Birch and Swinnerton-Dyer for curves

Holly Green
University College London

March 5th, 2021

Statement of BSD

Let X / \mathbb{Q} be a smooth curve.

Statement of BSD

Let X / \mathbb{Q} be a smooth curve.
Theorem (Mordell-Weil)
$\operatorname{Jac} X(\mathbb{Q}) \cong \mathbb{Z}^{\mathrm{rank}(\operatorname{Jac} X / \mathbb{Q})} \times \operatorname{Jac} X(\mathbb{Q})_{\text {tors }}$.

Statement of BSD

Let X / \mathbb{Q} be a smooth curve.

Theorem (Mordell-Weil)

$\operatorname{Jac} X(\mathbb{Q}) \cong \mathbb{Z}^{\operatorname{rank}(\operatorname{Jac} X / \mathbb{Q})} \times \operatorname{Jac} X(\mathbb{Q})_{\text {tors }}$.

Conjecture (Birch and Swinnerton-Dyer, Tate)

Assuming that $L(\operatorname{Jac} X / \mathbb{Q}, s)$ has an analytic continuation to \mathbb{C},
$\square \operatorname{rank}(\operatorname{Jac} X / \mathbb{Q})=\operatorname{ord}_{s=1} L(\operatorname{Jac} X / \mathbb{Q}, s)$,

- the leading term in the Taylor expansion of $L(\operatorname{Jac} X / \mathbb{Q}, s)$ at $s=1$ is

$$
\operatorname{BSD}(\operatorname{Jac} X / \mathbb{Q})=\frac{\# \amalg(\operatorname{Jac} X) \Omega(\operatorname{Jac} X) \operatorname{Reg}(\operatorname{Jac} X) \prod_{p} c_{p}(\operatorname{Jac} X)}{\# \operatorname{Jac} X(\mathbb{Q})_{\mathrm{tors}}^{2}}
$$

L-function

The L-function has an expression as an Euler product

$$
L(\operatorname{Jac} X / \mathbb{Q}, s)=\prod_{p \in \mathbb{Z} \text { prime }} L_{p}\left(\operatorname{Jac} X / \mathbb{Q}, p^{-s}\right)^{-1}
$$

L-function

The L-function has an expression as an Euler product

$$
L(\operatorname{Jac} X / \mathbb{Q}, s)=\prod_{p \in \mathbb{Z} \text { prime }} L_{p}\left(\operatorname{Jac} X / \mathbb{Q}, p^{-s}\right)^{-1}
$$

For a prime p at which X has good reduction,

$$
\frac{L_{p}(\operatorname{Jac} X, T)}{(1-T)(1-p T)}=Z_{p}(X, T):=\exp \left(\sum_{n \geq 1} \frac{\# \bar{X}\left(\mathbb{F}_{p^{n}}\right)}{n} T^{n}\right)
$$

L-function

The L-function has an expression as an Euler product

$$
L(\operatorname{Jac} X / \mathbb{Q}, s)=\prod_{p \in \mathbb{Z} \text { prime }} L_{p}\left(\operatorname{Jac} X / \mathbb{Q}, p^{-s}\right)^{-1}
$$

For a prime p at which X has good reduction,

$$
\frac{L_{p}(\operatorname{Jac} X, T)}{(1-T)(1-p T)}=Z_{p}(X, T):=\exp \left(\sum_{n \geq 1} \frac{\# \bar{X}\left(\mathbb{F}_{p^{n}}\right)}{n} T^{n}\right)
$$

Lemma

Let \mathcal{X} be a regular model of X over \mathbb{Z}_{p}, if Frob_{p} acts trivally on \mathcal{X}

$$
L_{p}(\operatorname{Jac} X, T)=(1-p T)^{N_{1}}(1-T)^{N_{C}} Z_{p}(\mathcal{X}, T)
$$

where $N_{I}=\#$ irreducible comps of $\mathcal{X}, N_{C}=\#$ connected comps of \mathcal{X}.

L-function

Example

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.
 \mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.

\mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

Observe that $N_{I}=5$ and $N_{C}=1$

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.

\mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

Observe that $N_{I}=5$ and $N_{C}=1$, so

$$
L_{5}(\operatorname{Jac} X, T)=(1-5 T)^{5}(1-T) Z_{5}(\mathcal{X}, T)
$$

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.
 \mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

Observe that $N_{I}=5$ and $N_{C}=1$, so

$$
L_{5}(\operatorname{Jac} X, T)=(1-5 T)^{5}(1-T) Z_{5}(\mathcal{X}, T)
$$

$$
Z_{5}(\mathcal{X}, T)=\exp \left(\sum_{n \geq 1} \frac{\# \bar{E}\left(\mathbb{F}_{5^{n}}\right)+4\left(5^{n}+1\right)-5}{n} T^{n}\right)
$$

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.
 \mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

Observe that $N_{I}=5$ and $N_{C}=1$, so

$$
L_{5}(\operatorname{Jac} X, T)=(1-5 T)^{5}(1-T) Z_{5}(\mathcal{X}, T)
$$

$$
Z_{5}(\mathcal{X}, T)=\exp \left(\sum_{n \geq 1} \frac{\# \bar{E}\left(\mathbb{F}_{5^{n}}\right)+4\left(5^{n}+1\right)-5}{n} T^{n}\right)=\frac{L_{5}(E, T)}{(1-T)(1-5 T)} \frac{(1-T)}{(1-5 T)^{4}}
$$

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.
 \mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

Observe that $N_{I}=5$ and $N_{C}=1$, so

$$
L_{5}(\operatorname{Jac} X, T)=(1-5 T)^{5}(1-T) Z_{5}(\mathcal{X}, T)
$$

$$
Z_{5}(\mathcal{X}, T)=\exp \left(\sum_{n \geq 1} \frac{\# \bar{E}\left(\mathbb{F}_{5^{n}}\right)+4\left(5^{n}+1\right)-5}{n} T^{n}\right)=\frac{L_{5}(E, T)}{(1-T)(1-5 T)} \frac{(1-T)}{(1-5 T)^{4}} .
$$

So $L_{5}(\operatorname{Jac} X, T)=L_{5}(E, T)(1-T)$

L-function

Example

Compute $L_{5}(\operatorname{Jac} X / \mathbb{Q}, T)$ for $X: y^{2}=x(x-1)(x-2)\left((x+1)^{2}-5^{5}\right)$.
 \mathcal{X} is a pentagon made of $E: y^{2}=x(x-1)(x-2)$ and 4 copies of \mathbb{P}^{1}.

Observe that $N_{I}=5$ and $N_{C}=1$, so

$$
L_{5}(\operatorname{Jac} X, T)=(1-5 T)^{5}(1-T) Z_{5}(\mathcal{X}, T)
$$

$$
Z_{5}(\mathcal{X}, T)=\exp \left(\sum_{n \geq 1} \frac{\# \bar{E}\left(\mathbb{F}_{5^{n}}\right)+4\left(5^{n}+1\right)-5}{n} T^{n}\right)=\frac{L_{5}(E, T)}{(1-T)(1-5 T)} \frac{(1-T)}{(1-5 T)^{4}} .
$$

So $L_{5}(\operatorname{Jac} X, T)=L_{5}(E, T)(1-T)$, i.e.

$$
L_{5}(\operatorname{Jac} X, T)=\left(1+2 T+5 T^{2}\right)(1-T)=1+T+3 T^{2}-5 T^{3}
$$

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$.

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$.

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$. Choose a symplectic basis $\gamma_{1}, \ldots, \gamma_{g}, \gamma_{g+1}, \ldots, \gamma_{2 g}$ of $H_{1}(X, \mathbb{Z})$.

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$. Choose a symplectic basis $\gamma_{1}, \ldots, \gamma_{g}, \gamma_{g+1}, \ldots, \gamma_{2 g}$ of $H_{1}(X, \mathbb{Z})$.

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$. Choose a symplectic basis $\gamma_{1}, \ldots, \gamma_{g}, \gamma_{g+1}, \ldots, \gamma_{2 g}$ of $H_{1}(X, \mathbb{Z})$.

Let Λ_{ω} be generated by $\left(\int_{\gamma_{i}} \omega_{j}\right)_{j=1, \ldots, g} \in \mathbb{C}^{g}$

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$. Choose a symplectic basis $\gamma_{1}, \ldots, \gamma_{g}, \gamma_{g+1}, \ldots, \gamma_{2 g}$ of $H_{1}(X, \mathbb{Z})$.

Let Λ_{ω} be generated by $\left(\int_{\gamma_{i}} \omega_{j}\right)_{j=1, \ldots, g} \in \mathbb{C}^{g}$

$$
\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right)=\operatorname{covol}\left(\Lambda_{\omega} \cap \mathbb{R}^{g}\right) \times \prod_{p}\left|\frac{\omega}{\omega^{0}}\right|_{p}
$$

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$. Choose a symplectic basis $\gamma_{1}, \ldots, \gamma_{g}, \gamma_{g+1}, \ldots, \gamma_{2 g}$ of $H_{1}(X, \mathbb{Z})$.

