Parity of ranks of elliptic curves

Holly Green

University College London
March 2nd, 2022

Main results

Theorem (G., Maistret)

Let K be a number field. Let E_{1}, E_{2} be elliptic curves over K such that $E_{1}[2] \cong E_{2}[2]$ as Galois modules. Assuming finiteness of \amalg, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of E_{1} iff it correctly predicts the parity of the rank of E_{2}.

In particular, BSD correctly predicts the parity of the rank of $E_{1} \times E_{2}$.

Theorem

Let p be a prime. Let K be a totally real field. The p-Parity Conjecture holds for all elliptic curves over K.

Elliptic curves

$$
y^{2}=x^{3}-x
$$

\mathbb{Q}-points: $(0,0),(\pm 1,0), \infty$.
This is all of them.

$$
y^{2}=x^{3}+2
$$

\mathbb{Q}-points: $(-1, \pm 1), \infty$.
There are infinitely many of them.

Ranks of elliptic curves

Let E / \mathbb{Q} be an elliptic curve. The \mathbb{Q}-points on E form an abelian group.

Theorem (Mordell-Weil)

There is some $r \in \mathbb{N}$ and a finite group T such that $E(\mathbb{Q}) \cong \mathbb{Z}^{r} \times T$.

- $E: y^{2}=x^{3}-x, \quad E(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$
- $E: y^{2}=x^{3}+2, \quad E(\mathbb{Q}) \cong\langle(-1,1)\rangle \cong \mathbb{Z}$

Notation: write $\operatorname{rank}(E):=r$ and $E(\mathbb{Q})_{\text {tors }}:=T$.

Conjecture (Birch and Swinnerton-Dyer I)

Assuming $L(E, s)$ has an analytic continuation to $\mathbb{C}, \operatorname{rank}(E)=\operatorname{ord}_{s=1} L(E, s)$.

The Parity Conjecture

Let E / \mathbb{Q} be an elliptic curve.

Conjecture

The completed L-function $L^{*}(E, s)$ satisfies

$$
L^{*}(E, s)=w(E) L^{*}(E, 2-s), \quad w(E) \in\{ \pm 1\} .
$$

Consequently,

$$
(-1)^{\operatorname{ord}_{s=1} L(E, s)}=w(E):=w_{\infty}(E) \cdot \prod_{p} w_{p}(E) .
$$

Conjecture (Birch and Swinnerton-Dyer I)
Assuming $L(E, s)$ has an analytic continuation to $\mathbb{C}, \operatorname{rank}(E)=\operatorname{ord}_{s=1} L(E, s)$.

Conjecture (The Parity Conjecture)

$$
(-1)^{\operatorname{rank}(E)}=w(E):=w_{\infty}(E) \cdot \prod w_{p}(E)
$$

Example

Conjecture (The Parity Conjecture)

$$
(-1)^{\operatorname{rank}(E)}=w(E):=w_{\infty}(E) \cdot \prod_{p} w_{p}(E) .
$$

Let $E: y^{2}=f(x)$. Then

$$
w_{\infty}(E)=-1, \quad w_{p}(E)= \begin{cases}+1 & \bar{f}(x) \text { has no repeated roots }(p \text { odd }) \\ -1 & \bar{f}(x)=(x-\alpha)^{2}(x-\beta) \text { and } \bar{\alpha}-\bar{\beta}=\square(p \text { odd }) \\ +1 & \bar{f}(x)=(x-\alpha)^{2}(x-\beta) \text { and } \bar{\alpha}-\bar{\beta} \neq \square(p \text { odd }) \\ \ldots & \end{cases}
$$

Let $f(x)=x^{3}+4 x^{2}-80 x+400, \Delta_{f}=-2^{8} \cdot 5^{3} \cdot 11 \cdot 13$.

$$
w(E)=w_{\infty}(E) w_{2}(E) w_{5}(E) w_{11}(E) w_{13}(E)=(-1)(+1)(-1)(+1)(-1)=-1
$$

PC says that E has odd rank $\Rightarrow E$ has infinitely many rational points.

