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Overview and notation

Motivation

What are root numbers?

Parity phenomena

Notation

E is an elliptic curve

K is a number field

K is a local field, e.g. C, R, Qp or Kv (v a place of K )
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Motivation

Let E/K be an elliptic curve over a number field.

Birch and Swinnerton-Dyer conjecture
Assuming that L(E , s) has an analytic continuation to C,

rank(E ) = ords=1L(E , s).

Conjectural functional equation
Assuming that L(E , s) has an analytic continuation to C,

L(E , s) = w(E )L(E , 2− s)× (stuff), w(E ) ∈ {±1}.

The sign in the functional equation is conjectured to be the global root number:

Definition (Global root number)

w(E/K ) =
∏

v place of K

w(E/Kv ).
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Local root numbers

Let K be a local field (i.e. C, R, Qp).

For characters (David)
Let χ be a 1-dimensional continuous `-adic representation over K. The local root number
w(χ, ψ, dx) (w.r.t. ψ and dx) is defined in terms of ε-factors:

ε(χ, ψ, dx) =
χ(π

n(ψ)
K )

||πn(ψ)K ||

∫
OK

dx and w(χ, ψ, dx) =
ε(χ, ψ, dx)

|ε(χ, ψ, dx)|
.

For representations (Jamie)
Let ρ be a finite dimensional representation continuous `-adic representation over K. Extend
the definition of ε-factors so that various properties are satisfied (multiplicativity, inductivity,
...), then define w(ρ, ψ, dx) as above.

To define the root number of an elliptic curve E/K, need to associate to it a representation.
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Local root numbers for abelian varieties

Let E/K then E [`n] ∼= (Z/`nZ)2. Write E [`] = 〈P1,Q1〉. For n ≥ 2, find 〈Pn,Qn〉 = E [`n] with

`Pn = Pn−1, `Qn = Qn−1.

For g ∈ GK, g(Pn) = (a1 + ...+ an`
n−1)Pn + (b1 + ...+ bn`

n−1)Qn and g(Qn) = . . .

Then ρE/K : GK → GL2(Q`) is the `-adic representation of E/K.

For general A/K, A[`n] ∼= (Z/`nZ)2 dimA. Similarly we get ρA/K : GK → GL2 dimA(Q`).

Last week: Yuan told us that ρE/K is independent of `

w(E/K) := w(ρ∗E/K, ψ, dx)

w(E/K) is independent of ψ and dx

w(E/K) ∈ {±1}
w(E/K) = −1 when K is Archimedean, (more generally w(A/K) = (−1)dimA).
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Computing root numbers

Recall that the global root number is w(E/K ) =
∏

v w(E/Kv ).

Elliptic curves (Sven)
Let E/K be a semistable elliptic curve over a number field. It turns out that,

w(E/K ) = (−1)mK+uK

mK = #{primes where E has split multiplicative reduction},
uK = #{infinite places}.

When E/K is not semistable, we have Rohrlich’s theorem.

Abelian varieties (Lilybelle)
Formulae for twisted root numbers

Analogue of Rohrlich’s theorem for tame abelian varieties

Cluster picture machinery for tame hyperelliptic curves
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The parity conjecture

Let E/K be an elliptic curve over a number field.

Birch and Swinnerton-Dyer conjecture
Assuming that L(E , s) has an analytic continuation to C,

rank(E ) = ords=1L(E , s).

Conjectural functional equation
Assuming that L(E , s) has an analytic continuation to C,

L(E , s) = w(E/K )L(E , 2− s)× (stuff), w(E/K ) ∈ {±1}.

Rephrased: (−1)ords=1L(E ,s) = w(E/K ).

The Parity Conjecture

(−1)rank(E/K) = w(E/K ) =
∏

v place of K

w(E/Kv ).

Holly Green (UCL) Study Group November 15th, 2022 7 / 13



Parity Phenomena

Predicting the existence of points of infinite order

Rational abelian varieties have even rank over Q(i ,
√
17)

An elliptic curve with infinitely many Q( 3
√
n) points

An elliptic curve whose rank grows in all even degree extensions

Goldfeld’s conjecture cannot hold when K 6= Q

. . . (see Lilybelle and Vladimir’s paper!)
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Predicting the existence of points of infinite order

The Parity Conjecture

(−1)rank(A/K) = w(A/K ) =
∏

v place of K

w(A/Kv ).

