Parity of ranks of hyperelliptic curves

Holly Green
University College London

March 2nd, 2021

Goal

- What can we already say about ranks of curves?
- A new method for extracting rank information for hyperelliptic curves
- The consequences this has to the Parity Conjecture

Disclaimer: will assume \#Ш is finite throughout.

Rational points on abelian varieties

The rational points on abelian varieties have a particularly nice structure.

Theorem (Mordell-Weil)

Let A be an abelian variety over \mathbb{Q}. Then

$$
A(\mathbb{Q}) \cong \mathbb{Z}^{\operatorname{rank}(A / \mathbb{Q})} \times A(\mathbb{Q})_{\text {tors }},
$$

for some $\operatorname{rank}(A / \mathbb{Q}) \in \mathbb{N}$ and $A(\mathbb{Q})_{\text {tors }}$ a finite subgroup.

- The 1-dimensional abelian varieties are elliptic curves.
- The 2-dimensional abelian varieties arise from hyperelliptic curves.

Hyperelliptic curves

A hyperelliptic curve X / \mathbb{Q} of genus g is given by an equation

$$
X: y^{2}=f(x)
$$

where $f(x) \in \mathbb{Q}[x]$ has degree $2 g+1$ or $2 g+2$ and $\Delta_{x} \neq 0$.
By Faltings theorem, $X(\mathbb{Q})$ is finite when $g \geq 2$. Instead we look at the Jacobian of the curve.

When $g=2$, the Jacobian looks like pairs of points with

$$
\left[P, P^{\prime}\right]+\left[Q, Q^{\prime}\right]=\left[R, R^{\prime}\right]
$$

We know very little about the rank of $\operatorname{Jac} X$ in general.

The Jacobian

More formally:

- A divisor on X / \mathbb{Q} is a finite sum $\sum_{P \in X(\overline{\mathbb{Q}})} n_{P}[P]$, where $n_{P} \in \mathbb{Z}$. This has degree $\sum_{P \in X(\overline{\mathbb{Q}})} n_{P}$.
- A principal divisor is $\sum_{P \in X(\overline{\mathbb{Q}})} \operatorname{ord}_{P}(f)[P]$ for $f \in \overline{\mathbb{Q}}(X)^{\times}$.

Definition

The Jacobian is Jac $X(\overline{\mathbb{Q}}):=\{$ divisors of degree 0$\} /\{$ principal divisors $\}$. Moreover, a point in $\operatorname{Jac} X(\mathbb{Q})$ is a divisor class fixed by $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

If X is a curve of genus g, then $\operatorname{Jac} X$ is an abelian variety of dimension g. We will be interested in Jacobians of hyperelliptic curves. In particular, their ranks.

Determining the rank of hyperelliptic curves

Conjecture (Birch and Swinnerton-Dyer, Tate)

Let X / \mathbb{Q} be a smooth curve. Assuming $L(\operatorname{Jac} X / \mathbb{Q}, s)$ has an analytic continuation to \mathbb{C},

- $\operatorname{rank}(\operatorname{Jac} X / \mathbb{Q})=\operatorname{ord}_{s=1} L(\operatorname{Jac} X / \mathbb{Q}, s)$,
- the leading term in the Taylor expansion of $L(\operatorname{Jac} X / \mathbb{Q}, s)$ at $s=1$ is

$$
\operatorname{BSD}(\operatorname{Jac} X / \mathbb{Q})=\frac{\# \amalg(\operatorname{Jac} X) \Omega(\operatorname{Jac} X) \operatorname{Reg}(\operatorname{Jac} X) C(\operatorname{Jac} X)}{\# \operatorname{Jac} X(\mathbb{Q})_{\mathrm{tors}}^{2}}
$$

Conjecture (The Parity Conjecture)