Current status

Let K be a number field. Let E / K be an elliptic curve.

Conjecture (The Parity Conjecture)

$$
(-1)^{\operatorname{rank}(E / K)}=w(E / K):=\prod_{V} w_{v}(E / K) .
$$

Under the assumption that $\# Ш(E / K)$ is finite, certain cases have been proved:

- $K=\mathbb{Q}$ (Monsky)
- E admits an ℓ-isogeny (Dokchitser-Dokchitser, Česnavičius)
- K is a totally real field (Dokchitser-Dokchitser, Nekovář)
- true for $y^{2}=f(x)$ iff true for $y^{2}=d f(x)$, for $d \in K^{\times}$(Kramer-Tunnell)
- true for E_{1} iff true for E_{2}, when $E_{1}, E_{2} / K$ and $E_{1}[2] \cong E_{2}[2]$ (G., Maistret)

Strategy: proving Parity Conjecture for $E_{1}[2] \cong E_{2}[2]$

Theorem (G., Maistret)

Let E_{1}, E_{2} be elliptic curves over \mathbb{Q} such that $E_{1}[2] \cong E_{2}[2]$ as Galois modules. Assuming finiteness of $Ш$, the Parity Conjecture holds for E_{1} iff it holds for E_{2}.

- Reword the assumption on the 2-torsion
- Exhibit an isogeny
- Compute the parity of the rank
- Write this as a product of local terms, then compare to local root numbers

The 2-torsion assumption

Let $E_{1}, E_{2} / \mathbb{Q}$ have $E_{1}[2] \cong E_{2}[2]$ as Galois-modules.
E.g. $E_{1}: y^{2}=x^{3}-2$ and $E_{2}: y^{2}=x^{3}-4$, both cubics have s.f. $\mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$.

Lemma

There exists $f(x)=x^{3}+a x^{2}+b x+c$, separable, with $c \neq 0$, such that $E_{1} \cong E: y^{2}=f(x)$ and E_{2} is a quadratic twist of

$$
E^{\prime}: y^{2}=x^{3}+b x^{2}+a c x+c^{2}
$$

Our goal follows from:

Theorem

Let $f(x), E, E^{\prime}$ be as above. Assuming finiteness of \amalg, the Parity Conjecture holds for E iff it holds for E^{\prime}.

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=w(E) w\left(E^{\prime}\right)
$$

Strategy: proving Parity Conjecture for $E_{1}[2] \cong E_{2}[2]$

Theorem (G., Maistret)

Let E_{1}, E_{2} be elliptic curves over \mathbb{Q} such that $E_{1}[2] \cong E_{2}[2]$ as Galois modules. Assuming finiteness of \amalg, the Parity Conjecture holds for E_{1} iff it holds for E_{2}.

- Reword the assumption on the 2-torsion
- It is enough to show that PC holds for E iff E^{\prime}
- Exhibit an isogeny
- Compute the parity of the rank
- Write this as a product of local terms, then compare to local root numbers

Exhibiting an isogeny

Let $f(x)=x^{3}+a x^{2}+b x+c(c \neq 0)$. Define

$$
E: y^{2}=f(x), \quad \quad E^{\prime}: y^{2}=x^{3}+b x^{2}+a c x+c^{2}
$$

Define a genus 2 curve

$$
C: y^{2}=f\left(x^{2}\right)
$$

We associate to C an abelian variety Jac C.

Lemma

There's a (2, 2)-isogeny

$$
\phi: E \times E^{\prime} \rightarrow \operatorname{Jac} C .
$$

Strategy: proving Parity Conjecture for $E_{1}[2] \cong E_{2}[2]$

Theorem (G., Maistret)

Let E_{1}, E_{2} be elliptic curves over \mathbb{Q} such that $E_{1}[2] \cong E_{2}[2]$ as Galois modules. Assuming finiteness of Ш, the Parity Conjecture holds for E_{1} iff it holds for E_{2}.