Let Λ_{ω} be generated by $\left(\int_{\gamma_{i}} \omega_{j}\right)_{j=1, \ldots, g} \in \mathbb{C}^{g}$

$$
\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right)=\operatorname{covol}\left(\Lambda_{\omega} \cap \mathbb{R}^{g}\right) \times \prod_{p}\left|\frac{\omega}{\omega^{\omega}}\right|_{p} .
$$

For each $I \subset\{1, \ldots, 2 g\},|I|=g$, let $P_{I}:=\left|\operatorname{det}\left(\operatorname{Re}\left(\int_{\gamma_{i}} \omega_{j}\right)\right)_{i \in I}^{j=1, \ldots, g}\right|$.

Real period

Let X / \mathbb{Q} be a curve of genus g, then $\operatorname{Jac} X(\mathbb{C}) \cong \mathbb{C}^{g} / \Lambda$. The real period is

$$
\Omega(\operatorname{Jac} X)=\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right) \times \# \operatorname{Comp} \operatorname{Jac} X(\mathbb{R})
$$

Fix $\omega_{1}, \ldots, \omega_{g}$ a basis of Ω_{X}^{1} and $\omega=\omega_{1} \wedge \ldots \wedge \omega_{g}$. Choose a symplectic basis $\gamma_{1}, \ldots, \gamma_{g}, \gamma_{g+1}, \ldots, \gamma_{2 g}$ of $H_{1}(X, \mathbb{Z})$.

Let Λ_{ω} be generated by $\left(\int_{\gamma_{i}} \omega_{j}\right)_{j=1, \ldots, g} \in \mathbb{C}^{g}$

$$
\operatorname{covol}\left(\Lambda \cap \mathbb{R}^{g}\right)=\operatorname{covol}\left(\Lambda_{\omega} \cap \mathbb{R}^{g}\right) \times \prod_{p}\left|\frac{\omega}{\omega^{\omega}}\right|_{p} .
$$

For each $I \subset\{1, \ldots, 2 g\},|I|=g$, let $P_{I}:=\left|\operatorname{det}\left(\operatorname{Re}\left(\int_{\gamma_{i}} \omega_{j}\right)\right)_{i \in I}^{j=1, \ldots, g}\right|$.

Lemma

The lattice inside \mathbb{R} spanned by the P_{I} is generated by $\operatorname{covol}\left(\Lambda_{\omega} \cap \mathbb{R}^{g}\right)$.

Real period

Example 1

Example 2

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal.

Example 2

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right| \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|
$$

Example 2

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{\mathbf{1}}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{\mathbf{1}}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{\mathbf{2}}} \frac{d x}{2 y}\right)\right|
$$

Example 2

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{\mathbf{1}}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|=0 .
$$

Example 2

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{\mathbf{1}}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{\mathbf{1}}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{\mathbf{2}}} \frac{d x}{2 y}\right)\right|=0
$$

This recovers $\Omega(E / \mathbb{Q})=\left|\int_{E^{0}(\mathbb{R})} \frac{d x}{2 y}\right| \times \# \operatorname{Comp} E(\mathbb{R})$.

Example 2

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{1}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|=0 .
$$

This recovers $\Omega(E / \mathbb{Q})=\left|\int_{E^{0}(\mathbb{R})} \frac{d x}{2 y}\right| \times \# \operatorname{Comp} E(\mathbb{R})$.

Example 2

Let $X: y^{2}=x^{5}+x^{4}-3 x^{3}-2 x^{2}-x$.

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{1}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|=0 .
$$

This recovers $\Omega(E / \mathbb{Q})=\left|\int_{E^{0}(\mathbb{R})} \frac{d x}{2 y}\right| \times \# \operatorname{Comp} E(\mathbb{R})$.

Example 2

Let $X: y^{2}=x^{5}+x^{4}-3 x^{3}-2 x^{2}-x$.
Let $\omega_{1}, \omega_{2}=\frac{d x}{y}, x \frac{d x}{y}$ and γ_{1}, γ_{2} be the real loops.

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{1}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|=0 .
$$

This recovers $\Omega(E / \mathbb{Q})=\left|\int_{E^{0}(\mathbb{R})} \frac{d x}{2 y}\right| \times \# \operatorname{Comp} E(\mathbb{R})$.

Example 2

Let $X: y^{2}=x^{5}+x^{4}-3 x^{3}-2 x^{2}-x$.
Let $\omega_{1}, \omega_{2}=\frac{d x}{y}, x \frac{d x}{y}$ and γ_{1}, γ_{2} be the real loops.

$$
P_{\{1,2\}}=\left|\int_{\gamma_{1}} \frac{d x}{y} \int_{\gamma_{2}} x \frac{d x}{y}-\int_{\gamma_{1}} x \frac{d x}{y} \int_{\gamma_{2}} \frac{d x}{y}\right|
$$

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{1}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|=0 .
$$

This recovers $\Omega(E / \mathbb{Q})=\left|\int_{E^{0}(\mathbb{R})} \frac{d x}{2 y}\right| \times \# \operatorname{Comp} E(\mathbb{R})$.

