Function fields

Holly Green

University College London

May 24th, 2022

- Definition
- Ring of integers
- Units
- Primes
- Class group
- Decomposition of primes

Let p be a prime and $q = p^r$.

Definition

A function field is a finitely generated field extension K/\mathbb{F}_q of transcendence degree 1.

There is a correspondence between function fields over \mathbb{F}_q and non-singular, projective, irreducible algebraic curves over \mathbb{F}_q .

The function field for C : F(x, y) = 0 is $\mathbb{F}_q(C) = \mathbb{F}_q(x)[y]/(F(x, y))$.

Examples

•
$$C_1: y^2 = x^3 - 1 \text{ over } \mathbb{F}_5 \ \Rightarrow \ \mathbb{F}_5(C_1) = \mathbb{F}_5(x, \sqrt{x^3 - 1}) \text{ or } \mathbb{F}_5(y, \sqrt[3]{y^2 + 1})$$

•
$$C_2: \{y^2 = x^3 - 1, w^2 = 2\}$$
 over $\mathbb{F}_5 \Rightarrow \mathbb{F}_5(C_2) = \mathbb{F}_{25}(x, \sqrt{x^3 - 1})$ or $\mathbb{F}_{25}(y, \sqrt[3]{y^2 + 1})$.
• $\mathbb{F}_5(C_2) = \mathbb{F}_{25}(C_1)$.

Function fields and number fields share many properties; both are called global fields.

- p a prime, $q = p^r$
- C a non-singular, projective, irreducible algebraic curve over \mathbb{F}_q
- $K = \mathbb{F}_q(C)$

Definition

A closed point on C is the $Gal(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ -orbit of a point $P \in C(\overline{\mathbb{F}}_q)$.

Let $C: y^2 = x^3 - x$ be a curve over \mathbb{F}_7 . Then $(2, \sqrt{-1}) \in C(\mathbb{F}_{49})$ and the associated closed point is

$$\{(2,\sqrt{-1}),(2,-\sqrt{-1})\}.$$

• X is the set of closed points on C

Ring of integers

We think of the integers (of \mathbb{Q}) as having no *denominator*, i.e.

$$\mathbb{Z} = igcap_{p ext{ prime}} \{x \in \mathbb{Q} : |x|_p \leq 1\}.$$

For $K = \mathbb{F}_q(C)$, can we construct \mathcal{O}_K in the same way?

Definition

Let $P \in C(\mathbb{F}_{q^n})$. The absolute value of $f \in K$ at P is $|f|_P = (q^n)^{-\operatorname{ord}_P(f)}$.

The absolute values on K correspond to closed points on C. As above,

$$\bigcap_{P \in X} \{ f \in \mathcal{K} : |f|_P \le 1 \} = \{ f \in \mathcal{K} : f \text{ has no poles} \} = \mathbb{F}_q.$$

Definition

Let $S \subset X$ be a finite set. The ring of S-integers of K is

 $\mathcal{O}_{K,S} = \{ f \in K : f \text{ has no poles outside of } S \}.$

Ring of integers

Definition

Let $S \subset X$ be a finite set. The ring of S-integers of K is

$$\mathcal{O}_{K,S} = \{ f \in K : f \text{ has no poles outside of } S \}.$$

Examples

Let
$$C: y^2 = x^3 - x \ (p \neq 2)$$
. Then
 $K = \mathbb{F}_q(x)[y]/(y^2 - x^3 + x) = \operatorname{Frac}(\{a(x) + yb(x) : a, b \in \mathbb{F}_q[x]\}).$
a $S = \{\infty\} \Rightarrow \mathcal{O}_{K,S} = \mathbb{F}_q[x,y]/(y^2 - x^3 + x).$
b $S = \{(0,0)\}, \text{ let } s = 1/x, \ t = y/x^2 \Rightarrow C: \ t^2 = s - s^3, \ \mathcal{O}_{K,S} = \mathbb{F}_q[s,t]/(t^2 - s + s^3)$
b $S = \{(-1,0), (0,0), (1,0), \infty\} \Rightarrow \mathcal{O}_{K,S} = \mathbb{F}_q[x,y,1/y]/(y^2 - x^3 + x).$

More generally, if C : F(x, y) = 0 and $S = \{\text{points at } \infty\}$ then $\mathcal{O}_{K,S} = \mathbb{F}_q[x, y]/(F(x, y))$.

