

When E / K is not semistable, we have Rohrlich's theorem.

Abelian varieties (Lilybelle)

- Formulae for twisted root numbers
- Analogue of Rohrlich's theorem for tame abelian varieties
- Cluster picture machinery for tame hyperelliptic curves

The parity conjecture

Let E / K be an elliptic curve over a number field.

Birch and Swinnerton-Dyer conjecture

Assuming that $L(E, s)$ has an analytic continuation to \mathbb{C},

$$
\operatorname{rank}(E)=\operatorname{ord}_{s=1} L(E, s)
$$

Conjectural functional equation

Assuming that $L(E, s)$ has an analytic continuation to \mathbb{C},

$$
L(E, s)=w(E / K) L(E, 2-s) \times(\text { stuff }), \quad w(E / K) \in\{ \pm 1\}
$$

Rephrased: $(-1)^{\operatorname{ord}_{s=1} L(E, s)}=w(E / K)$.

The Parity Conjecture

$$
(-1)^{\operatorname{rank}(E / K)}=w(E / K)=\prod_{v \text { place of } K} w\left(E / K_{v}\right)
$$

Parity Phenomena

- Predicting the existence of points of infinite order
- Rational abelian varieties have even rank over $\mathbb{Q}(i, \sqrt{17})$
- An elliptic curve with infinitely many $\mathbb{Q}(\sqrt[3]{n})$ points
- An elliptic curve whose rank grows in all even degree extensions
- Goldfeld's conjecture cannot hold when $K \neq \mathbb{Q}$
- ... (see Lilybelle and Vladimir's paper!)

Predicting the existence of points of infinite order

The Parity Conjecture

$$
(-1)^{\operatorname{rank}(A / K)}=w(A / K)=\prod_{v \text { place of } K} w\left(A / K_{v}\right)
$$

Consequently, if $w(A / K)=-1$ then $\operatorname{rank}(A / K) \geq 1$!
If E / K is semistable then

$$
w(E / K)=(-1)^{m_{K}+u_{K}}
$$

where $m_{K}=\#\{$ primes where E has split multiplicative reduction $\}, u_{K}=\#\{$ infinite places $\}$.
Let $E / \mathbb{Q}: y^{2}-23 y=x^{3}-99997 x^{2}-17 x+42, \Delta_{E}=17 \cdot 655943686625481101$. Then $m_{\mathbb{Q}}=0$ and $u_{\mathbb{Q}}=1$. The parity conjecture says

$$
(-1)^{\operatorname{rank}(E / \mathbb{Q})}=w(E / \mathbb{Q})=(-1)^{1}=-1 .
$$

Therefore E has a \mathbb{Q}-point of infinite order. Magma can't compute this!

Rational abelian varieties have even rank over $\mathbb{Q}(i, \sqrt{17})$

Let A / \mathbb{Q} be an abelian variety and $K=\mathbb{Q}(i, \sqrt{17})$.

Fact

Each $p \in \mathbb{Z}$ splits into an even number, n_{p}, of primes in \mathcal{O}_{K}.
E.g. 2 splits in $\mathbb{Q}(\sqrt{17})$ and ramifies in $\mathbb{Q}(i) \& \mathbb{Q}(\sqrt{-17})$. In \mathcal{O}_{K} we have $2=\mathfrak{p}_{1}^{2} \mathfrak{p}_{2}^{2}$.

Fact

If $\mathfrak{p}_{1}, \mathfrak{p}_{2} \mid p \in \mathbb{Z}$, then $w\left(A / K_{\mathfrak{p}_{1}}\right)=w\left(A / K_{\mathfrak{p}_{2}}\right)$.
The parity conjecture says

$$
(-1)^{\operatorname{rank}(A / K)}=\prod_{v} w\left(A / K_{v}\right)=w(A / \mathbb{C})^{2} \cdot \prod_{p \in \mathbb{Z}}\left(\prod_{\mathfrak{p} \mid p} w\left(A / K_{\mathfrak{p}}\right)\right)=\prod_{\substack{p \in \mathbb{Z} \\ \mathfrak{f i x} \mid p}} w\left(A / K_{\mathfrak{p}}\right)^{n_{p}}=+1
$$

Therefore $\operatorname{rank}(A / K)$ is even for any abelian variety A / \mathbb{Q}.