Example 2

Let $X: y^{2}=x^{5}+x^{4}-3 x^{3}-2 x^{2}-x$.
Let $\omega_{1}, \omega_{2}=\frac{d x}{y}, x \frac{d x}{y}$ and γ_{1}, γ_{2} be the real loops.

$$
P_{\{1,2\}}=\left|\int_{\gamma_{1}} \frac{d x}{y} \int_{\gamma_{2}} x \frac{d x}{y}-\int_{\gamma_{1}} x \frac{d x}{y} \int_{\gamma_{2}} \frac{d x}{y}\right|
$$

So covol $\left(\Lambda_{\omega} \cap \mathbb{R}^{2}\right) \approx 22.712$

Real period

Example 1

When $g=1$ then $\omega_{1}=\frac{d x}{2 y}$ is minimal. We have

$$
P_{\{1\}}=\left|\operatorname{Re}\left(\int_{\gamma_{1}} \frac{d x}{2 y}\right)\right|=\left|\int_{\gamma_{1}} \frac{d x}{2 y}\right|, \quad P_{\{2\}}=\left|\operatorname{Re}\left(\int_{\gamma_{2}} \frac{d x}{2 y}\right)\right|=0 .
$$

This recovers $\Omega(E / \mathbb{Q})=\left|\int_{E^{0}(\mathbb{R})} \frac{d x}{2 y}\right| \times \# \operatorname{Comp} E(\mathbb{R})$.

Example 2

Let $X: y^{2}=x^{5}+x^{4}-3 x^{3}-2 x^{2}-x$.
Let $\omega_{1}, \omega_{2}=\frac{d x}{y}, x \frac{d x}{y}$ and γ_{1}, γ_{2} be the real loops.

$$
P_{\{1,2\}}=\left|\int_{\gamma_{1}} \frac{d x}{y} \int_{\gamma_{2}} x \frac{d x}{y}-\int_{\gamma_{1}} x \frac{d x}{y} \int_{\gamma_{2}} \frac{d x}{y}\right|
$$

So $\operatorname{covol}\left(\Lambda_{\omega} \cap \mathbb{R}^{2}\right) \approx 22.712 \Rightarrow \Omega(\operatorname{Jac} X) \approx 11.356$.

Tamagawa numbers

The Tamagawa product is

$$
\prod_{p} c_{p}(\operatorname{Jac} X / \mathbb{Q})
$$

where c_{p} is the Tamagawa number at p.

Tamagawa numbers

The Tamagawa product is

$$
\prod_{p} c_{p}(\operatorname{Jac} X / \mathbb{Q})
$$

where c_{p} is the Tamagawa number at p.
Assume that X is semistable over \mathbb{Q}_{p}

Tamagawa numbers

The Tamagawa product is

$$
\prod_{p} c_{p}(\operatorname{Jac} X / \mathbb{Q})
$$

where c_{p} is the Tamagawa number at p.
Assume that X is semistable over \mathbb{Q}_{p} and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_{p}^{\text {nr }}}$.

Tamagawa numbers

The Tamagawa product is

$$
\prod_{p} c_{p}(\operatorname{Jac} X / \mathbb{Q})
$$

where c_{p} is the Tamagawa number at p.
Assume that X is semistable over \mathbb{Q}_{p} and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_{p}^{n r}}$.

Recall, $H_{1}(\Upsilon, \mathbb{Z})=\langle\text { loops in } \Upsilon\rangle_{\mathbb{Z}}$

Tamagawa numbers

The Tamagawa product is

$$
\prod_{p} c_{p}(\operatorname{Jac} X / \mathbb{Q})
$$

where c_{p} is the Tamagawa number at p.
Assume that X is semistable over \mathbb{Q}_{p} and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_{P}^{n r}}$.

Recall, $H_{1}(\Upsilon, \mathbb{Z})=\langle\text { loops in } \Upsilon\rangle_{\mathbb{Z}}$ has an intersection pairing arising from:

$$
\left\langle E_{i}, E_{j}\right\rangle=\delta_{i j}, \quad\left\langle E_{i},-E_{i}\right\rangle=-1
$$

Tamagawa numbers

The Tamagawa product is

$$
\prod_{p} c_{p}(\operatorname{Jac} X / \mathbb{Q})
$$

where c_{p} is the Tamagawa number at p.
Assume that X is semistable over \mathbb{Q}_{p} and let Υ be the dual graph of the special fibre of the minimal regular model over $\mathcal{O}_{\mathbb{Q}_{p}^{\text {nr }}}$.

