Wrap up: The BSD conjecture

Holly Green

Today I'm going to present a classical unsolved problem for which the BSD conjecture provides some insight.

Recall, the weak form of the Birch and Swinnerton-Dyer conjecture says
Conjecture 1 (Birch-Swinnerton-Dyer). For E an elliptic curve over \mathbb{Q},

$$
\operatorname{ord}_{s=1} L(E, s)=\operatorname{rank} E .
$$

This is a remarkable statement connecting an analytic property to the primary arithmetic invariant associated to the elliptic curve.

Assuming that this holds true, we can provide a solution to the 'congruent number problem' in certain cases.

Definition 2. $r \in \mathbb{Q}$ is a congruent number if there exists a right-angled triangle of area r whose sides have rational length. This merely says that there exists a ration solution (a, b, c) to the equations

$$
a^{2}+b^{2}=c^{2}, \quad \frac{1}{2} a b=r .
$$

Example 3. The first three congruent numbers are 5, 6, 7. The triples providing the necessary right-angled triangles are $\left(\frac{3}{2}, \frac{20}{3}, \frac{41}{6}\right),(3,4,5),\left(\frac{24}{5}, \frac{35}{12}, \frac{337}{60}\right)$, respectively.

This is an unsolved problem in the sense that no algorithm exists to show definitively whether or not any given r is a congruent number.

We provide an answer upon restricting to $n \in \mathbb{Z}$ positive and square-free. For such an n, define

$$
E_{n}: y^{2}=x^{3}-n^{2} x .
$$

Notice that $\Delta=64 n^{6} \neq 0$ and so E_{n} is in fact an elliptic curve.
Proposition 4. The following defines a one-to-one correspondence

$$
\begin{aligned}
\left\{(a, b, c) \in \mathbb{Q}^{3} \mid a^{2}+b^{2}=c^{2}, \frac{1}{2} a b=n\right\} & \longleftrightarrow\left\{(x, y) \in E_{n}(\mathbb{Q}) \mid y \neq 0\right\} \\
(a, b, c) & \longmapsto\left(\frac{n b}{c-a}, \frac{2 n^{2}}{c-a}\right) \\
\left(\frac{x^{2}-n^{2}}{y}, \frac{2 n x}{y}, \frac{x^{2}+n^{2}}{y}\right) & \longleftrightarrow(x, y) .
\end{aligned}
$$

This allows us to rephrase: n is a congruent number if and only if there's some $(x, y) \in$ $E_{n}(\mathbb{Q})$ such that $y \neq 0$.

We can make this even more concrete by studying the structure of $E_{n}(\mathbb{Q})$. The MordellWeil theorem tells us that

$$
E_{n}(\mathbb{Q}) \cong E_{n}(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}
$$

where $E_{n}(\mathbb{Q})_{\text {tors }}$ is a finite group and $r \geq 0$ is the rank of E_{n}. We can actually determine $E_{n}(\mathbb{Q})_{\text {tors }}$ explicitly.

Observe that $E_{n}(\mathbb{Q})[2]=\{\mathcal{O},(0,0),(\pm n, 0)\} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ is a subgroup of $E_{n}(\mathbb{Q})_{\text {tors }}$. I claim that in fact, $E_{n}(\mathbb{Q})_{\text {tors }} \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

This can be determined from the following two lemmas and Dirichlet's Theorem on primes in arithmetic progressions:

Remark. The latter says that if $\operatorname{gcd}(a, n)=1$, then there are infinitely many primes p, such that $p \equiv a(\bmod n)$.
Lemma 5. For $p \equiv 3(\bmod 4)$ such that $p \nmid \Delta, \# \tilde{E}_{n}\left(\mathbb{F}_{p}\right)=p+1$, where \tilde{E}_{n} denotes the reduction of E_{n} modulo p.

Proof. Let $0, \pm n \neq x \in \mathbb{F}_{p}$ so that our point doesn't come from a torsion point. Note that -1 is not a square, so for each x, either $f(x)$ or $f(-x)=-f(x)$ is. So, for each such x we get two points in $\tilde{E}_{n}\left(\mathbb{F}_{p}\right)$. Counting also our torsion points gives the result.
Lemma 6. Given an integer $m>4$, there are infinitely many primes $p \equiv 3(\bmod 4)$ such that $m \nmid p+1$.

Proof. If $m=2^{k}$ then there are infinitely many primes $p \equiv 3(\bmod m)$. If m has an odd prime divisor, q, then the Chinese Remainder Theorem gives the existence of some $x \in \mathbb{Z}$ such that $x \equiv 1(\bmod q)$ and $x \equiv 3(\bmod 4)$. Now, there are infinitely many $p \equiv x(\bmod 4 q)$ so the result follows,

Now, Dirichlet tells us that there are infinitely many primes $p \equiv 3(\bmod 4)$ such that $\# \tilde{E}_{n}\left(\mathbb{F}_{p}\right)=p+1$. A restatement of this says that for only finitely many $p \equiv 3(\bmod 4)$, i.e those dividing Δ, does $\# E_{n}(\mathbb{Q})_{\text {tors }} \nmid p+1$. So if $\# E_{n}(\mathbb{Q})_{\text {tors }}>4$, Lemma 6 would give rise to a contradiction.

We can therefore identify $E_{n}(\mathbb{Q})_{\text {tors }}$ with $\{\mathcal{O},(0,0),(\pm n, 0)\}$, and if there exists $P=$ $(x, y) \in E_{n}(\mathbb{Q})$ with $y \neq 0$, then P must be a point of infinite order.

So n is a congruent number if and only if rank $E_{n} \geq 1$. Applying BSD, this becomes if and only if $L\left(E_{n}, 1\right)=0$, and this value is computable (not by hand) using magma, sage, etc.

In particular, Tim Dokchitser has an algorithm implemented in Sage which calculates the L-value at 1 using the following
Theorem 7 (Dokchitser).

$$
L(E, 1)=2\left(1+w_{E}\right) \sum_{n \geq 1} \frac{a_{n}}{n} \int_{n \pi{\sqrt{\left(N_{E}\right)}}^{-1}}^{\infty} \varphi(x) d x
$$

We saw that BSD implies the parity conjecture, i.e.
Conjecture 8 (Parity conjecture). $w_{E}=(-1)^{\text {rank } E}$.
Combining this with the non-trivial fact that $w_{E_{n}}=-1$ whenever $n \equiv 5,6,7(\bmod 8)$, we obtain

Theorem 9. All $n \equiv 5,6,7(\bmod 8)$ are congruent numbers.

Alternatively, Tim's formulation gives for any n such that $w_{E_{n}}=-1, n$ is congruent.
A more down to earth characterisation of congruent numbers is described in a result of Tunnell, who also assumed that BSD holds.

Theorem 10 (Tunnell). $n \in \mathbb{Z}$ positive and square-free is a congruent number if and only if

$$
\begin{cases}\#\left\{(x, y, z) \mid n=x^{2}+2 y^{2}+8 z^{2}\right\}=2 \#\left\{(x, y, z) \mid n=x^{2}+2 y^{2}+32 z^{2}\right\}, & n \text { odd, } \\ \#\left\{(x, y, z) \mid n=2 x^{2}+8 y^{2}+16 z^{2}\right\}=2 \#\left\{(x, y, z) \mid n=2 x^{2}+8 y^{2}+64 z^{2}\right\}, & n \text { even. }\end{cases}
$$

Again this is computable, and much easier to do by hand for small n, i.e. we can immediately see that $n=1$ is not a congruent number.

The proof of Tunnell's theorem is based on modular forms of weight $\frac{3}{2}$.

