Function fields

Holly Green

University College London
May 24th, 2022

Overview

- Definition
- Ring of integers
- Units
- Primes
- Class group
- Decomposition of primes

Definition of a function field

Let p be a prime and $q=p^{r}$.

Definition

A function field is a finitely generated field extension K / \mathbb{F}_{q} of transcendence degree 1 .
There is a correspondence between function fields over \mathbb{F}_{q} and non-singular, projective, irreducible algebraic curves over \mathbb{F}_{q}.

The function field for $C: F(x, y)=0$ is $\mathbb{F}_{q}(C)=\mathbb{F}_{q}(x)[y] /(F(x, y))$.

Examples

- $C_{1}: y^{2}=x^{3}-1$ over $\mathbb{F}_{5} \Rightarrow \mathbb{F}_{5}\left(C_{1}\right)=\mathbb{F}_{5}\left(x, \sqrt{x^{3}-1}\right)$ or $\mathbb{F}_{5}\left(y, \sqrt[3]{y^{2}+1}\right)$
- $C_{2}:\left\{y^{2}=x^{3}-1, w^{2}=2\right\}$ over $\mathbb{F}_{5} \Rightarrow \mathbb{F}_{5}\left(C_{2}\right)=\mathbb{F}_{25}\left(x, \sqrt{x^{3}-1}\right)$ or $\mathbb{F}_{25}\left(y, \sqrt[3]{y^{2}+1}\right)$.
- $\mathbb{F}_{5}\left(C_{2}\right)=\mathbb{F}_{25}\left(C_{1}\right)$.

Function fields and number fields share many properties; both are called global fields.

Notation

- p a prime, $q=p^{r}$

■ C a non-singular, projective, irreducible algebraic curve over \mathbb{F}_{q}
$\square K=\mathbb{F}_{q}(C)$

Definition

A closed point on C is the $\operatorname{Gal}\left(\overline{\mathbb{F}}_{q} / \mathbb{F}_{q}\right)$-orbit of a point $P \in C\left(\overline{\mathbb{F}}_{q}\right)$.

Let $C: y^{2}=x^{3}-x$ be a curve over \mathbb{F}_{7}. Then $(2, \sqrt{-1}) \in C\left(\mathbb{F}_{49}\right)$ and the associated closed point is

$$
\{(2, \sqrt{-1}),(2,-\sqrt{-1})\} .
$$

- X is the set of closed points on C

Ring of integers

We think of the integers (of \mathbb{Q}) as having no denominator, i.e.

$$
\mathbb{Z}=\bigcap_{p \text { prime }}\left\{x \in \mathbb{Q}:|x|_{p} \leq 1\right\} .
$$

For $K=\mathbb{F}_{q}(C)$, can we construct \mathcal{O}_{K} in the same way?

Definition

Let $P \in C\left(\mathbb{F}_{q^{n}}\right)$. The absolute value of $f \in K$ at P is $|f|_{P}=\left(q^{n}\right)^{-\operatorname{ord} p(f)}$.
The absolute values on K correspond to closed points on C. As above,

$$
\bigcap_{P \in X}\left\{f \in K:|f|_{P} \leq 1\right\}=\{f \in K: f \text { has no poles }\}=\mathbb{F}_{q} .
$$

Definition

Let $S \subset X$ be a finite set. The ring of S-integers of K is

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles outside of } S\} .
$$

Ring of integers

Definition

Let $S \subset X$ be a finite set. The ring of S-integers of K is

$$
\mathcal{O}_{K, S}=\{f \in K: f \text { has no poles outside of } S\}
$$

Examples

Let $C: y^{2}=x^{3}-x(p \neq 2)$. Then

$$
K=\mathbb{F}_{q}(x)[y] /\left(y^{2}-x^{3}+x\right)=\operatorname{Frac}\left(\left\{a(x)+y b(x): a, b \in \mathbb{F}_{q}[x]\right\}\right)
$$