Group of units

The units of K are the invertible elements in the ring of integers.

Definition

Let $S \subset X$ be a finite set. The *S*-unit group of *K* is

 $\mathcal{O}_{K,S}^{\times} = \{ f \in K : f \text{ has no poles or zeros outside of } S \}.$

Examples

• Let
$$C = \mathbb{P}^1$$
 over \mathbb{F}_5 and $S = \{\infty, \{\pm\sqrt{2}\}\}$. Then

$$\mathcal{O}_{\mathcal{K},\mathcal{S}} = \mathbb{F}_5[x,1/(x^2-2)], \qquad \qquad \mathcal{O}_{\mathcal{K},\mathcal{S}}^{ imes} = \mathbb{F}_5^{ imes} \oplus (x^2-2)^{\mathbb{Z}}.$$

• Let $C: y^2 = x^3 - x \ (p \neq 2)$ and $S = \{\infty\}$. Then

$$\mathcal{O}_{K,S} = \mathbb{F}_q[x,y]/(y^2 - x^3 + x), \qquad \qquad \mathcal{O}_{K,S}^{\times} = \mathbb{F}_q^{\times}.$$

Group of units

Extended example

Let $C: y^2 = x^3 - x \ (p \neq 2)$, $S = \{P_1 = (-1, 0), P_2 = (0, 0), P_3 = (1, 0), \infty\}$. Let $f \in \mathcal{O}_{K,S}^{\times}$. Multiply by powers of x + 1, x and x - 1 (with double zeros at P_i), to get g with

$$\operatorname{ord}_{P_i}(g) = 0 \text{ or } 1, \qquad \operatorname{ord}_P(g) = 0 \text{ for } P \notin S.$$

We have $(g) := \operatorname{ord}_{\infty}(g)[\infty] + \sum_{i} \operatorname{ord}_{P_{i}}(g)[P_{i}] = 0 \in \operatorname{Jac} C$. In terms of points of C,

$$\operatorname{ord}_{P_1}(g)[P_1] + \operatorname{ord}_{P_2}(g)[P_2] + \operatorname{ord}_{P_3}(g)[P_3] = \infty \Rightarrow \begin{cases} \operatorname{ord}_{P_i} = 0 \text{ for all } i \Rightarrow g \in \mathbb{F}_q^{\times} \\ \operatorname{ord}_{P_i} = 1 \text{ for all } i \Rightarrow g \in \mathbb{F}_q^{\times} y. \end{cases}$$

So $f \in \mathbb{F}_q^{\times} \oplus (x+1)^{\mathbb{Z}} \oplus (x)^{\mathbb{Z}} \oplus (x-1)^{\mathbb{Z}} \oplus \{1,y\} \Rightarrow f \in \mathbb{F}_q^{\times} \oplus (x+1)^{\mathbb{Z}} \oplus (x)^{\mathbb{Z}} \oplus y^{\mathbb{Z}}.$

Theorem (Dirichlet's unit theorem)

$$\mathcal{O}_{\mathcal{K},\mathcal{S}}^{\times} \cong \mathbb{F}_q^{\times} \oplus \mathbb{Z}^{\#\mathcal{S}-1}$$

Prime ideals

Recall, for $p \in \mathbb{Z}$ a prime, $(p) = \{a \in \mathbb{Z} : |a|_p < 1\}$ is the prime ideal.

