An arithmetic analogue of the parity conjecture

Holly Green
University College London
January 11th, 2023

Main results

Theorem (Dokchitser, Green, Konstantinou, Morgan)

Assuming \#Ш is finite, for all smooth, projective curves over number fields X / K

$$
\operatorname{rank}\left(\operatorname{Jac}_{X}\right) \equiv \sum_{v \text { place of } K} \Lambda\left(X / K_{v}\right) \quad \bmod 2
$$

where $\Lambda \in\{0,1\}$ is an explicit invariant computed from curves over local fields.

Theorem (Green)

Assuming \#Ш is finite, the Birch and Swinnerton-Dyer conjecture correctly predicts the parity of the rank of elliptic curves over number fields.

Ranks of elliptic curves

Let E / \mathbb{Q} be an elliptic curve.

Theorem (Mordell)

$E(\mathbb{Q}) \cong \mathbb{Z}^{\operatorname{rank}(E)} \times T$ for some $\operatorname{rank}(E) \in \mathbb{N}$ and finite group T.
Conjecture (Birch and Swinnerton-Dyer I)

$$
\operatorname{rank}(E)=\operatorname{ord}_{s=1} L(E, s)
$$

Functional equation

$$
L^{*}(E, s)=w(E) L^{*}(E, 2-s), \quad w(E) \in\{ \pm 1\} .
$$

$$
(-1)^{\operatorname{ord}_{s=1} L(E, s)}=w(E):=\prod_{v \text { place of } \mathbb{Q}} w_{v}(E) .
$$

The parity conjecture

The parity conjecture

$$
(-1)^{\operatorname{rank}(E)}=w(E):=\prod_{v \text { place of } \mathbb{Q}} w_{v}(E)
$$

$$
w_{\infty}(E)=-1, \quad w_{p}(E)= \begin{cases}-1 & E / \mathbb{Q}_{p} \text { has split multiplicative reduction } \\ +1 & E / \mathbb{Q}_{p} \text { has non-split multiplicative reduction } \\ \ldots & E / \mathbb{Q}_{p} \text { has additive reduction }\end{cases}
$$

Let $E / \mathbb{Q}: y^{2}=x^{3}+4 x^{2}-80 x+400, \Delta_{E}=-5^{3} \cdot 11 \cdot 13$. Then

$$
w(E)=w_{\infty}(E) w_{5}(E) w_{11}(E) w_{13}(E)=(-1)(-1)(+1)(-1)=-1
$$

The parity conjecture says that E has odd rank $\Rightarrow E$ has infinitely many rational points.

Parity phenomena

For semistable elliptic curves over number fields,

$$
(-1)^{\operatorname{rank}(E)}=(-1)^{\#\{v \mid \infty\}+\#\left\{v \nmid \infty, E / K_{v} \text { split multiplicative }\right\}} .
$$

If E / \mathbb{Q} is semistable with split multiplicative reduction at 2 then $\operatorname{rank}\left(E / \mathbb{Q}\left(\zeta_{8}\right)\right)$ is odd.

If K is imaginary quadratic and E / K has everywhere good reduction then $\operatorname{rank}(E / K)$ is odd. If L / K has even degree then $\operatorname{rank}(E / L)$ is even and

$$
\operatorname{rank}(E / K)<\operatorname{rank}(E / L)
$$

Goal

Develop an arithmetic analogue of the parity conjecture,

$$
(-1)^{\operatorname{rank}(E)}=\prod_{v \text { place of } K}(-1)^{\Lambda_{v}(E)} \quad \text { or } \quad \operatorname{rank}(E) \equiv \sum_{v \text { place of } K} \Lambda_{v}(E) \bmod 2 .
$$

New idea: use the arithmetic of higher genus curves.

Taking covers of curves

Let $E / \mathbb{Q}: y^{2}=f(x)$ be an elliptic curve. If $f(x)=x^{3}+a x+b$

$$
\mathbb{Q}(y, x, \Delta) \quad \Longrightarrow D: \Delta^{2}=-27 y^{4}+54 b y^{2}-\left(4 a^{3}+27 b^{2}\right)
$$

$$
B:\left\{y^{2}=f(x), \Delta^{2}=\operatorname{Disc}_{x}\left(f(x)-y^{2}\right)\right\}
$$

Example: B has genus 3

$$
\Omega^{1}(B)=\mathbb{1}^{\oplus a} \oplus \epsilon^{\oplus b} \oplus \rho^{\oplus c} \Rightarrow B \text { has genus } a+b+2 c .
$$

$$
\square 0=\operatorname{dim} \Omega^{1}\left(\mathbb{P}^{1}\right)=\operatorname{dim} \Omega^{1}(B)^{S_{3}}=a
$$

$$
1=\operatorname{dim} \Omega^{1}(D)=\operatorname{dim} \Omega^{1}(B)^{C_{3}}=b
$$

$$
1=\operatorname{dim} \Omega^{1}(E)=\operatorname{dim} \Omega^{1}(B)^{C_{2}}=c
$$

Theorem

Let Y / \mathbb{Q} be a smooth, projective curve and $G \leq \operatorname{Aut}_{\mathbb{Q}}(Y)$.

