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Abstract

By taking a dynamical systems approach, we show how scalar field quintessence models

can be compared with and constrained by observational data. Mathematical methods such

as linear stability theory and Lyapunov functions are introduced and then used to anal-

yse the fixed points of cosmological systems. With this technology we are able to deduce

the evolutionary behaviour of the different scalar field models, which display a range of

phenomenologically interesting properties. We obtain late-time attractor solutions corre-

sponding to the accelerating expansion of the universe, as well as scaling solutions where

the barotropic equation of state defines how the universe evolves. The combination of both

of these behaviours is achieved for certain quintessence models, which can then satisfy ob-

servational constraints. As an example of the power of the dynamical systems approach, we

explore current areas of research in string theory as a testing ground for our applications.
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1 Introduction

Since the advent of modern cosmology and the discoveries of the late twentieth century,

our view of the Universe has been firmly shifted. The observed accelerated expansion of

the Universe has fundamentally changed the way we view many areas of physics, such as

with the predicted existence of dark energy, which goes beyond the Standard Model of

particle physics. From the Big Bang model of cosmology that describes how the universe

evolves, to the theory of inflation that aims to explain the origins of the universe, pioneering

research at the frontiers of physics has arisen out of the necessity to understand cosmological

observations.

Scalar fields are likely to play an important role in cosmology, already being crucial in

both particle physics and quantum field theory. In the early Universe they may describe the

inflaton field responsible for inflation or be linked to the spontaneous breaking of symmetries

which give particles their mass. They also arise naturally in string theory and can be

realised in the compactifications from higher dimensional theories down to four-dimensional

spacetime. In quintessence, however, scalar fields are what drive the accelerated expansion

of the Universe in present to late times. Because scalar fields evolve with time, they present

a possible dynamic explanation for dark energy.

In this work we shall focus on the cosmological applications of quintessence in the form

of canonical scalar fields. In particular we will be taking a dynamical systems approach and

using methods such as linear stability theory to investigate the dynamics of our models. In

recent years, the use of these dynamical system techniques has become increasingly popular

due to the qualitative pictures that they can paint (though they date back to the early

1970’s [1]-[3]). We will be providing a comprehensive overview of how dynamical systems

are employed for scalar field quintessence models, following the work of Bahamonde et al.

in [4], and also exploring areas of string theory that are inherently related to scalar fields.

String theory, being a strong contender as a consistent framework in which quantum gravity

arises, predicts the existence of scalar fields in the Universe which could be the same as those

involved in quintessence. Additionally, we will use the same dynamical systems approach

to investigate recent claims in string theory [5], which have direct cosmological implications

[6].

In Section 2 we begin by covering the basic mathematical tools used when studying

dynamical systems. We will introduce linear stability theory and the classifications of fixed
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points, treating examples in two-dimensions. A technique used for assessing the stability of

fixed points that are non-hyperbolic, meaning one cannot rely on linear stability theory, will

also be introduced with an accompanying example. This is called the Lyapunov method.

In Section 3 we move on to summarising the relevant aspects of modern cosmology, with

a particular emphasis on the most recent observations of the 21st century. We will also

introduce Einstein’s famous cosmological constant and the cosmological model associated

with it, concluding with a discussion of its problems. Section 4 will be devoted to the

study of string theory compactifications, revealing how scalar fields are integral to these

compactification methods. This will provide the link between string theory and cosmology

and introduce the mathematical tools that will be necessary for the topical examples treated

in Section 6. Appendix A also contains relevant calculations to accompany the Kaluza-Klein

compactification example in Section 4.3.

Section 5 contains the main body of work, where we will apply the dynamical systems

techniques to canonical scalar fields in cosmology. Using a change of variables we are able

to transform the cosmological equations into a dynamical system defined by a set of coupled

autonomous equations. We treat the models associated with three different scalar potentials:

the single exponential potential, the double exponential potential and the inverse power-

law potential. In all of these examples we assume that the matter content of the universe

can be described by a single barotropic equation of state. By analysing the phase space

associated with each of these models we can deduce their fundamental properties, such as

how a universe would evolve based on different initial conditions. In Section 6 we move on

to the topical example in string theory, drawing upon the background knowledge covered in

Section 4. We explore the cosmological implications of the claims made in [5] and [6] and see

how they impact our quintessence models. Crucially, we use the dynamical systems analysis

of Section 5 to determine whether the claims can be satisfied by scalar field quintessence

models which also satisfy observational constraints.