$■ S=\{\infty\} \Rightarrow \mathcal{O}_{K, S}=\mathbb{F}_{q}[x, y] /\left(y^{2}-x^{3}+x\right)$.
■ $S=\{(0,0)\}$, let $s=1 / x, t=y / x^{2} \Rightarrow C: t^{2}=s-s^{3}, \mathcal{O}_{K, S}=\mathbb{F}_{q}[s, t] /\left(t^{2}-s+s^{3}\right)$
$■ S=\{(-1,0),(0,0),(1,0), \infty\} \Rightarrow \mathcal{O}_{K, S}=\mathbb{F}_{q}[x, y, 1 / y] /\left(y^{2}-x^{3}+x\right)$.
More generally, if $C: F(x, y)=0$ and $S=\{$ points at $\infty\}$ then $\mathcal{O}_{K, S}=\mathbb{F}_{q}[x, y] /(F(x, y))$.

Group of units

The units of K are the invertible elements in the ring of integers.

Definition

Let $S \subset X$ be a finite set. The S-unit group of K is

$$
\mathcal{O}_{K, S}^{\times}=\{f \in K: f \text { has no poles or zeros outside of } S\} .
$$

Examples

- Let $C=\mathbb{P}^{1}$ over \mathbb{F}_{5} and $S=\{\infty,\{ \pm \sqrt{2}\}\}$. Then

$$
\mathcal{O}_{K, S}=\mathbb{F}_{5}\left[x, 1 /\left(x^{2}-2\right)\right], \quad \mathcal{O}_{K, S}^{\times}=\mathbb{F}_{5}^{\times} \oplus\left(x^{2}-2\right)^{\mathbb{Z}} .
$$

- Let $C: y^{2}=x^{3}-x(p \neq 2)$ and $S=\{\infty\}$. Then

$$
\mathcal{O}_{K, S}=\mathbb{F}_{q}[x, y] /\left(y^{2}-x^{3}+x\right), \quad \mathcal{O}_{K, S}^{\times}=\mathbb{F}_{q}^{\times} .
$$

Group of units

Extended example

Let $C: y^{2}=x^{3}-x(p \neq 2), S=\left\{P_{1}=(-1,0), P_{2}=(0,0), P_{3}=(1,0), \infty\right\}$. Let $f \in \mathcal{O}_{K, S}^{\times}$. Multiply by powers of $x+1, x$ and $x-1$ (with double zeros at P_{i}), to get g with

$$
\operatorname{ord}_{P_{i}}(g)=0 \text { or } 1, \quad \operatorname{ord} P(g)=0 \text { for } P \notin S
$$

We have $(g):=\operatorname{ord}_{\infty}(g)[\infty]+\sum_{i} \operatorname{ord}_{P_{i}}(g)\left[P_{i}\right]=0 \in J a c C$. In terms of points of C,

$$
\operatorname{ord}_{P_{1}}(g)\left[P_{1}\right]+\operatorname{ord}_{P_{2}}(g)\left[P_{2}\right]+\operatorname{ord}_{P_{3}}(g)\left[P_{3}\right]=\infty \Rightarrow\left\{\begin{array}{l}
\operatorname{ord}_{P_{i}}=0 \text { for all } i \Rightarrow g \in \mathbb{F}_{q}^{\times} \\
\operatorname{ord}_{P_{i}}=1 \text { for all } i \Rightarrow g \in \mathbb{F}_{q}^{\times} y
\end{array}\right.
$$

So $f \in \mathbb{F}_{q}^{\times} \oplus(x+1)^{\mathbb{Z}} \oplus(x)^{\mathbb{Z}} \oplus(x-1)^{\mathbb{Z}} \oplus\{1, y\} \Rightarrow f \in \mathbb{F}_{q}^{\times} \oplus(x+1)^{\mathbb{Z}} \oplus(x)^{\mathbb{Z}} \oplus y^{\mathbb{Z}}$.
Theorem (Dirichlet's unit theorem)

$$
\mathcal{O}_{K, S}^{\times} \cong \mathbb{F}_{q}^{\times} \oplus \mathbb{Z}^{\# S-1}
$$

Prime ideals

Recall, for $p \in \mathbb{Z}$ a prime, $(p)=\left\{a \in \mathbb{Z}:|a|_{p}<1\right\}$ is the prime ideal.