Definition

Fix $P \in X \setminus S$. The prime ideal of $\mathcal{O}_{K,S}$ at P is

 $\mathfrak{p}_{P,S} := \{ f \in \mathcal{O}_{K,S} : |f|_P < 1 \} = \{ f \in K : f \text{ has a zero at } P \text{ and no poles outside of } S \}.$

There's a correspondence between primes of $\mathcal{O}_{K,S}$ and points in $X \setminus S$.

Example

Let
$$C: y^2 = x^3 - x$$
 over \mathbb{F}_7 .
• $S = \{\infty\} \Rightarrow \mathcal{O}_{K,S} = \mathbb{F}_7[x, y]/(y^2 - x^3 + x)$ and
 $\mathfrak{p}_{(0,0),S} = (x, y), \qquad \mathfrak{p}_{\{(2, \pm \sqrt{-1})\},S} = (x - 2, y^2 + 1) = (x - 2, x^3 - x + 1).$

■ $S = \{(-1,0), (0,0), (1,0), \infty\} \Rightarrow (x, y)$ is no longer prime, it is generated by units.

Definition

Fix $P \in X \setminus S$. The prime ideal of $\mathcal{O}_{K,S}$ at P is

 $\mathfrak{p}_{P,S} := \{f \in \mathcal{O}_{K,S} : |f|_P < 1\} = \{f \in K : f \text{ has a zero at } P \text{ and no poles outside of } S\}.$

Example

Let
$$C: y^2 = x^3 - x$$
 over \mathbb{F}_7 , $S = \{\infty\}$. Then $\mathfrak{p}_{\{(2,\pm\sqrt{-1})\},S} = (x-2, y^2+1)$ and
 $\mathcal{O}_{K,S}/\mathfrak{p}_{\{(2,\pm\sqrt{-1})\},S} = \mathbb{F}_7[y]/(y^2+1) = \mathbb{F}_{49}.$

The residue degree of a prime is the size of the Galois orbit of the corresponding point.

The Chinese Remainder Theorem

Let $P, Q \in X \setminus S$ be distinct. Given $s, t \in \overline{\mathbb{F}}_q$ defined over the residue fields of P and Q respectively, there's some $f \in \mathcal{O}_{K,S}$ such that f(P) = s and f(Q) = t.

The Class Group

The class group indicates how far we are from having unique factorisation.

Fractional ideals look like

$$\prod_{P \in X \setminus S} \mathfrak{p}_{P,S}^{n_P} \longleftrightarrow \sum_{P \in X \setminus S} n_P[P]$$

where $n_P \in \mathbb{Z}$, almost all are zero. Write $\text{Div}_{K,S}$ for the group of these. Principal ideals here correspond to divisors of the type

$$\sum_{\mathsf{P}\in X\setminus S} \operatorname{ord}_{P}(f)[P],$$

for $f \in \mathcal{O}_{K,S}$. Write Princ_{K,S} for the group generated by these.

Definition

Let $S \subset X$ be a finite set. The *S*-class group of *K* is

 $\mathsf{Cl}_{\mathcal{K},\mathcal{S}}=\mathsf{Div}_{\mathcal{K},\mathcal{S}}/\mathsf{Princ}_{\mathcal{K},\mathcal{S}}$

The Class Group

Definition

Let $S \subset X$ be a finite set. The *S*-class group of *K* is

 $\mathsf{Cl}_{\mathcal{K},\mathcal{S}} = \mathsf{Div}_{\mathcal{K},\mathcal{S}} / \mathsf{Princ}_{\mathcal{K},\mathcal{S}}$

Examples

Let C = P¹ over F_q, S = {∞}. Fix D = ∑_{∞≠P∈X} n_P[P]. Let f ∈ O_{K,S} have a zero of order n_P at P when n_P > 0; and g ∈ O_{K,S} have a zero of order -n_P at P when n_P < 0. Suppose f, g have no other zeros ⇒ D ~ ∑_{∞≠P∈X}(ord_P(f) - ord_P(g))[P] ⇒ Cl_{K,S} = 1.
Let C : y² = x³ - x over F_q, S = {∞}. Consider D = ∑_{∞≠P∈X} n_P[P], or ∑_{∞≠P∈X} n_P[P] - (∑_{∞≠P∈X} n_P)[∞]. Equivalence classes of degree 0 divisors correspond to points in C(F_q) ⇒ Cl_{K,S} = C(F_q). If q = 7 then Cl_{K,S} = Z/2Z ⊕ Z/4Z.

