Birch and Swinnerton-Dyer for curves

Holly Green

University College London

March 5th, 2021

Holly Green (UCL)

Statement of BSD

Let X/\mathbb{Q} be a smooth curve.

Statement of BSD

Let X/\mathbb{Q} be a smooth curve.

Theorem (Mordell-Weil)

 $\operatorname{Jac} X(\mathbb{Q}) \cong \mathbb{Z}^{\operatorname{rank}(\operatorname{Jac} X/\mathbb{Q})} \times \operatorname{Jac} X(\mathbb{Q})_{\operatorname{tors}}.$

Statement of BSD

Let X/\mathbb{Q} be a smooth curve.

Theorem (Mordell-Weil)

 $\operatorname{\mathsf{Jac}} X(\mathbb{Q})\cong \mathbb{Z}^{\operatorname{\mathsf{rank}}(\operatorname{\mathsf{Jac}} X/\mathbb{Q})} imes \operatorname{\mathsf{Jac}} X(\mathbb{Q})_{\operatorname{\mathsf{tors}}}.$

Conjecture (Birch and Swinnerton-Dyer, Tate)

Assuming that $L(\operatorname{Jac} X/\mathbb{Q}, s)$ has an analytic continuation to \mathbb{C} ,

- $\operatorname{rank}(\operatorname{Jac} X/\mathbb{Q}) = \operatorname{ord}_{s=1}L(\operatorname{Jac} X/\mathbb{Q}, s)$,
- the leading term in the Taylor expansion of $L(\operatorname{Jac} X/\mathbb{Q},s)$ at s=1 is

$$\mathsf{BSD}(\mathsf{Jac}\,X/\mathbb{Q}) = \frac{\#\mathrm{III}(\mathsf{Jac}\,X)\Omega(\mathsf{Jac}\,X)\mathsf{Reg}(\mathsf{Jac}\,X)\prod_{\rho}c_{\rho}(\mathsf{Jac}\,X)}{\#\mathsf{Jac}\,X(\mathbb{Q})^2_{\mathsf{tors}}}.$$

The L-function has an expression as an Euler product

$$L(\operatorname{Jac} X/\mathbb{Q}, s) = \prod_{p \in \mathbb{Z} \text{ prime}} L_p(\operatorname{Jac} X/\mathbb{Q}, p^{-s})^{-1}.$$

The L-function has an expression as an Euler product

$$L(\operatorname{Jac} X/\mathbb{Q}, s) = \prod_{p \in \mathbb{Z} \text{ prime}} L_p(\operatorname{Jac} X/\mathbb{Q}, p^{-s})^{-1}.$$

For a prime p at which X has good reduction,

$$\frac{L_p(\operatorname{Jac} X, T)}{(1-T)(1-pT)} = Z_p(X, T) := \exp\left(\sum_{n \ge 1} \frac{\# \overline{X}(\mathbb{F}_{p^n})}{n} T^n\right).$$

The L-function has an expression as an Euler product

$$L(\operatorname{Jac} X/\mathbb{Q}, s) = \prod_{p \in \mathbb{Z} \text{ prime}} L_p(\operatorname{Jac} X/\mathbb{Q}, p^{-s})^{-1}.$$

For a prime p at which X has good reduction,

$$\frac{L_p(\operatorname{Jac} X, T)}{(1-T)(1-pT)} = Z_p(X, T) := \exp\left(\sum_{n \ge 1} \frac{\#\overline{X}(\mathbb{F}_{p^n})}{n} T^n\right)$$

Lemma

Let \mathcal{X} be a regular model of X over \mathbb{Z}_p , if Frob_p acts trivally on \mathcal{X} $L_p(\operatorname{Jac} X, T) = (1 - pT)^{N_l}(1 - T)^{N_c}Z_p(\mathcal{X}, T),$

where $N_I = \#$ irreducible comps of \mathcal{X} , $N_C = \#$ connected comps of \mathcal{X} .

Example

Holly Green (UCL)

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 \mathcal{X} is a pentagon made of $E : y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 .

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 \mathcal{X} is a pentagon made of $E : y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 .

Observe that $N_I = 5$ and $N_C = 1$

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 \mathcal{X} is a pentagon made of $E : y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 .