Consequently, if w(A/K ) = −1 then rank(A/K ) ≥ 1!

If E/K is semistable then
w(E/K ) = (−1)mK+uK ,

where mK = #{primes where E has split multiplicative reduction}, uK = #{infinite places}.

Let E/Q : y2 − 23y = x3 − 99997x2 − 17x + 42, ∆E = 17 · 655943686625481101. Then
mQ = 0 and uQ = 1. The parity conjecture says

(−1)rank(E/Q) = w(E/Q) = (−1)1 = −1.

Therefore E has a Q-point of infinite order. Magma can’t compute this!

Holly Green (UCL) Study Group November 15th, 2022 9 / 13



Rational abelian varieties have even rank over Q(i ,
√
17)

Let A/Q be an abelian variety and K = Q(i ,
√
17).

Fact
Each p ∈ Z splits into an even number, np, of primes in OK .

E.g. 2 splits in Q(
√
17) and ramifies in Q(i) & Q(

√
−17). In OK we have 2 = p21p

2
2.

Fact
If p1, p2|p ∈ Z, then w(A/Kp1) = w(A/Kp2).

The parity conjecture says

(−1)rank(A/K) =
∏
v

w(A/Kv ) = w(A/C)2 ·
∏
p∈Z

(∏
p|p

w(A/Kp)

)
=
∏
p∈Z
fix p|p

w(A/Kp)np = +1.

Therefore rank(A/K ) is even for any abelian variety A/Q.
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An elliptic curve with infinitely many Q( 3
√
n) points

Let E : y2 + y = x3 + x2 + x , ∆E = 19. E/Q has split multiplicative reduction at 19, so

(−1)rank(E/Q) = w(E/Q) = (−1)1+1 = +1.

In fact rank(E/Q) = 0. What about E/Q( 3
√
n)?

If 19 -n, then look at x3 − n. If n̄ is a cube in F19 then 19 = p1p2p3, else 19 = p.

If n = 19αc . Write 3
√
n =

∏k
i=1 p

ni
i =⇒ 19α =

∏k0
i=1 p

3ni
i =⇒ 19 = p31.

Fact
If E has split multiplicative reduction at p then it has split multiplicative reduction at p|p.

Therefore, mQ( 3√n) is odd and uQ( 3√n) = 2, so

(−1)rank(E/Q( 3√n)) = w(E/Q( 3
√
n)) = −1.

E has infinitely many Q( 3
√
n)-rational points!
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An elliptic curve whose rank grows across even degree extensions

Let K = Q(
√
−643), λ = 1

2(1 +
√
−643) and

E/K : y2 + xy + (λ+ 1) y = x3 + λx2 + (−λ− 60) x − 8λ+ 78.

E/K has everywhere good reduction so mK = 0 and uK = 1. Therefore

w(E/K ) = −1 ⇒ rank(E/K ) is odd.

Now let L/K be an even degree extension, mL = 0 and uL is even. Therefore

w(E/L) = +1 ⇒ rank(E/L) is even.

rank(E/K ) < rank(E/L)
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Goldfeld’s conjecture

Let E : y2 + y = x3 − x2, ∆E = −11. E/Q has split mult. reduction at 11 ⇒ w(E/Q) = +1.

Fact
Let d ∈ K×/(K×)2. Then w(Ed/K ) = w(E/K )w(E/K (

√
d)).

w(Ed/Q) = w(E/Q(
√
d)) are equally distributed.

Goldfeld’s conjecture

rank(Ed/Q) =

{
0 for 50% of d ∈ Q× mod �

1 for 50% of d ∈ Q× mod �

Now let K = Q(
√
−643), λ = 1

2(1 +
√
−643).

E/K : y2 + xy + (λ+ 1) y = x3 + λx2 + (−λ− 60) x − 8λ+ 78

has good reduction so w(E/K ) = −1 and w(E/K (
√
d)) = +1 ⇒ w(Ed/K ) = −1.

An analogue of Goldfeld’s conjecture can’t be true when K 6= Q!
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Thank you for your attention!
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