- Reword the assumption on the 2-torsion
- It is enough to show that PC holds for E iff E^{\prime}
- Exhibit an isogeny
- There's a (2, 2)-isogeny $\phi: E \times E^{\prime} \rightarrow \mathrm{Jac} C$
- Compute the parity of the rank
- Write this as a product of local terms, then compare to local root numbers

Computing the parity of the rank

Conjecture (Birch and Swinnerton-Dyer II)

$$
\lim _{s=1} \frac{L(E, s)}{(s-1)^{r}}=\frac{\# \amalg(E) \cdot \Omega(E) \cdot \operatorname{Reg}(E) \cdot \prod_{p} c_{p}(E)}{\# E(\mathbb{Q})_{\text {tors }}^{2}}=: \operatorname{BSD}(E)
$$

- (Cassels-Tate) $\operatorname{BSD}\left(E \times E^{\prime}\right)=\operatorname{BSD}(\operatorname{Jac} C)$

$$
\frac{\operatorname{Reg}(E) \cdot \operatorname{Reg}\left(E^{\prime}\right)}{\operatorname{Reg}(\operatorname{Jac} C)}=\frac{\# Ш(\operatorname{Jac} C) \cdot \Omega(\operatorname{Jac} C) \cdot \prod_{p} c_{p}(\operatorname{Jac} C)}{\Omega(E) \cdot \Omega\left(E^{\prime}\right) \cdot \prod_{p} c_{p}(E) c_{p}\left(E^{\prime}\right)} \cdot \square_{\mathbb{Q}}
$$

- LHS $=2^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)} \cdot \square_{\mathbb{Q}}$
$\square($ Poonen-Stoll $) \# Ш(J$ ac $C)=d_{\infty}(C) \cdot \prod_{p} d_{p}(C) \cdot \square_{\mathbb{Q}}$

$$
2^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\frac{\Omega(\operatorname{Jac} C) d_{\infty}(C)}{\Omega(E) \Omega\left(E^{\prime}\right)} \cdot \prod_{p} \frac{c_{p}(\operatorname{Jac} C) d_{p}(C)}{c_{p}(E) c_{p}\left(E^{\prime}\right)} \cdot \square_{\mathbb{Q}}
$$

Example

$$
2^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\frac{\Omega(\operatorname{Jac} C) d_{\infty}(C)}{\Omega(E) \Omega\left(E^{\prime}\right)} \cdot \prod_{p} \frac{c_{p}(\operatorname{Jac} C) d_{p}(C)}{c_{p}(E) c_{p}\left(E^{\prime}\right)} \cdot \square_{\mathbb{Q}}
$$

Let $f(x)=x^{3}-2 x+1$. Then

$$
E: y^{2}=f(x), \quad E^{\prime}: y^{2}=x^{3}-2 x^{2}+1, \quad C: y^{2}=f\left(x^{2}\right)
$$

(these are 40.a3, 20.a3, 800.a.409600.1). The local data is:

$$
\begin{array}{llll}
\Omega(\operatorname{Jac} C)=16.77 \ldots & d_{\infty}(C)=1 & \Omega(E)=5.93 \ldots & \Omega\left(E^{\prime}\right)=5.65 \ldots \\
c_{2}(\operatorname{Jac} C)=12 & d_{2}(C)=1 & c_{2}(E)=2 & c_{2}\left(E^{\prime}\right)=3 \\
c_{5}(\operatorname{Jac} C)=1 & d_{5}(C)=1 & c_{5}(E)=1 & c_{5}\left(E^{\prime}\right)=1
\end{array}
$$

Therefore, $2^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\left(\frac{1}{2}\right) \cdot(2) \cdot(1) \cdot \square_{\mathbb{Q}} \Rightarrow \operatorname{rank}(E) \equiv \operatorname{rank}\left(E^{\prime}\right) \bmod 2$.