Definition

Fix $P \in X \backslash S$. The prime ideal of $\mathcal{O}_{K, S}$ at P is

$$
\mathfrak{p}_{P, S}:=\left\{f \in \mathcal{O}_{K, S}:|f|_{P}<1\right\}=\{f \in K: f \text { has a zero at } P \text { and no poles outside of } S\} .
$$

There's a correspondence between primes of $\mathcal{O}_{K, S}$ and points in $X \backslash S$.

Example

Let $C: y^{2}=x^{3}-x$ over \mathbb{F}_{7}.
■ $S=\{\infty\} \Rightarrow \mathcal{O}_{K, S}=\mathbb{F}_{7}[x, y] /\left(y^{2}-x^{3}+x\right)$ and

$$
\mathfrak{p}_{(0,0), S}=(x, y), \quad \mathfrak{p}_{\{(2, \pm \sqrt{-1})\}, S}=\left(x-2, y^{2}+1\right)=\left(x-2, x^{3}-x+1\right)
$$

$\square S=\{(-1,0),(0,0),(1,0), \infty\} \Rightarrow(x, y)$ is no longer prime, it is generated by units.

Prime ideals

Definition

Fix $P \in X \backslash S$. The prime ideal of $\mathcal{O}_{K, S}$ at P is

$$
\mathfrak{p}_{P, S}:=\left\{f \in \mathcal{O}_{K, S}:|f|_{P}<1\right\}=\{f \in K: f \text { has a zero at } P \text { and no poles outside of } S\} .
$$

Example

Let $C: y^{2}=x^{3}-x$ over $\mathbb{F}_{7}, S=\{\infty\}$. Then $\mathfrak{p}_{\{(2, \pm \sqrt{-1})\}, S}=\left(x-2, y^{2}+1\right)$ and

$$
\mathcal{O}_{K, S} / \mathfrak{p}_{\{(2, \pm \sqrt{-1})\}, S}=\mathbb{F}_{7}[y] /\left(y^{2}+1\right)=\mathbb{F}_{49}
$$

The residue degree of a prime is the size of the Galois orbit of the corresponding point.

The Chinese Remainder Theorem

Let $P, Q \in X \backslash S$ be distinct. Given $s, t \in \overline{\mathbb{F}}_{q}$ defined over the residue fields of P and Q respectively, there's some $f \in \mathcal{O}_{K, S}$ such that $f(P)=s$ and $f(Q)=t$.

The Class Group

The class group indicates how far we are from having unique factorisation.
Fractional ideals look like

$$
\prod_{P \in X \backslash S} \mathfrak{p}_{P, S}^{n_{P}} w \sum_{P \in X \backslash S} n_{P}[P]
$$

where $n_{P} \in \mathbb{Z}$, almost all are zero. Write Div $_{K, S}$ for the group of these.
Principal ideals here correspond to divisors of the type

$$
\sum_{P \in X \backslash S} \operatorname{ord}_{P}(f)[P],
$$

for $f \in \mathcal{O}_{K, S}$. Write Princ ${ }_{K, S}$ for the group generated by these.

Definition

Let $S \subset X$ be a finite set. The S-class group of K is

$$
\mathrm{Cl}_{K, S}=\operatorname{Div}_{K, S} / \operatorname{Princ}_{K, S}
$$

The Class Group

Definition

Let $S \subset X$ be a finite set. The S-class group of K is

$$
\mathrm{Cl}_{K, S}=\operatorname{Div}_{K, S} / \text { Princ }_{K, S}
$$

Examples

- Let $C=\mathbb{P}^{1}$ over $\mathbb{F}_{q}, S=\{\infty\}$. Fix $D=\sum_{\infty \neq P \in X} n_{P}[P]$. Let $f \in \mathcal{O}_{K, S}$ have a zero of order n_{P} at P when $n_{P}>0$; and $g \in \mathcal{O}_{K, S}$ have a zero of order $-n_{P}$ at P when $n_{P}<0$. Suppose f, g have no other zeros $\Rightarrow D \sim \sum_{\infty \neq P \in X}\left(\operatorname{ord}_{P}(f)-\operatorname{ord}_{P}(g)\right)[P] \Rightarrow \mathrm{Cl}_{K, S}=1$.
- Let $C: y^{2}=x^{3}-x$ over $\mathbb{F}_{q}, S=\{\infty\}$. Consider $D=\sum_{\infty \neq P \in X} n_{P}[P]$, or $\sum_{\infty \neq P \in X} n_{P}[P]-\left(\sum_{\infty \neq P \in X} n_{P}\right)[\infty]$. Equivalence classes of degree 0 divisors correspond to points in $C\left(\mathbb{F}_{q}\right) \Rightarrow \mathrm{Cl}_{K, S}=C\left(\mathbb{F}_{q}\right)$. If $q=7$ then $\mathrm{Cl}_{K, S}=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 4 \mathbb{Z}$.