Recall, $H_{1}(\Upsilon, \mathbb{Z})=\langle\text { loops in } \Upsilon\rangle_{\mathbb{Z}}$ has an intersection pairing arising from:

$$
\left\langle E_{i}, E_{j}\right\rangle=\delta_{i j}, \quad\left\langle E_{i},-E_{i}\right\rangle=-1
$$

Lemma

$c_{p}(\operatorname{Jac} X / \mathbb{Q})$ is the size of the Frob_{p} invariants of the cokernel of

$$
H_{1}(\Upsilon, \mathbb{Z}) \rightarrow \operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) ; \quad \ell \mapsto\langle\ell, \cdot\rangle
$$

Tamagawa numbers

Example 1

Example 2

Tamagawa numbers

Example 1

Example 2

Tamagawa numbers

Example 1

$$
H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}
$$

Example 2

Tamagawa numbers

Example 1

$$
H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}, \text { so } \operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z} \text {. }
$$

Example 2

Tamagawa numbers

Example 1

$$
H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}, \text { so } \operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}
$$

The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$.
The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$. The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on Υ

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$.
The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=n$.

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$. The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=n$.
- If Frobenius reflects Υ

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$. The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_{p}=1$ if n is odd, 2 if n is even.

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$.
The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_{p}=1$ if n is odd, 2 if n is even.

Example 2

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$.
The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_{p}=1$ if n is odd, 2 if n is even.

Example 2

The image of $b_{1} \ell_{1}+b_{2} \ell_{2}$ under $a_{1} \ell_{1}+a_{2} \ell_{2}$ is

$$
\left(\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right)\left(\begin{array}{cc}
5 & -1 \\
-1 & 5
\end{array}\right)\binom{b_{1}}{b_{2}} .
$$

Tamagawa numbers

Example 1

$H_{1}(\Upsilon, \mathbb{Z})=\langle\ell\rangle_{\mathbb{Z}}$, so $\operatorname{Hom}\left(H_{1}(\Upsilon, \mathbb{Z}), \mathbb{Z}\right) \cong \mathbb{Z}$.
The image is $\{\langle k \ell, \cdot\rangle: k \in \mathbb{Z}\} \cong n \mathbb{Z}$, as $\langle k \ell, \ell\rangle=k n$.
The cokernel is $\mathbb{Z} / n \mathbb{Z}$.

- If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=n$.
- If Frobenius reflects $\Upsilon \Rightarrow c_{p}=1$ if n is odd, 2 if n is even.

Example 2

The image of $b_{1} \ell_{1}+b_{2} \ell_{2}$ under $a_{1} \ell_{1}+a_{2} \ell_{2}$ is

$$
\left(\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right)\left(\begin{array}{cc}
5 & -1 \\
-1 & 5
\end{array}\right)\binom{b_{1}}{b_{2}} .
$$

If Frobenius acts trivially on $\Upsilon \Rightarrow c_{p}=24$.

Tate-Shafarevich group

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ?

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation?

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Theorem (B. Poonen \& M. Stoll)

$$
\# Ш(\operatorname{Jac} X / \mathbb{Q})= \begin{cases}\square & X \text { is deficient at an even number of } v \\ 2 \cdot \square & \text { otherwise }\end{cases}
$$

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Theorem (B. Poonen \& M. Stoll)

$$
\# Ш(\operatorname{Jac} X / \mathbb{Q})= \begin{cases}\square & X \text { is deficient at an even number of } v \\ 2 \cdot \square & \text { otherwise }\end{cases}
$$

So $\# \amalg=\square$ for elliptic curves

Tate-Shafarevich group

Definition

A curve X / \mathbb{Q} of genus g is deficient at v if it has no \mathbb{Q}_{v}-rational divisor of degree $g-1$.

Example

Is $x^{2}+y^{2}=-1$ deficient at ∞ ? Is there a degree -1 divisor fixed by complex conjugation? No \Rightarrow this is deficient.

Theorem (B. Poonen \& M. Stoll)

$$
\# Ш(\operatorname{Jac} X / \mathbb{Q})= \begin{cases}\square & X \text { is deficient at an even number of } v \\ 2 \cdot \square & \text { otherwise }\end{cases}
$$

So $\# \amalg=\square$ for elliptic curves and for odd genus hyperelliptic curves.

Thank you for listening!

Any questions?