Let X / \mathbb{Q} be a smooth curve. Then

$$
(-1)^{\operatorname{rank}(\operatorname{Jac} X / \mathbb{Q})}=w(\operatorname{Jac} X / \mathbb{Q}):=\prod_{v=p, \infty} w_{v}(\operatorname{Jac} X / \mathbb{Q}) .
$$

Example: Parity Conjecture for elliptic curves

Theorem (Rohrlich)

For E / \mathbb{Q} and elliptic curve, $w_{\infty}(E / \mathbb{Q})=-1$ and

$$
w_{p}(E / \mathbb{Q})= \begin{cases}+1 & E / \mathbb{Q}_{p} \text { has good reduction } \\ -1 & E / \mathbb{Q}_{p} \text { has split multiplicative reduction } \\ +1 & E / \mathbb{Q}_{p} \text { has non-split multiplicative reduction }\end{cases}
$$

Take $E: y^{2}=x^{3}+4 x^{2}-80 x+400(715 . \mathrm{b} 1)$, then $\Delta_{E}=-5^{3} \cdot 11 \cdot 13$

- When $p=5$ or 13 , reduction is split multiplicative
- When $p=11$, reduction is non-split multiplicative

$$
\omega(E / \mathbb{Q})=(-1)^{3}=-1 \Rightarrow \operatorname{rank}(E / \mathbb{Q}) \text { is odd. }
$$

A new method for extracting rank information

Define a hyperelliptic curve C / \mathbb{Q} by $C: y^{2}=f_{1}(x) f_{2}(x), f_{1}, f_{2} \in \mathbb{Q}[x]$.
We want to be able to say something about $\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})$.
Consider the following diagram of curves

Theorem (G.)

Let C_{1}, C_{2}, C, B be as above. Then,

- there's an isogeny φ : Jac $C_{1} \times \operatorname{Jac} C_{2} \times \mathrm{Jac} C \rightarrow \mathrm{Jac} B$,
- $\operatorname{BSD}\left(\operatorname{Jac} C_{1}\right) B S D\left(J a c C_{2}\right) B S D(J a c C)=B S D(J a c B)$.

A new method for extracting rank information

Recall that

$$
\operatorname{BSD}(\operatorname{Jac} X)=\frac{\# \amalg(\operatorname{Jac} X) \Omega(\operatorname{Jac} X) \operatorname{Reg}(\operatorname{Jac} X) C(\operatorname{Jac} X)}{\# \operatorname{Jac} X(\mathbb{Q})_{\mathrm{tors}}^{2}}
$$

The following quotient of regulators can be shown to contains rank information:
$\square \cdot 2^{\operatorname{rank}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})}=\frac{\operatorname{Reg}(\operatorname{Jac} B)}{\operatorname{Reg}\left(\operatorname{Jac} C_{1}\right) \operatorname{Reg}\left(\operatorname{Jac} C_{2}\right) \operatorname{Reg}(\operatorname{Jac} C)}$
Using our previous observation:

$$
=\frac{\# Ш\left(\operatorname{Jac} C_{1}\right) \# Ш\left(\operatorname{Jac} C_{2}\right) \# Ш(\operatorname{Jac} C)}{\# Ш(\operatorname{Jac} B)} \frac{\Omega\left(\operatorname{Jac} C_{1}\right) \Omega\left(\operatorname{Jac} C_{\mathbf{2}}\right) \Omega(\operatorname{Jac} C)}{\Omega(\operatorname{Jac} B)} \prod_{p} \frac{c_{p}\left(\operatorname{Jac} C_{\mathbf{1}}\right) c_{p}\left(\operatorname{Jac} C_{\mathbf{2}}\right) c_{p}(\operatorname{Jac} C)}{c_{p}(\operatorname{Jac} B)}
$$

This is almost an expression of local data. What can we say about \#Ш?

Deficiency

Definition

Let X / \mathbb{Q} be a curve of genus g. We say that X is deficient at a place v of \mathbb{Q} if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Example

Is $y^{2}=\left(x^{2}-6\right)\left(x^{4}+1\right)$ deficient at 5 ? Is there a degree 1 divisor fixed by $G_{\mathbb{Q}_{5}}$? Yes as 6 is a square in $\mathbb{Q}_{5} \Rightarrow$ this is not deficient.