Observe that $N_I = 5$ and $N_C = 1$, so

$$L_5(\operatorname{Jac} X, T) = (1 - 5T)^5(1 - T)Z_5(\mathcal{X}, T).$$

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 $\mathcal{X} \text{ is a pentagon made of } E: y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 . Observe that $N_I = 5$ and $N_C = 1$, so $L_5(\operatorname{Jac} X, T) = (1-5T)^5(1-T)Z_5(\mathcal{X}, T).$ $Z_5(\mathcal{X}, T) = \exp\left(\sum_{n\geq 1} \frac{\#\overline{E}(\mathbb{F}_{5^n}) + 4(5^n + 1) - 5}{n}T^n\right)$

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 $\mathcal{X} \text{ is a pentagon made of } E: y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 . Observe that $N_I = 5$ and $N_C = 1$, so $L_5(\operatorname{Jac} X, T) = (1-5T)^5(1-T)Z_5(\mathcal{X}, T).$ $Z_5(\mathcal{X}, T) = \exp\left(\sum_{n\geq 1} \frac{\#\overline{E}(\mathbb{F}_{5^n}) + 4(5^n+1) - 5}{n}T^n\right) = \frac{L_5(E,T)}{(1-T)(1-5T)}\frac{(1-T)}{(1-5T)^4}.$

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 $\mathcal{X} \text{ is a pentagon made of } E: y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 . Observe that $N_I = 5$ and $N_C = 1$, so $L_5(\operatorname{Jac} X, T) = (1-5T)^5(1-T)Z_5(\mathcal{X}, T).$ $Z_5(\mathcal{X}, T) = \exp\left(\sum_{n\geq 1} \frac{\#\overline{E}(\mathbb{F}_{5^n}) + 4(5^n+1) - 5}{n}T^n\right) = \frac{L_5(E,T)}{(1-T)(1-5T)}\frac{(1-T)}{(1-5T)^4}.$

So $L_5(Jac X, T) = L_5(E, T)(1 - T)$

Example

Compute $L_5(\operatorname{Jac} X/\mathbb{Q}, T)$ for $X : y^2 = x(x-1)(x-2)((x+1)^2 - 5^5)$.

 \mathcal{X} is a pentagon made of $E: y^2 = x(x-1)(x-2)$ and 4 copies of \mathbb{P}^1 . Observe that $N_I = 5$ and $N_C = 1$, so $L_5(\operatorname{Jac} X, T) = (1 - 5T)^5(1 - T)Z_5(\mathcal{X}, T).$ $Z_5(\mathcal{X},T) = \exp\left(\sum_{n>1} \frac{\#\overline{E}(\mathbb{F}_{5^n}) + 4(5^n + 1) - 5}{n}T^n\right) = \frac{L_5(E,T)}{(1-T)(1-5T)} \frac{(1-T)}{(1-5T)^4}.$ So $L_5(Jac X, T) = L_5(E, T)(1 - T)$, i.e. $L_5(\operatorname{Jac} X, T) = (1 + 2T + 5T^2)(1 - T) = 1 + T + 3T^2 - 5T^3.$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^g/\Lambda$.

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^g / \Lambda$. The *real period* is

 $\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^g / \Lambda$. The *real period* is

```
\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).
```

Fix $\omega_1, \ldots, \omega_g$ a basis of Ω^1_X and $\omega = \omega_1 \wedge \ldots \wedge \omega_g$.

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^g / \Lambda$. The *real period* is

 $\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^g / \Lambda$. The *real period* is

$$\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^g / \Lambda$. The *real period* is

$$\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$$

Let
$$\Lambda_\omega$$
 be generated by $\left(\int_{\gamma_i}\omega_j
ight)_{j=1,...,g}\in\mathbb{C}^g$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C})\cong \mathbb{C}^g/\Lambda$. The *real period* is

$$\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$$

Let
$$\Lambda_{\omega}$$
 be generated by $\left(\int_{\gamma_{i}} \omega_{j}\right)_{j=1,...,g} \in \mathbb{C}^{g}$
 $\operatorname{covol}(\Lambda \cap \mathbb{R}^{g}) = \operatorname{covol}(\Lambda_{\omega} \cap \mathbb{R}^{g}) \times \prod_{p} \left|\frac{\omega}{\omega^{\circ}}\right|_{p}.$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C})\cong \mathbb{C}^g/\Lambda$. The *real period* is

$$\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$$

Let
$$\Lambda_\omega$$
 be generated by $\left(\int_{\gamma_i}\omega_j
ight)_{j=1,...,g}\in\mathbb{C}^g$

$$\operatorname{covol}(\Lambda \cap \mathbb{R}^g) = \operatorname{covol}(\Lambda_\omega \cap \mathbb{R}^g) imes \prod_{
ho} \Big| rac{\omega}{\omega^\circ} \Big|_{
ho}$$