- $\mathbb{Q}(Y)^{G}=\mathbb{Q}(Y / G)$,
- $\Omega^{1}(Y)^{G}=\Omega^{1}(Y / G)$,
$■(\operatorname{Jac} Y(\mathbb{Q}) \otimes \mathbb{Q})^{G}=\operatorname{Jac}_{Y / G}(\mathbb{Q}) \otimes \mathbb{Q}$.

Finding a relationship between E, D, B, \mathbb{P}^{1}

Let $E / \mathbb{Q}: y^{2}=f(x)$ be an elliptic curve.

$$
\begin{aligned}
& \mathbb{Q}(y, x, \Delta) \\
& B:\left\{y^{2}=f(x), \Delta^{2}=\operatorname{Disc}_{x}\left(f(x)-y^{2}\right)\right\} \\
& 2 \operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right)=\operatorname{rank}\left(\operatorname{JaC}_{B}\right)
\end{aligned}
$$

Theorem

There's an isogeny

$$
E \times E \times \mathrm{Jac}_{D} \rightarrow \mathrm{Jac}_{B} .
$$

Exhibiting isogenies

Let X / \mathbb{Q} be a smooth, projective curve and $\pi: X \rightarrow \mathbb{P}^{1}$.

$\sum_{i} H_{i}-\sum_{j} H_{j}^{\prime}$ is a Brauer relation for a finite group G if $\sum_{i} \operatorname{Ind}_{H_{i}}^{G} \mathbb{1}=\sum_{j} \operatorname{lnd}_{H_{j}^{\prime}}^{G} \mathbb{1}$.

A Brauer relation for S_{3} is

$$
C_{2}+C_{2}+C_{3}-\{1\}-S_{3}-S_{3} .
$$

Theorem (Kani-Rosen)

Let Y / \mathbb{Q} be a smooth, projective curve and $G \leq \operatorname{Aut}_{\mathbb{Q}}(Y)$. If $\sum_{i} H_{i}-\sum_{j} H_{j}^{\prime}$ is a Brauer relation for G, then there's an isogeny

$$
\prod_{i} \mathrm{Jac}_{Y / H_{i}} \longrightarrow \prod_{j} \mathrm{Jac}_{Y / H_{j}^{\prime}} .
$$

Isogeny invariance of BSD

$$
\mathrm{BSD}_{\mathrm{Jac}_{X}}:=\frac{\# Ш_{\mathrm{Jac}_{X}} \cdot \mathrm{Reg}_{\mathrm{Jac}_{X}} \cdot C_{\mathrm{Jac}_{X}}}{\# \mathrm{Jac}_{X}(\mathbb{Q})_{\mathrm{tors}}^{2}}
$$

Theorem (Cassels-Tate)

Assume that \#Ш is finite. The BSD coefficient is invariant under isogeny.

Apply to the isogeny $E \times E \times \mathrm{Jac}_{D} \rightarrow \mathrm{Jac}_{B}$.

$$
\square \cdot 3^{\operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right)}=\frac{\operatorname{Reg}_{\mathrm{Jac}_{B}}}{\operatorname{Reg}_{E}^{2} \operatorname{Reg}_{\mathrm{Jac}_{D}}}=\frac{\# \operatorname{Jac}_{B}(\mathbb{Q})_{\text {tors }}^{2}}{\# E(\mathbb{Q})_{\text {tors }}^{4} \# \operatorname{Jac}_{D}(\mathbb{Q})_{\text {tors }}^{2}} \cdot \frac{\# Ш_{E}^{2} \# Ш_{\mathrm{Jac}_{D}}}{\# Ш_{\mathrm{Jac}_{B}}} \cdot \frac{C_{E}^{2} C_{\mathrm{Jac}_{D}}}{C_{\mathrm{Jac}_{B}}}=\square \cdot \frac{C_{E}^{2} C_{\mathrm{Jac}_{D}}}{C_{\mathrm{Jac}_{B}}}
$$