Controlling \#Ш

Let X / \mathbb{Q} be a curve of genus g. For a place v of \mathbb{Q}, define

$$
d_{v}(X):= \begin{cases}2 & X \text { is deficient at } v \\ 1 & \text { otherwise }\end{cases}
$$

Theorem (B. Poonen \& M. Stoll)

For X / \mathbb{Q} a curve, $\# \amalg(\operatorname{Jac} X)=\square \cdot d_{\infty}(X) \prod_{p} d_{p}(X)$.

$$
\begin{aligned}
& \text { So, } \square \cdot 2^{\operatorname{rank}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})} \\
& =\frac{\Omega\left(\operatorname{Jac} C_{1}\right) \Omega\left(\operatorname{Jac} C_{2}\right) \Omega(\operatorname{Jac} C)}{\Omega(\operatorname{Jac} B)} \prod_{v=p, \infty} \frac{d_{v}\left(C_{1}\right) d_{v}\left(C_{2}\right) d_{v}(C)}{d_{v}(B)} \prod_{p} \frac{c_{p}\left(\operatorname{Jac} C_{1}\right) c_{p}\left(\operatorname{Jac} C_{2}\right) c_{p}(\operatorname{Jac} C)}{c_{p}(\operatorname{Jac} B)} .
\end{aligned}
$$

Theorem (G.)

$$
\operatorname{rank}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q}) \equiv \lambda_{\infty}+\sum_{p} \lambda_{p} \quad \bmod 2 .
$$

Example: elliptic curves

Let $f_{1}(x)=x^{2}+x-1$ and $f_{2}(x)=x$.
First observe that $C_{1}(\mathbb{Q}), C_{2}(\mathbb{Q}), C(\mathbb{Q}), B(\mathbb{Q}) \neq 0$ so $d_{v}=1$.

- Jac $C_{1}=\mathrm{Jac} C_{2}=0$
- Jac $C=C$ is the elliptic curve 20.a3, $\Delta_{\mathrm{Jac} C}=2^{4} \cdot 5$
- $B: y^{2}=z^{4}+z^{2}-1$ so Jac $B: y^{2}=x^{3}+x^{2}+4 x+4$ is the elliptic curve 20.a4, $\Delta_{\mathrm{Jac} B}=-2^{8} \cdot 5^{2}$

We obtain the following data:

$$
\begin{array}{ll}
c_{2}(\operatorname{Jac} C)=3 & c_{2}(\operatorname{Jac} B)=3 \\
c_{5}(\operatorname{Jac} C)=1 & c_{5}(\operatorname{Jac} B)=2 \\
\Omega(\operatorname{Jac} C)=5.64875 \ldots & \Omega(\operatorname{Jac} B)=2.824375 \ldots
\end{array}
$$

Therefore,

$$
2^{\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})} \equiv \frac{3}{3} \times \frac{1}{2} \times \frac{5.64875 \ldots}{2.824375 \ldots}=1 \Rightarrow \operatorname{rank}(\operatorname{Jac} C / \mathbb{Q}) \text { is even. }
$$

Example: genus 2 hyperelliptic curves

Let $f_{1}(x)=x^{2}-2 x-3$ and $f_{2}(x)=x^{4}-2 x^{3}-x^{2}-2 x-3$.
Again observe that $C_{1}(\mathbb{Q}), C_{2}(\mathbb{Q}), C(\mathbb{Q}), B(\mathbb{Q}) \neq 0$ so $d_{v}=1$.