More generally, if $S = \{\infty\} \sqcup T$ then

$$\mathsf{Cl}_{\mathcal{K},\mathcal{S}} = \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_q)/\langle [\mathcal{P}] - \#\mathcal{P}[\infty]|\mathcal{P} \in \mathcal{T} \rangle.$$

Factorising primes

Let $K = \mathbb{F}_q(x, y) = \mathbb{F}_q(C)$ be a finite, separable extension of $\mathbb{F}_q(x)$, where

- for a non-constant morphism $\phi: \mathcal{C} \to \mathbb{P}^1$ we let $\mathcal{S} = \phi^{-1}(\infty)$, and
- $y \in \mathcal{O}_{K,S}$ has minimum polynomial $g(t) \in \mathbb{F}_q[x][t]$

If C : F(x, y) = 0 then $y \in \mathbb{F}_q[x, y]/(F)$.

Take \mathfrak{p} to be a prime of $\mathbb{F}_q[x]$.

Theorem (Dedekind's theorem)

Let $\overline{g}(t) = \overline{g}_1(t)^{e_1} \times \cdots \times \overline{g}_r(t)^{e_r}$ be the factorisation of $\overline{g}(t) := g(t) \mod \mathfrak{p}$ into irreducibles, with $\overline{g}_i(t) := g_i(t) \mod \mathfrak{p}$ for monic $g_i(t) \in \mathbb{F}_q[x][t]$, then

$$\mathfrak{p} = \mathfrak{p}_1^{e_1} \times \cdots \times \mathfrak{p}_r^{e_r}$$

where $\mathfrak{p}_i = (\mathfrak{p}, g_i(y))$. Moreover, the residue degree of \mathfrak{p}_i is $f_i = \deg \overline{g}_i(t)$.

Example

Let $C: y^2 = x^{q+1} - 1$ over \mathbb{F}_q $(p \neq 2)$. We can deduce how a prime $\mathfrak{p} = (x - a)$ of $\mathbb{F}_q[x]$ splits in $\mathbb{F}_{q}[C]$. Suppose $a \in \mathbb{F}_{q}$. The minimum polynomial of y is $g(t) = t^2 - (x^{q+1} - 1)$. Reducing modulo p gives $\overline{g}(t)=t^2-(a^{q+1}-1)=egin{cases}t^2&a^{q+1}\equiv a^2\equiv 1mod q\t^2-r,\ r\in \mathbb{F}_a^ imes \ a^{q+1}\equiv a^2
ot\equiv 1mod q$ • $a^2 \equiv 1 \Rightarrow \mathfrak{p} = (x - a, y)^2$ and (x - a, y) has residue degree 1 (cf. $\{(a, 0)\} \in X$). • $a^2 \neq 1$ and $r = \Box \Rightarrow \mathfrak{p} = (x - a, y - \sqrt{r})(x - a, y + \sqrt{r})$ and $(x - a, y \pm \sqrt{r})$ have residue degree 1 (cf. $\{(a, \sqrt{r})\}, \{(a, -\sqrt{r})\} \in X$). • $a^2 \neq 1$ and $r \neq \Box \Rightarrow \mathfrak{p} = (x - a, y^2 - r)$ and $(x - a, y^2 - r)$ has residue degree 2 (cf. $\{(a,\sqrt{r}),(a,-\sqrt{r})\}\in X\}.$

Thank you for your attention!