Birch–Swinnerton-Dyer Study Group: The Parity Conjecture

Holly Green

University College London

October 27th, 2020

Let E/K be an elliptic curve over a number field.

Theorem (Mordell–Weil)

 $E(K) \cong \mathbb{Z}^{rank(E/K)} \times E(K)_{tors}$

What is rank(E/K)?

Conjecture (BSD 1)

L(E/K, s) has analytic continuation to C
 rank(E/K) = ord_{s=1}L(E/K, s)

The Parity Conjecture

Conjecture (Functional equation)

 $L(E/K, s) = \pm L(E/K, 2-s) \cdot (stuff)$

The sign is called the global root number and is the product of local root numbers:

$$\omega(E/K) = \prod_{
u} \omega_{
u}(E/K)$$

The Parity Conjecture

Conjecture (Functional equation)

 $L(E/K, s) = \pm L(E/K, 2-s) \cdot (stuff)$

The sign is called the global root number and is the product of local root numbers:

$$\omega(E/K) = \prod_{\nu} \omega_{\nu}(E/K)$$

Note that $\omega(E/K) = (-1)^{\operatorname{ord}_{s=1}L(E/K,s)}$, leading to:

Conjecture (The Parity Conjecture) $(-1)^{rank(E/K)} = \omega(E/K)$

The *p*-Parity Conjecture

Write

$$\begin{split} & \operatorname{III}(E/K)[p^{\infty}] = \{ \text{elements of order } p^n, n \geq 0 \} \\ & = (\mathbb{Q}_p/\mathbb{Z}_p)^{r_p} \times (\text{finite } p\text{-group of } \Box \text{ order}) \end{split}$$

Define

$$\begin{aligned} \operatorname{rank}_p(E/K) &= \operatorname{rank}(E/K) + r_p \\ &= \operatorname{dim}_{\mathbb{Q}_p}(\operatorname{Hom}_{\mathbb{Z}_p}(\lim_{\to} \operatorname{Sel}_{p^n}(E/K), \mathbb{Q}_p/\mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \end{aligned}$$

Conjecture (The *p*-Parity Conjecture)

$$(-1)^{\operatorname{rank}_p(E/K)} = \omega(E/K)$$

Current Status

Conjecture (The Parity Conjecture)

 $(-1)^{\operatorname{rank}(E/K)} = \omega(E/K)$

• (Assuming $|III| < \infty$) Proved for E/K, where K is a number field.

Conjecture (The *p*-Parity Conjecture)

 $(-1)^{\operatorname{rank}_p(E/K)} = \omega(E/K)$

Proved for E/\mathbb{Q} .

- Proved (in most cases) for E/K, where K is a totally real field.
- Proved for E/K with a *p*-isogeny.

The Local Root Number

The local root number is defined using the theory of "local" ϵ -factors.

Theorem (Langlands–Deligne)

There is a unique definition of local ϵ -factors satisfying the following:

- Multiplicativity
- Inductivity in degree 0
- Quasi-characters
- Semi-simplification

Letting $K = \mathbb{Q}$:

Definition

$$\omega_{\rho}(E/\mathbb{Q}) = \frac{\epsilon(\rho)}{|\epsilon(\rho)|}$$
 where $\rho = (V_{l}(E))^{*} \otimes_{\mathbb{Q}_{l}} \mathbb{C}$

Example 1

Theorem

$$\omega_{\nu}(E/K) = \begin{cases} -1 & K_{\nu} = \mathbb{R} \text{ or } \mathbb{C} \\ +1 & E/K_{\nu} \text{ has good reduction} \\ -1 & E/K_{\nu} \text{ has split multiplicative reduction} \\ +1 & E/K_{\nu} \text{ has non-split multiplicative reduction} \end{cases}$$

Let
$$K = \mathbb{Q}$$
 and $E: y^2 + xy = x^3 + x^2 - 95x - 399$, (114.a1)

Have $\Delta(E/\mathbb{Q})=2^2\cdot 3^5\cdot 19$ and $\mathsf{rank}(E/\mathbb{Q})=0$

- There is one infinite place
- When p = 2 or 3, reduction type is non-split multiplicative
- When p = 19, reduction type is split multiplicative

$$\omega(E/K) = -1 \cdot + 1 \cdot + 1 \cdot - 1 = +1$$

Holly Green (UCL)

Example 2

Now let $K = \mathbb{Q}(\sqrt{19})$ and $E: y^2 + xy = x^3 + x^2 - 95x - 399$, (114.a1)

- There are 2 infinite places
- There is 1 prime above 2, reduction is non-split multiplicative
- There are 2 primes above 3, reduction is non-split multiplicative
- There is 1 prime above 19, reduction is split multiplicative

$$\omega(E/K) = (-1)^2 \cdot +1 \cdot (+1)^2 \cdot -1 = -1$$

Have

$$\mathsf{rank}(E/K) = \mathsf{rank}(E/\mathbb{Q}) + \mathsf{rank}(E_{19}/\mathbb{Q})$$

where

$$E_{19}: y^2 = x^3 - x^2 - 551728x - 157527872$$
 and $\mathrm{rank}(E_{19}/\mathbb{Q}) = 1$