- Jac $C_{1}=0$
- Jac C_{2} is the elliptic curve 83.a1, $\Delta_{\mathrm{Jac}} C_{2}=-83$
- C is the hyperelliptic curve 249.a.6723.1, $\Delta_{\mathrm{Jac}} \mathrm{C}=-3^{4} \cdot 83$
- B is a genus 3 curve

We obtain the following data:
$c_{3}\left(\operatorname{Jac} C_{2}\right)=1$
$c_{3}(\operatorname{Jac} C)=4$
$c_{3}(\operatorname{Jac} B)=2$
$c_{83}\left(\operatorname{Jac} C_{2}\right)=1$
$c_{83}(\operatorname{Jac} C)=1$
$c_{83}(\mathrm{Jac} B)=1$
$\Omega\left(\operatorname{Jac} C_{2}\right)=3.37 \ldots \quad \Omega(\operatorname{Jac} C)=25.78 \ldots \quad \Omega(\operatorname{Jac} B)=348.02 \ldots$

Therefore,

$$
2^{\operatorname{rank}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})} \equiv \frac{4}{2} \times \frac{1}{1} \times \frac{1}{4}=\frac{1}{2} \Rightarrow \operatorname{rank}(\operatorname{Jac} C / \mathbb{Q}) \text { is even. }
$$

Proving the Parity Conjecture

We've shown that for $C_{1}: y^{2}=f_{1}(x), C_{2}: y^{2}=f_{2}(x), C: y^{2}=f_{1}(x) f_{2}(x)$ $\operatorname{rank}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q}) \equiv \lambda_{\infty}+\sum_{p} \lambda_{p} \bmod 2$.
The Parity Conjecture predicts that

$$
(-1)^{\operatorname{rank}(\operatorname{Jac} X / \mathbb{Q})}=w(\operatorname{Jac} X / \mathbb{Q})=\prod_{v} w_{v}(\operatorname{Jac} X / \mathbb{Q})
$$

At each place v of \mathbb{Q} define a discrepancy factor

$$
\mu_{v}=(-1)^{\lambda_{v}} w_{v}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right) w_{v}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right) w_{v}(\operatorname{Jac} C / \mathbb{Q}) .
$$

Taking the product over all v :
$\prod_{v=p, \infty} \mu_{v}=(-1)^{\operatorname{rank}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right)+\operatorname{rank}\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})} w\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right) w\left(\operatorname{Jac} C_{2} / \mathbb{Q}\right) w(\operatorname{Jac} C / \mathbb{Q})$.
Assume that PC holds for $\mathrm{Jac} C_{1}$ and $\operatorname{Jac} C_{2}$, then proving it for $\operatorname{Jac} C$ is equivalent to showing that $\prod_{v} \mu_{v}=+1$.

Hilbert symbols

Definition

The Hilbert symbol of $a, b \in \mathbb{Q}_{v}^{*}$ is

$$
(a, b)_{v}= \begin{cases}+1 & z^{2}-a x^{2}-b y^{2}=0 \text { has a non-zero } \mathbb{Q}_{v} \text {-solution } \\ -1 & \text { otherwise }\end{cases}
$$

This is a symmetric bilinear pairing satisfying a product law:

$$
\prod_{v}(a, b)_{v}=+1
$$

where $a, b \in \mathbb{Q}^{*}$ and the product is taken over all places of \mathbb{Q}.
Idea: can we express μ_{v} as a product of Hilbert symbols?

Proving the Parity Conjecture for elliptic curves

Let C be an elliptic curve over \mathbb{Q} with a rational 2-torsion point. Then

$$
C: y^{2}=x\left(x^{2}+a x+b\right)
$$

so let $f_{1}(x)=x^{2}+a x+b$ and $f_{2}(x)=x$. Assume $a \neq 0$.
Then Jac $C_{1}=\operatorname{Jac} C_{2}=0$.
It can be shown that for each place v of \mathbb{Q},

$$
\mu_{v}:=(-1)^{\lambda_{v}} w_{v}(C / \mathbb{Q})=(a,-b)_{v}\left(-2 a, a^{2}-4 b\right)_{v}
$$

Taking the product over all places proves the Parity Conjecture, i.e.

$$
(-1)^{\operatorname{rank}(C / \mathbb{Q})} w(C / \mathbb{Q})=+1
$$

Can we generalise this?