More generally, if $S=\{\infty\} \sqcup T$ then

$$
\mathrm{Cl}_{K, S}=\operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right) /\langle[P]-\# P[\infty] \mid P \in T\rangle
$$

Factorising primes

Let $K=\mathbb{F}_{q}(x, y)=\mathbb{F}_{q}(C)$ be a finite, separable extension of $\mathbb{F}_{q}(x)$, where
■ for a non-constant morphism $\phi: C \rightarrow \mathbb{P}^{1}$ we let $S=\phi^{-1}(\infty)$, and

- $y \in \mathcal{O}_{K, S}$ has minimum polynomial $g(t) \in \mathbb{F}_{q}[x][t]$

If $C: F(x, y)=0$ then $y \in \mathbb{F}_{q}[x, y] /(F)$.
Take \mathfrak{p} to be a prime of $\mathbb{F}_{q}[x]$.

Theorem (Dedekind's theorem)

Let $\bar{g}(t)=\bar{g}_{1}(t)^{e_{1}} \times \cdots \times \bar{g}_{r}(t)^{e_{r}}$ be the factorisation of $\bar{g}(t):=g(t) \bmod \mathfrak{p}$ into irreducibles, with $\bar{g}_{i}(t):=g_{i}(t) \bmod \mathfrak{p}$ for monic $g_{i}(t) \in \mathbb{F}_{q}[x][t]$, then

$$
\mathfrak{p}=\mathfrak{p}_{1}^{e_{1}} \times \cdots \times \mathfrak{p}_{r}^{e_{r}}
$$

where $\mathfrak{p}_{i}=\left(\mathfrak{p}, g_{i}(y)\right)$. Moreover, the residue degree of \mathfrak{p}_{i} is $f_{i}=\operatorname{deg} \bar{g}_{i}(t)$.

Factorising primes

Example

Let $C: y^{2}=x^{q+1}-1$ over $\mathbb{F}_{q}(p \neq 2)$. We can deduce how a prime $\mathfrak{p}=(x-a)$ of $\mathbb{F}_{q}[x]$ splits in $\mathbb{F}_{q}[C]$. Suppose $a \in \mathbb{F}_{q}$.
The minimum polynomial of y is $g(t)=t^{2}-\left(x^{q+1}-1\right)$. Reducing modulo \mathfrak{p} gives

$$
\bar{g}(t)=t^{2}-\left(a^{q+1}-1\right)= \begin{cases}t^{2} & a^{q+1} \equiv a^{2} \equiv 1 \bmod q \\ t^{2}-r, r \in \mathbb{F}_{q}^{\times} & a^{q+1} \equiv a^{2} \equiv 1 \bmod q\end{cases}
$$

- $a^{2} \equiv 1 \Rightarrow \mathfrak{p}=(x-a, y)^{2}$ and $(x-a, y)$ has residue degree $1(c f .\{(a, 0)\} \in X)$.
- $a^{2} \not \equiv 1$ and $r=\square \Rightarrow \mathfrak{p}=(x-a, y-\sqrt{r})(x-a, y+\sqrt{r})$ and $(x-a, y \pm \sqrt{r})$ have residue degree 1 (cf. $\{(a, \sqrt{r})\},\{(a,-\sqrt{r})\} \in X)$.
- $a^{2} \not \equiv 1$ and $r \neq \square \Rightarrow \mathfrak{p}=\left(x-a, y^{2}-r\right)$ and $\left(x-a, y^{2}-r\right)$ has residue degree 2 (cf. $\{(a, \sqrt{r}),(a,-\sqrt{r})\} \in X)$.

Thank you for your attention!