For each
$$I \subset \{1, \dots, 2g\}$$
, $|I| = g$, let $P_I := \left| \mathsf{det} \left(\mathsf{Re}(\int_{\gamma_i} \omega_j) \right)_{i \in I}^{j=1,\dots,g} \right|$

Let X/\mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C})\cong \mathbb{C}^g/\Lambda.$ The *real period* is

$$\Omega(\operatorname{Jac} X) = \operatorname{covol}(\Lambda \cap \mathbb{R}^g) \times \#\operatorname{Comp} \operatorname{Jac} X(\mathbb{R}).$$

Fix $\omega_1, \ldots, \omega_g$ a basis of Ω^1_X and $\omega = \omega_1 \wedge \ldots \wedge \omega_g$. Choose a symplectic basis $\gamma_1, \ldots, \gamma_g, \gamma_{g+1}, \ldots, \gamma_{2g}$ of $H_1(X, \mathbb{Z})$.

Let
$$\Lambda_\omega$$
 be generated by $\left(\int_{\gamma_i}\omega_j
ight)_{j=1,...,g}\in\mathbb{C}^g$

$$\operatorname{covol}(\Lambda\cap \mathbb{R}^g) = \operatorname{covol}(\Lambda_\omega\cap \mathbb{R}^g) imes \prod_p \left| rac{\omega}{\omega^\circ}
ight|_p.$$

For each
$$I \subset \{1, \dots, 2g\}$$
, $|I| = g$, let $P_I := \left| \det \left(\mathsf{Re}(\int_{\gamma_i} \omega_j)
ight)_{i \in I}^{j=1, \dots, g}
ight|$

Lemma

The lattice inside \mathbb{R} spanned by the P_I is generated by $covol(\Lambda_{\omega} \cap \mathbb{R}^g)$.

Example 1

Example 2

Holly Green (UCL)

BSD for curves

Example 1

When g = 1 then $\omega_1 = \frac{d_X}{2y}$ is minimal.

Example 1

When g=1 then $\omega_1=rac{dx}{2y}$ is minimal. We have

$$P_{\{1\}} = \left| \operatorname{Re} \left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| \qquad \qquad P_{\{2\}} = \left| \operatorname{Re} \left(\int_{\gamma_2} \frac{dx}{2y} \right) \right|$$

Example 1

When g=1 then $\omega_1=rac{dx}{2y}$ is minimal. We have

$$P_{\{1\}} = \left| \operatorname{Re} \left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re} \left(\int_{\gamma_2} \frac{dx}{2y} \right) \right|$$

Example 1

When g=1 then $\omega_1=rac{dx}{2y}$ is minimal. We have

$$P_{\{1\}} = \left| \operatorname{Re} \left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re} \left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$$

Example 1

When g=1 then $\omega_1=rac{dx}{2y}$ is minimal. We have

$$P_{\{1\}} = \left| \operatorname{Re} \left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re} \left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$$

This recovers
$$\Omega(E/\mathbb{Q}) = \left| \int_{E^0(\mathbb{R})} \frac{dx}{2y} \right| \times \#\text{Comp } E(\mathbb{R}).$$

Example 1

When g=1 then $\omega_1=rac{dx}{2y}$ is minimal. We have

$$P_{\{1\}} = \left| \operatorname{Re} \left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re} \left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$$

This recovers $\Omega(E/\mathbb{Q}) = \left| \int_{E^0(\mathbb{R})} \frac{dx}{2y} \right| \times \# \operatorname{Comp} E(\mathbb{R}).$

Let
$$X : y^2 = x^5 + x^4 - 3x^3 - 2x^2 - x$$
.

Example 1

When g = 1 then $\omega_1 = \frac{dx}{2y}$ is minimal. We have $P_{\{1\}} = \left| \operatorname{Re}\left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re}\left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$

This recovers
$$\Omega(E/\mathbb{Q}) = \left| \int_{E^0(\mathbb{R})} \frac{dx}{2y} \right| \times \# \operatorname{Comp} E(\mathbb{R}).$$

Let
$$X : y^2 = x^5 + x^4 - 3x^3 - 2x^2 - x$$
.

Let
$$\omega_1, \omega_2 = \frac{dx}{\gamma}, x\frac{dx}{\gamma}$$
 and γ_1, γ_2 be the real loops.