Let $f_{1}(x) \in \mathbb{Q}[x]$ be monic and $f_{2}(x)=x$. Then

$$
C_{1}: y^{2}=f_{1}(x), \quad C_{2}: y^{2}=x, \quad C: y^{2}=x f_{1}(x), \quad B: y^{2}=f_{1}\left(x^{2}\right)
$$

Recall, to calculate μ_{∞} (i.e. λ_{∞} and ω_{∞}) we must look at these curves over \mathbb{R}.

Theorem (G.)

$$
\mu_{\infty}= \begin{cases}-1 & \# \mathbb{R}_{<0} \text { roots of } f_{1} \equiv \operatorname{deg} f_{1}-(2 \text { or } 3) \bmod 4, \\ +1 & \text { otherwise. }\end{cases}
$$

Can we find expressions to insert into Hilbert symbols which reflect this?

Sturm's theorem

The Sturm sequence for $f(x) \in \mathbb{R}[x]$ is

$$
P_{0}=f(x), \quad P_{1}=f^{\prime}(x), \quad P_{i+1} \equiv-P_{i-1} \quad \bmod P_{i}, \text { for } i \geq 1 .
$$

Example

$$
P_{0}=x^{2}+a x+b, \quad P_{1}=2 x+a, \quad P_{2}=\frac{1}{4}\left(a^{2}-4 b\right) .
$$

For $\alpha \in \mathbb{R}$, let $V(\alpha)$ be the number of sign changes in

$$
P_{0}(\alpha), P_{1}(\alpha), P_{2}(\alpha), \ldots
$$

Theorem (Sturm's theorem)

The number of \mathbb{R} roots of $f(x)$ in the interval $(s, t]$ is $V(s)-V(t)$.

A new conjecture

Let $I\left(P_{i}\right), c\left(P_{i}\right)$ be the lead and constant coefficients of the Sturm polynomials for $f_{1}(x)$.

Conjecture (G.)

Let $f_{1}(x) \in \mathbb{Q}[x]$ be monic and $f_{2}(x)=x$. Then

$$
\operatorname{deg} f_{1}-1
$$

$$
\mu_{v}=\prod_{i=0}\left(-c\left(P_{i}\right), c\left(P_{i+1}\right)\right)_{v}\left(l\left(P_{i}\right),-l\left(P_{i+1}\right)\right)_{v}
$$

- When $f_{1}(x)=x^{2}+a x+b$,

$$
\mu_{v}=(-b, a)_{v}\left(-2 a, a^{2}-4 b\right)_{v}
$$

■ When $f_{1}(x)=x^{3}+a x^{2}+b x+c$, let $D=a^{2}-3 b, L=a b-9 c$,

$$
\mu_{v}=(b,-c)_{v}(-2 L, \Delta)_{v}(L,-b)_{v}(D,-3 \Delta)_{v}
$$

Final remarks

Assuming the conjecture holds, we have the following consequences:

- When $C_{1}: y^{2}=f_{1}(x), C: y^{2}=x f_{1}(x)$, the Parity Conjecture holds for $\operatorname{Jac} C$ if and only if it holds for $\operatorname{Jac} C_{1}$:

$$
1=\prod_{v} \mu_{v}=(-1)^{\operatorname{rank}\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right)+\operatorname{rank}(\operatorname{Jac} C / \mathbb{Q})} w\left(\operatorname{Jac} C_{1} / \mathbb{Q}\right) w(\operatorname{Jac} C / \mathbb{Q}) .
$$

- The Parity Conjecture holds for any hyperelliptic curve

$$
y^{2}=c \prod_{i=1}^{n}\left(x-\alpha_{i}\right), \quad c, \alpha_{i} \in \mathbb{Q}
$$

Thank you for listening!