Strategy: proving Parity Conjecture for $E_{1}[2] \cong E_{2}[2]$

Theorem (G., Maistret)

Let E_{1}, E_{2} be elliptic curves over \mathbb{Q} such that $E_{1}[2] \cong E_{2}[2]$ as Galois modules. Assuming finiteness of $Ш$, the Parity Conjecture holds for E_{1} iff it holds for E_{2}.

- Reword the assumption on the 2-torsion
- It is enough to show that PC holds for E iff E^{\prime}
- Exhibit an isogeny
- There's a (2, 2)-isogeny $\phi: E \times E^{\prime} \rightarrow \mathrm{Jac} C$
- Compute the parity of the rank
- Cassels + regulator result + Poonen-Stoll
- Write this as a product of local terms, then compare to local root numbers

Comparison to the Parity Conjecture

Recall, the Parity Conjecture says that $(-1)^{\operatorname{rank}(E)}=w(E)$. We are aiming to show:

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=w(E) w\left(E^{\prime}\right):=w_{\infty}(E) w_{\infty}\left(E^{\prime}\right) \cdot \prod_{p} w_{p}(E) w_{p}\left(E^{\prime}\right)
$$

So far

$$
2^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\frac{\Omega(\operatorname{Jac} C) d_{\infty}(C)}{\Omega(E) \Omega\left(E^{\prime}\right)} \cdot \prod_{p} \frac{c_{p}(\operatorname{Jac} C) d_{p}(C)}{c_{p}(E) c_{p}\left(E^{\prime}\right)} \cdot \square_{\mathbb{Q}}
$$

Theorem (G., Maistret)

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\lambda_{\infty} \cdot \prod_{p} \lambda_{p} \quad\left\{\begin{array}{l}
\lambda_{\infty}=(-1)^{\operatorname{ord}_{2}\left(\frac{\Omega(\operatorname{Jac} C) d_{\infty}(C)}{\Omega(E) \Omega\left(E^{\prime}\right)}\right)} \\
\lambda_{p}=(-1)^{\operatorname{ord}_{2}\left(\frac{c_{p}\left(\operatorname{Jac}(C) d_{p}(C)\right.}{c_{p}(E) c_{p}\left(E^{\prime}\right)}\right)}
\end{array}\right.
$$

Does $\lambda_{\infty}=w_{\infty}(E) w_{\infty}\left(E^{\prime}\right)$ and $\lambda_{p}=w_{p}(E) w_{p}\left(E^{\prime}\right)$?

Example

Theorem (G., Maistret)

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\lambda_{\infty} \cdot \prod_{p} \lambda_{p} \quad\left\{\begin{array}{l}
\lambda_{\infty}=(-1)^{\operatorname{ord}_{2}\left(\frac{\Omega(\operatorname{Jac} C) d_{\infty}(C)}{\Omega(E) \Omega\left(E^{\prime}\right)}\right)} \\
\lambda_{p}=(-1)^{\operatorname{ord}_{2}\left(\frac{c_{p}(\operatorname{Jac} C) d_{p}(C)}{c_{p}(E) c_{p}\left(E^{\prime}\right)}\right)}
\end{array}\right.
$$

Does $\lambda_{\infty}=w_{\infty}(E) w_{\infty}\left(E^{\prime}\right)$ and $\lambda_{p}=w_{p}(E) w_{p}\left(E^{\prime}\right)$? No!
Let $f(x)=x^{3}-2 x+1$.
■ $\frac{\Omega(\operatorname{Jac} C) d_{\infty}(C)}{\Omega(E) \Omega\left(E^{\prime}\right)}=\frac{1}{2} \Rightarrow \lambda_{\infty}=-1 ; w_{\infty}(E) w_{\infty}\left(E^{\prime}\right)=+1$