Theorem

Assuming that $\# Ш_{E}\left[3^{\infty}\right]$ and $\# Ш_{\mathrm{Jac}_{D}}\left[3^{\infty}\right]$ are finite,

$$
\operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right) \equiv \operatorname{ord}_{3}\left(\frac{c_{\infty}(E)^{2} c_{\infty}\left(\operatorname{Jac}_{D}\right)}{c_{\infty}\left(\operatorname{Jac}_{B}\right)}\right)+\sum_{p} \operatorname{ord}_{3}\left(\frac{c_{p}(E)^{2} c_{p}\left(\operatorname{Jac}_{D}\right)}{c_{p}\left(\operatorname{Jac}_{B}\right)}\right) \quad \bmod 2 .
$$

Example

$$
\operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right) \equiv \sum_{v=p, \infty} \operatorname{ord}_{3}\left(\frac{c_{v}(E)^{2} c_{v}\left(\operatorname{Jac}_{D}\right)}{c_{v}\left(\operatorname{Jac}_{B}\right)}\right) \quad \bmod 2
$$

$$
\begin{aligned}
E / \mathbb{Q}: y^{2}=x^{3}+x^{2}-9 x-\frac{59}{4}(19 . \mathrm{a} 2), \quad D / \mathbb{Q}: \Delta^{2} & =\operatorname{Disc}_{x}\left(x^{3}+x^{2}-9 x-\frac{59}{4}-y^{2}\right) \\
& =-27 y^{4}-\frac{1261}{2} y^{2}-\frac{6859}{16} .
\end{aligned}
$$

Jac_{D} is $798 . \mathrm{d} 4$.

v	$c_{v}(E)$	$c_{v}\left(\operatorname{Jac}_{D}\right)$	$c_{v}\left(\operatorname{Jac}_{B}\right)$	$\operatorname{ord}_{3}\left(\frac{c_{v}(E)^{2} c_{v}\left(\mathrm{Jac}_{D}\right)}{c_{v}\left(\mathrm{Jac}_{B}\right)}\right)$
2	1	2	2	0
3	1	3	1	1
7	1	6	2	1
19	3	3	27	0
∞	$1.3598 \ldots$	$0.5121 \ldots$	$0.9469 \ldots$	0

$\Longrightarrow \operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right)$ is even.

Obtaining local formulae

Theorem (Dokchitser, Green, Konstantinou, Morgan)

Let Y / \mathbb{Q} be smooth, projective such that $\# Ш_{\mathrm{Jacy}_{y}}\left[\ell^{\infty}\right]$ is finite. Assume $Y \rightarrow \mathbb{P}^{1}$ is a Galois cover and let $\Theta=\sum_{i} H_{i}-\sum_{j} H_{j}^{\prime}$ be a Brauer relation for its Galois group. Then

$$
\operatorname{ord}_{\ell}\left(\frac{\prod_{i} \operatorname{Reg}_{\mathrm{Jac}_{Y / H_{i}}}}{\prod_{j} \operatorname{Reg}_{\mathrm{Jac}_{Y / H_{j}^{\prime}}}}\right) \equiv \sum_{v=p, \infty} \Lambda_{v, \Theta}(Y) \quad \bmod 2 .
$$

$D: \Delta^{2}=\operatorname{Disc}_{x}\left(f(x)-y^{2}\right)$ is acted on by $C_{2} \times C_{2}$

$$
\Rightarrow \operatorname{rank}\left(\operatorname{Jac}_{D}\right) \equiv \sum_{v=p, \infty} \Lambda_{v, \Theta}(D) \quad \bmod 2
$$

$\Longrightarrow \operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right) \equiv \sum_{v=p, \infty} \Lambda_{v, \Theta^{\prime}}(B)+\Lambda_{v, \Theta}(D) \bmod 2$.

An arithmetic analogue of the parity conjecture

Theorem (Dokchitser, Green, Konstantinou, Morgan)

Assume \#Ш is finite. Let X / \mathbb{Q} be a smooth, projective curve. There is a finite collection of Brauer relations Br such that

$$
\operatorname{rank}\left(\operatorname{Jac}_{X}\right) \equiv \sum_{v=p, \infty} \sum_{\Theta \in \mathrm{Br}} \Lambda_{v, \Theta} \bmod 2
$$

Equivalently, there's an explicit invariant $\Lambda_{v} \in \mathbb{Z}$ computed from curves over local fields such that

$$
(-1)^{\operatorname{rank}\left(\mathrm{Jac}_{X}\right)}=\prod_{v=p, \infty}(-1)^{\Lambda_{\nu}}
$$

The parity conjecture

$$
(-1)^{\operatorname{rank}\left(\operatorname{Jac}_{x}\right)}=\prod_{v=p, \infty} w_{v}\left(\operatorname{Jac}_{X}\right)
$$

Summary

Let $E / \mathbb{Q}: y^{2}=f(x)$ be an elliptic curve.