Example 1

When g = 1 then $\omega_1 = \frac{dx}{2y}$ is minimal. We have $P_{\{1\}} = \left| \operatorname{Re}\left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re}\left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$ This recovers $\Omega(E/\mathbb{Q}) = \left| \int_{E^0(\mathbb{R})} \frac{dx}{2y} \right| \times \#\operatorname{Comp} E(\mathbb{R}).$

Let
$$X: y^2 = x^5 + x^4 - 3x^3 - 2x^2 - x$$
.
Let $\omega_1, \omega_2 = \frac{dx}{y}, x\frac{dx}{y}$ and γ_1, γ_2 be the real loops.
$$P_{\{1,2\}} = \left| \int_{\gamma_1} \frac{dx}{y} \int_{\gamma_2} x\frac{dx}{y} - \int_{\gamma_1} x\frac{dx}{y} \int_{\gamma_2} \frac{dx}{y} \right|$$

Example 1

When g = 1 then $\omega_1 = \frac{dx}{2y}$ is minimal. We have $P_{\{1\}} = \left| \operatorname{Re} \left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re} \left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$ This recovers $\Omega(E/\mathbb{Q}) = \left| \int_{E^0(\mathbb{R})} \frac{dx}{2y} \right| \times \#\operatorname{Comp} E(\mathbb{R}).$

Example 2

Let
$$X : y^2 = x^5 + x^4 - 3x^3 - 2x^2 - x$$
.

Let
$$\omega_1, \omega_2 = \frac{dx}{y}, x\frac{dx}{y}$$
 and γ_1, γ_2 be the real loops.

$$P_{\{1,2\}} = \left| \int_{\gamma_1} \frac{dx}{y} \int_{\gamma_2} x \frac{dx}{y} - \int_{\gamma_1} x \frac{dx}{y} \int_{\gamma_2} \frac{dx}{y} \right|$$

So $\operatorname{covol}(\Lambda_\omega \cap \mathbb{R}^2) pprox 22.712$

Example 1

When
$$g = 1$$
 then $\omega_1 = \frac{dx}{2y}$ is minimal. We have
 $P_{\{1\}} = \left| \operatorname{Re}\left(\int_{\gamma_1} \frac{dx}{2y} \right) \right| = \left| \int_{\gamma_1} \frac{dx}{2y} \right|, \qquad P_{\{2\}} = \left| \operatorname{Re}\left(\int_{\gamma_2} \frac{dx}{2y} \right) \right| = 0.$
This recovers $\Omega(E/\mathbb{Q}) = \left| \int_{E^0(\mathbb{R})} \frac{dx}{2y} \right| \times \#\operatorname{Comp} E(\mathbb{R}).$

Example 2

Let
$$X : y^2 = x^5 + x^4 - 3x^3 - 2x^2 - x$$
.

Let
$$\omega_1, \omega_2 = \frac{\omega_x}{y}, x \frac{\omega_x}{y}$$
 and γ_1, γ_2 be the real loops.

$$P_{\{1,2\}} = \left| \int_{\gamma_1} \frac{dx}{y} \int_{\gamma_2} x \frac{dx}{y} - \int_{\gamma_1} x \frac{dx}{y} \int_{\gamma_2} \frac{dx}{y} \right|$$

So $\operatorname{covol}(\Lambda_{\omega} \cap \mathbb{R}^2) \approx 22.712 \Rightarrow \Omega(\operatorname{Jac} X) \approx 11.356.$

The Tamagawa product is

$$\prod_{p} c_{p}(\operatorname{Jac} X/\mathbb{Q})$$

where c_p is the Tamagawa number at p.

The Tamagawa product is

$$\prod_p c_p(\operatorname{Jac} X/\mathbb{Q})$$

where c_p is the Tamagawa number at p.

Assume that X is semistable over \mathbb{Q}_p

The Tamagawa product is

$$\prod_p c_p(\operatorname{Jac} X/\mathbb{Q})$$

where c_p is the Tamagawa number at p.

Assume that X is semistable over \mathbb{Q}_p and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_p^{nr}}$.

The Tamagawa product is

$$\prod_p c_p(\operatorname{Jac} X/\mathbb{Q})$$

where c_p is the Tamagawa number at p.

Assume that X is semistable over \mathbb{Q}_p and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_p^{nr}}$.

Recall, $H_1(\Upsilon, \mathbb{Z}) = \langle \text{loops in } \Upsilon \rangle_{\mathbb{Z}}$

The Tamagawa product is

$$\prod_p c_p(\operatorname{Jac} X/\mathbb{Q})$$

where c_p is the Tamagawa number at p.