An elliptic curve with infinitely many $\mathbb{Q}(\sqrt[3]{n})$ points

Let $E: y^{2}+y=x^{3}+x^{2}+x, \Delta_{E}=19 . E / \mathbb{Q}$ has split multiplicative reduction at 19 , so

$$
(-1)^{\operatorname{rank}(E / \mathbb{Q})}=w(E / \mathbb{Q})=(-1)^{1+1}=+1 .
$$

In fact $\operatorname{rank}(E / \mathbb{Q})=0$. What about $E / \mathbb{Q}(\sqrt[3]{n})$?

- If $19 \nmid n$, then look at $x^{3}-n$. If \bar{n} is a cube in \mathbb{F}_{19} then $19=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$, else $19=\mathfrak{p}$.
- If $n=19^{\alpha} c$. Write $\sqrt[3]{n}=\prod_{i=1}^{k} \mathfrak{p}_{i}^{n_{i}} \Longrightarrow 19^{\alpha}=\prod_{i=1}^{k_{0}} \mathfrak{p}_{i}^{3 n_{i}} \Longrightarrow 19=\mathfrak{p}_{1}^{3}$.

Fact

If E has split multiplicative reduction at p then it has split multiplicative reduction at $\mathfrak{p} \mid p$.
Therefore, $m_{\mathbb{Q}(\sqrt[3]{n})}$ is odd and $u_{\mathbb{Q}(\sqrt[3]{n})}=2$, so

$$
(-1)^{\operatorname{rank}(E / \mathbb{Q}(\sqrt[3]{n}))}=w(E / \mathbb{Q}(\sqrt[3]{n}))=-1
$$

E has infinitely many $\mathbb{Q}(\sqrt[3]{n})$-rational points!

An elliptic curve whose rank grows across even degree extensions

Let $K=\mathbb{Q}(\sqrt{-643}), \lambda=\frac{1}{2}(1+\sqrt{-643})$ and

$$
E / K: y^{2}+x y+(\lambda+1) y=x^{3}+\lambda x^{2}+(-\lambda-60) x-8 \lambda+78 .
$$

E / K has everywhere good reduction so $m_{K}=0$ and $u_{K}=1$. Therefore

$$
w(E / K)=-1 \quad \Rightarrow \quad \operatorname{rank}(E / K) \text { is odd. }
$$

Now let L / K be an even degree extension, $m_{L}=0$ and u_{L} is even. Therefore

$$
w(E / L)=+1 \Rightarrow \operatorname{rank}(E / L) \text { is even. }
$$

```
rank(E/K)< rank(E/L)
```


Goldfeld's conjecture

Let $E: y^{2}+y=x^{3}-x^{2}, \Delta_{E}=-11 . E / \mathbb{Q}$ has split mult. reduction at $11 \Rightarrow w(E / \mathbb{Q})=+1$.

Fact

Let $d \in K^{\times} /\left(K^{\times}\right)^{2}$. Then $w\left(E_{d} / K\right)=w(E / K) w(E / K(\sqrt{d}))$.
$w\left(E_{d} / \mathbb{Q}\right)=w(E / \mathbb{Q}(\sqrt{d}))$ are equally distributed.

Goldfeld's conjecture

$$
\operatorname{rank}\left(E_{d} / \mathbb{Q}\right)= \begin{cases}0 & \text { for } 50 \% \text { of } d \in \mathbb{Q}^{\times} \bmod \square \\ 1 & \text { for } 50 \% \text { of } d \in \mathbb{Q}^{\times} \bmod \square\end{cases}
$$

Now let $K=\mathbb{Q}(\sqrt{-643}), \lambda=\frac{1}{2}(1+\sqrt{-643})$.

$$
E / K: y^{2}+x y+(\lambda+1) y=x^{3}+\lambda x^{2}+(-\lambda-60) x-8 \lambda+78
$$

has good reduction so $w(E / K)=-1$ and $w(E / K(\sqrt{d}))=+1 \Rightarrow w\left(E_{d} / K\right)=-1$.
An analogue of Goldfeld's conjecture can't be true when $K \neq \mathbb{Q}$!

Thank you for your attention!