$$
E \times E \times \mathrm{Jac}_{D} \rightarrow \mathrm{Jac}_{B}
$$

Assume that $\# Ш_{E}\left[3^{\infty}\right]$ and $\# Ш_{J a c_{D}}\left[3^{\infty}\right]$ are finite,

$$
\operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right) \equiv \sum_{v=p, \infty} \Lambda_{v}(B) \quad \bmod 2
$$

Assume $\# Ш_{E}\left[3^{\infty}\right], \# Ш_{\mathrm{Jac}_{D}}\left[3^{\infty}\right], \# Ш_{\mathrm{Jac}_{D}}\left[2^{\infty}\right]$ are finite,

$$
\operatorname{rank}(E) \equiv \sum_{v=p, \infty} \Lambda_{v}(B)+\Lambda_{v}(D) \quad \bmod 2
$$

Theorem

Assume \#Ш is finite. Let X / \mathbb{Q} be a smooth, projective curve. Then,

$$
(-1)^{\operatorname{rank}(\operatorname{Jac} x)}=\prod_{v=p, \infty}(-1)^{\Lambda_{v}} .
$$

Example

$$
E / \mathbb{Q}: y^{2}=x^{3}+x^{2}-9 x-\frac{59}{4}(19 . a 2), \quad D / \mathbb{Q}: \Delta^{2}=-27 y^{4}-\frac{1261}{2} y^{2}-\frac{6859}{16} .
$$

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right)}=\prod_{v=p, \infty} w_{v}(E) w_{v}\left(\operatorname{Jac}_{D}\right)
$$

v	$c_{v}(E)$	$c_{v}\left(\operatorname{Jac}_{D}\right)$	$c_{v}\left(\operatorname{Jac}_{B}\right)$	$\operatorname{ord}_{3}\left(\frac{c_{v}(E)^{2} c_{v}\left(\operatorname{Jac}_{D}\right)}{c_{v}\left(\operatorname{Jac}_{B}\right)}\right)$	$w_{v}(E)$	$w_{v}\left(\operatorname{Jac}_{D}\right)$
2	1	2	2	0	1	1
3	1	3	1	1	1	-1
7	1	6	2	1	1	-1
19	3	3	27	0	-1	-1
∞	$1.3598 \ldots$	$0.5121 \ldots$	$0.9469 \ldots$	0	-1	-1

Theorem (Green)

$$
(-1)^{\operatorname{ord}_{3}\left(\frac{c_{v}(E)^{2} c_{v}\left(\operatorname{Jac}_{D}\right)}{\left.c_{v} \operatorname{Jac}_{B}\right)}\right)}=w_{v}(E) w_{v}\left(\operatorname{Jac}_{D}\right) \quad \text { when } v=p, \infty
$$

Proving the parity conjecture for E

Theorem (Green)

Let E / K be an elliptic curve. Assume that $\# Ш_{E / K}\left[3^{\infty}\right], \# Ш_{J a c_{D} / K}\left[3^{\infty}\right], \# \Psi_{J_{\mathrm{Ja}_{D} / K}}\left[2^{\infty}\right]$ are finite. The parity conjecture holds for E.

Proof.

Assume that $\# Ш_{E / K}\left[3^{\infty}\right], \# Ш_{J a c_{D} / K}\left[3^{\infty}\right]$ are finite. By the previous theorems,

$$
(-1)^{\operatorname{rank}(E)+\operatorname{rank}\left(\operatorname{Jac}_{D}\right)}=\prod_{v}(-1)^{\operatorname{ord}_{3}\left(\frac{c_{v}(E)^{2} c_{v}\left(\operatorname{Jac}_{D}\right)}{c_{v}\left(\operatorname{Jac}_{B}\right)}\right)}=\prod_{v} w_{v}(E) w_{v}\left(\operatorname{Jac}_{D}\right)=w(E) w\left(\operatorname{Jac}_{D}\right) .
$$

Assume that $\# Ш_{J_{\mathrm{Ja}_{D} / K}}\left[2^{\infty}\right]$ is finite. Dokchitser-Dokchitser have shown that

$$
(-1)^{\text {rank }\left(\operatorname{Jac}_{D}\right)}=w\left(\operatorname{Jac}_{D}\right) .
$$

Further applications to the parity conjecture

Theorem (Green)

Assume \#Ш is finite. The parity conjecture holds for elliptic curves over number fields.

Theorem (Green, Maistret)

The p-parity conjecture holds for elliptic curves over totally real fields.

Work in progress (Dokchitser, Green, Morgan)

Assume \#Ш is finite. The parity conjecture holds for Jacobians of semistable hyperelliptic curves over number fields with good ordinary reduction at places $v \mid 2$.

Thank you for your attention!

