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Statement of BSD

Let X/Q be a smooth curve.

Theorem (Mordell-Weil)

JacX (Q) ∼= Zrank(JacX/Q) × JacX (Q)tors.

Conjecture (Birch and Swinnerton–Dyer, Tate)
Assuming that L(JacX/Q, s) has an analytic continuation to C,

rank(JacX/Q) = ords=1L(JacX/Q, s),
the leading term in the Taylor expansion of L(JacX/Q, s) at s = 1 is

BSD(JacX/Q) =
#X(JacX )Ω(JacX )Reg(JacX )

∏
p cp(JacX )

#JacX (Q)2
tors

.
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L-function

The L-function has an expression as an Euler product

L(JacX/Q, s) =
∏

p∈Z prime

Lp(JacX/Q, p−s)−1.

For a prime p at which X has good reduction,

Lp(JacX ,T )

(1− T )(1− pT )
= Zp(X ,T ) := exp

∑
n≥1

#X (Fpn)

n
T n

 .

Lemma
Let X be a regular model of X over Zp, if Frobp acts trivally on X

Lp(JacX ,T ) = (1− pT )NI (1− T )NCZp(X ,T ),

where NI = #irreducible comps of X , NC = #connected comps of X .
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L-function

Example

Compute L5(JacX/Q,T ) for X : y2 = x(x − 1)(x − 2)((x + 1)2 − 55).

E
X is a pentagon made of E : y2 = x(x − 1)(x − 2)
and 4 copies of P1.

Observe that NI = 5 and NC = 1, so

L5(JacX ,T ) = (1− 5T )5(1− T )Z5(X ,T ).

Z5(X ,T ) = exp

∑
n≥1

#E(F5n ) + 4(5n + 1)− 5
n

T n

 =
L5(E ,T )

(1− T )(1− 5T )

(1− T )

(1− 5T )4
.

So L5(JacX ,T ) = L5(E ,T )(1− T ), i.e.

L5(JacX ,T ) = (1 + 2T + 5T 2)(1− T ) = 1 + T + 3T 2 − 5T 3.
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Real period

Let X/Q be a curve of genus g , then JacX (C) ∼= Cg/Λ.

The real period is

Ω(JacX ) = covol(Λ ∩ Rg )×#Comp JacX (R).

Fix ω1, . . . , ωg a basis of Ω1
X and ω = ω1 ∧ . . . ∧ ωg . Choose a symplectic

basis γ1, . . . , γg , γg+1, . . . , γ2g of H1(X ,Z).

Let Λω be generated by
(∫

γi
ωj

)
j=1,...,g

∈ Cg

covol(Λ ∩ Rg ) = covol(Λω ∩ Rg )×
∏
p

∣∣∣ ω
ω◦

∣∣∣
p
.

For each I ⊂ {1, . . . , 2g}, |I | = g , let PI :=

∣∣∣∣det
(
Re(
∫
γi
ωj)
)j=1,...,g

i∈I

∣∣∣∣.
Lemma
The lattice inside R spanned by the PI is generated by covol(Λω ∩ Rg ).
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Real period

Example 1

When g = 1 then ω1 = dx
2y is minimal. We have

P{1} =

∣∣∣∣Re
(∫

γ1

dx

2y

)∣∣∣∣ = ∣∣∣∣∫
γ1

dx

2y

∣∣∣∣ , P{2} =

∣∣∣∣Re
(∫

γ2

dx

2y

)∣∣∣∣ = 0.

This recovers Ω(E/Q) =
∣∣∣∫E0(R)

dx
2y

∣∣∣×#CompE (R).

Example 2

Let X : y2 = x5 + x4 − 3x3 − 2x2 − x .

Let ω1, ω2 = dx
y , x

dx
y and γ1, γ2 be the real loops.

P{1,2} =

∣∣∣∣∫
γ1

dx

y

∫
γ2

x
dx

y
−
∫
γ1

x
dx

y

∫
γ2

dx

y

∣∣∣∣
So covol(Λω ∩ R2) ≈ 22.712 ⇒ Ω(JacX ) ≈ 11.356.
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Tamagawa numbers

The Tamagawa product is ∏
p

cp(JacX/Q)

where cp is the Tamagawa number at p.

Assume that X is semistable over Qp and let Υ be the dual graph of the
special fibre of the minimal regular model over OQnr

p
.

Recall, H1(Υ,Z) = 〈loops in Υ〉Z has an intersection pairing arising from:

〈Ei ,Ej〉 = δij , 〈Ei ,−Ei 〉 = −1.

Lemma
cp(JacX/Q) is the size of the Frobp invariants of the cokernel of

H1(Υ,Z)→ Hom(H1(Υ,Z),Z); ` 7→ 〈`, ·〉.
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Tamagawa numbers

Example 1

`
H1(Υ,Z) = 〈`〉Z, so Hom(H1(Υ,Z),Z) ∼= Z.
The image is {〈k`, ·〉 : k ∈ Z} ∼= nZ, as 〈k`, `〉 = kn.

The cokernel is Z/nZ.

If Frobenius acts trivially on Υ ⇒ cp = n.
If Frobenius reflects Υ ⇒ cp = 1 if n is odd, 2 if n is even.

Example 2

`2`1

The image of b1`1 + b2`2 under a1`1 + a2`2 is(
a1 a2

)( 5 −1
−1 5

)(
b1
b2

)
.

If Frobenius acts trivially on Υ ⇒ cp = 24.
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Tamagawa numbers
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Tate-Shafarevich group

Definition
A curve X/Q of genus g is deficient at v if it has no Qv -rational divisor of
degree g − 1.

Example
Is x2 + y2 = −1 deficient at ∞? Is there a degree −1 divisor fixed by
complex conjugation? No ⇒ this is deficient.

Theorem (B. Poonen & M. Stoll)

#X(JacX/Q) =

{
� X is deficient at an even number of v
2 ·� otherwise

So #X = � for elliptic curves and for odd genus hyperelliptic curves.
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Thank you for listening!

Any questions?
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