- $\frac{c_{2}(J \mathrm{Jac} C) d_{2}(C)}{c_{2}(E) c_{2}\left(E^{\prime}\right)}=2 \Rightarrow \lambda_{2}=-1 ; w_{2}(E) w_{2}\left(E^{\prime}\right)=-1$
(not a match)
$\square \frac{c_{5}(\mathrm{Jac} C) d_{5}(C)}{c_{5}(E) c_{5}\left(E^{\prime}\right)}=1 \Rightarrow \lambda_{5}=1 ; w_{5}(E) w_{5}\left(E^{\prime}\right)=-1$

Proving the Parity Conjecture holds for E iff it holds for E^{\prime}

Recall, $f(x)=x^{3}+a x^{2}+b x+c$ is separable with $c \neq 0$.
Theorem (G., Maistret)
Let $H_{v}:=(b,-c)_{\mathbb{Q}_{v}}\left(-2 L, \Delta_{f}\right)_{\mathbb{Q}_{v}}(L,-b)_{\mathbb{Q}_{v}}$ where $L:=a b-9 c(v=\infty$ or $p)$. Then

$$
\lambda_{\infty}=H_{\infty} \cdot w_{\infty}(E) w_{\infty}\left(E^{\prime}\right), \quad \lambda_{p}=H_{p} \cdot w_{p}(E) w_{p}\left(E^{\prime}\right)
$$

In particular $H_{\infty} \cdot \prod_{p} H_{p}=+1$.
Corollary (Parity Conjecture for E iff E^{\prime})

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=w(E) w\left(E^{\prime}\right)
$$

Proof.

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\lambda_{\infty} \cdot \prod_{p} \lambda_{p}=\left(H_{\infty} \cdot \prod_{p} H_{p}\right)\left(w_{\infty}(E) w_{\infty}\left(E^{\prime}\right) \cdot \prod_{p} w_{p}(E) w_{p}\left(E^{\prime}\right)\right) .
$$

Strategy: proving Parity Conjecture for $E_{1}[2] \cong E_{2}[2]$

Theorem (G., Maistret)

Let E_{1}, E_{2} be elliptic curves over \mathbb{Q} such that $E_{1}[2] \cong E_{2}[2]$ as Galois modules. Assuming finiteness of $Ш$, the Parity Conjecture holds for E_{1} iff it holds for E_{2}.

- Reword the assumption on the 2-torsion
- It is enough to show that PC holds for E iff E^{\prime}
- Exhibit an isogeny
- There's a (2, 2)-isogeny $\phi: E \times E^{\prime} \rightarrow \mathrm{Jac} C$
- Compute the parity of the rank
- Cassels + regulator result + Poonen-Stoll
- Write this as a product of local terms, then compare to local root numbers
$>(-1)^{\mathrm{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=\lambda_{\infty} \cdot \prod_{p} \lambda_{p}$
- $\lambda_{v}=H_{v} \cdot w_{v}(E) w_{v}\left(E^{\prime}\right)$, and consequently $(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(E^{\prime}\right)}=w(E) w\left(E^{\prime}\right)$

The p-Parity Conjecture

Conjecture (The p-Parity Conjecture)

$$
(-1)^{\operatorname{rank}_{p}(E / K)}=w(E / K) .
$$

Theorem (G., Maistret)

Let K be a number field and $E_{1}, E_{2} / K$ elliptic curves with $E_{1}[2] \cong E_{2}[2]$. The 2-Parity Conjecture holds for E_{1} iff it holds for E_{2}.

Let K be a totally real number field. The p-Parity Conjecture is known for E / K when p is odd, or $p=2$ and E does not have complex multiplication.

Theorem (G., Maistret)

Let K be a totally real field and E / K a CM elliptic curve. The 2-Parity Conjecture holds for E.

Theorem

Let K be a totally real field and E / K an elliptic curve. The p-Parity Conjecture holds for E.

Thank you for your attention!