Assume that X is semistable over \mathbb{Q}_p and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_p^{nr}}$.

Recall, $H_1(\Upsilon, \mathbb{Z}) = \langle \text{loops in } \Upsilon \rangle_{\mathbb{Z}}$ has an intersection pairing arising from:

$$\langle E_i, E_j \rangle = \delta_{ij}, \qquad \langle E_i, -E_i \rangle = -1.$$

The Tamagawa product is

$$\prod_p c_p(\operatorname{Jac} X/\mathbb{Q})$$

where c_p is the Tamagawa number at p.

Assume that X is semistable over \mathbb{Q}_p and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_p^{nr}}$.

Recall, $H_1(\Upsilon, \mathbb{Z}) = \langle \text{loops in } \Upsilon \rangle_{\mathbb{Z}}$ has an intersection pairing arising from:

$$\langle E_i, E_j \rangle = \delta_{ij}, \qquad \langle E_i, -E_i \rangle = -1.$$

Lemma

 $c_p(\operatorname{Jac} X/\mathbb{Q})$ is the size of the Frob_p invariants of the cokernel of $H_1(\Upsilon, \mathbb{Z}) \to \operatorname{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}); \quad \ell \mapsto \langle \ell, \cdot \rangle.$

Holly Green (UCL)

Example 1

Example 2

Holly Green (UCL)

BSD for curves

Example 1

Example 2

Holly Green (UCL)

BSD for curves

Example 1

$$\bigcirc$$

$$H_1(\Upsilon,\mathbb{Z})=\langle\ell
angle_\mathbb{Z}$$

Example 2

Holly Green (UCL)

BSD for curves

Example 1

$$H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$$
, so $Hom(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$.

Example 2

Holly Green (UCL)

BSD for curves

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $Hom(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$.

Example 2

Holly Green (UCL)

BSD for curves

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

 \blacksquare If Frobenius acts trivially on Υ

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

• If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = n$.

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

• If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = n$.

If Frobenius reflects Υ

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_p = 1$ if *n* is odd, 2 if *n* is even.

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_p = 1$ if *n* is odd, 2 if *n* is even.

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_p = 1$ if *n* is odd, 2 if *n* is even.

Example 2

The image of $b_1\ell_1 + b_2\ell_2$ under $a_1\ell_1 + a_2\ell_2$ is

$$\begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

Example 1

 $H_1(\Upsilon, \mathbb{Z}) = \langle \ell \rangle_{\mathbb{Z}}$, so $\text{Hom}(H_1(\Upsilon, \mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}$. The image is $\{\langle k\ell, \cdot \rangle : k \in \mathbb{Z}\} \cong n\mathbb{Z}$, as $\langle k\ell, \ell \rangle = kn$. The cokernel is $\mathbb{Z}/n\mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_p = 1$ if *n* is odd, 2 if *n* is even.

Example 2

The image of $b_1\ell_1 + b_2\ell_2$ under $a_1\ell_1 + a_2\ell_2$ is

$$\begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$

If Frobenius acts trivially on $\Upsilon \Rightarrow c_p = 24$.

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ?

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation?

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Theorem (B. Poonen & M. Stoll)

 $\# \operatorname{III}(\operatorname{Jac} X/\mathbb{Q}) = \begin{cases} \Box & X \text{ is deficient at an even number of } v \\ 2 \cdot \Box & \text{otherwise} \end{cases}$

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Theorem (B. Poonen & M. Stoll)

 $\# \operatorname{III}(\operatorname{Jac} X/\mathbb{Q}) = \begin{cases} \Box & X \text{ is deficient at an even number of } v \\ 2 \cdot \Box & \text{otherwise} \end{cases}$

So $\#III = \Box$ for elliptic curves

Definition

A curve X/\mathbb{Q} of genus g is *deficient* at v if it has no \mathbb{Q}_v -rational divisor of degree g - 1.

Example

Is $x^2 + y^2 = -1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Theorem (B. Poonen & M. Stoll)

 $\# \operatorname{III}(\operatorname{Jac} X/\mathbb{Q}) = \begin{cases} \Box & X \text{ is deficient at an even number of } v \\ 2 \cdot \Box & \text{otherwise} \end{cases}$

So $\#III = \Box$ for elliptic curves and for odd genus hyperelliptic curves.

Any questions?