In Section 7 we briefly summarise the results from the previous sections and note the

utility of the dynamical systems approach. By the end of the work the reader should have

a clear understanding of both the roles of scalar fields in cosmology and the applicability

of the mathematical methods used. One would also hope that the connections with string

theory are not only evident, but that the use of dynamical systems in those regimes also

prove to be effective.
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1.1 Conventions and Formulas

Here we note some of general conventions that we will adopt throughout. We will be

working in natural units where the speed of light c and the reduced Planck constant ~ are

set to one. The constant G refers to Newton’s gravitational constant in four spacetime

dimensions. Unless stated otherwise, indices with Greek characters µ and ν will run over

the full spacetime dimensions and indices with Latin characters i and j will be used for

labelling spatial components. We will be using the metric convention (−,+, . . . ,+) and

assuming that we are working with a Levi-Cevita connection (zero torsion).

The formulas that will be used throughout the work, but not always explicitly defined,

are given by:

Γabc =
1

2
gad
(
gcd,b + gbd,c − gbc,d

)
Christoffel Symbols (1.1)

R d
abc = −2∂[aΓ

d
b]c + 2Γρc[aΓ

d
b]ρ Riemann Tensor (1.2)

Rab = R c
acb Ricci Tensor (1.3)

R = R a
a . Ricci Scalar (1.4)
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2 Dynamical Systems

Dynamical systems theory is an area of mathematics which has been applied in a wide range

of disciplines, from molecular biology to economics to fluid mechanics. It is a crucial tool

when wanting to consider the long-term behaviour of any system. In cosmology we are often

interested in the asymptotic states of the systems we’re modelling, at both the early and

late times. Dynamical systems theory presents us a way of characterising that behaviour.

For two prominent reviews on dynamical systems in cosmology we refer the reader to [7]

and [4].

In this section we will cover the mathematical techniques related to dynamical systems,

which will be used throughout this work. In particular we will be focussing on the analysis

of fixed points in two dimensions and the behaviour of trajectories in phase space. We will

begin with a brief introduction on dynamical systems and fixed points before outlining linear

stability theory. For further general reading on these topics see [8]-[10], or [11] for applica-

tions in cosmology. We will then move on to some more advanced treatments of dynamical

systems to study fixed points that are non-hyperbolic, going beyond linear stability theory.

Examples for both cases will be included. In the later sections, these techniques will be

employed when considering cosmological models that can be framed as a set of autonomous

differential equations, giving useful insight into the dynamics and stability of each model.

2.1 Introduction to Dynamical Systems

Dynamical systems can be classified into two main groups: differential equations and iterated

maps. Systems in which time is continuous are described by differential equations, which is

usually the case in cosmology. Iterated maps treat time as a discrete variable, so we shall

not be focussing on them here. The class of differential equations that will be of particular

importance to us will have just one independent variable, time being a key example. These

are known as ordinary differential equations (ODE’s).

Let us begin by defining the set of variables x1, ..., xn ∈ X ⊆ Rn, which represent

coordinates in n dimensional phase space. Let us also formally define our independent

variable, t ∈ R, which does not necessarily represent time. As a general framework, a set of
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ordinary differential equations describing a dynamical system can be written as [8]

ẋ1 = f1(x1, ..., xn)

... (2.1)

ẋn = fn(x1, ..., xn) ,

where the overdot represents the derivative with respect to t, such that ẋi ≡ dxi
dt

, and the

function fi is the map fi : X → X. The system can be described as autonomous if there is

no explicit dependence on the independent variable t. Writing (2.1) in a more concise, but

equivalent way,

ẋ = f(x) , (2.2)

where x = (x1, ..., xn), and the function

f(x) =
(
f1(x), ..., fn(x)

)
(2.3)

can be viewed as a vector field on Rn. We shall restrict ourselves to the case where f(x) is

both smooth and real-valued. If there are areas of the phase space where this does not hold,

then the following methods will not be applicable there. For our cosmological examples in

later sections, there are some cases where divergences appear in f(x) for some values of x

and these must be treated with care.

Any particular solution to (2.2) for some initial condition x0 will correspond to a point

moving along a curve in the phase space, which we will label ψ(t). This curve, or solution,

ψ(t) is known as the trajectory or orbit. Hence the phase space is filled with trajectories

all starting from different initial conditions. Using this geometric picture we can extract

information about the system just by examining the flows of trajectories in the phase space.

2.1.1 Fixed points and stability

Definition 1. Fixed Point or Critical Point or Equilibrium Point. A fixed (or critical or

equilibrium) point exists at x = x∗ if and only if it satisfies f(x∗) = 0 for an autonomous

system of the form (2.2) [10].

If a dynamical system represented by a set of autonomous equations has a fixed point,

as defined in Definition 1, then any trajectories originating exactly from that point will be

stationary and not evolve in time. To consider what happens under the influence of small
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perturbations around this point, or the evolution of trajectories passing close by, we must

define its stability.

Definition 2. Stable Fixed Point or Lyapunov Stable Fixed Point. A fixed point x∗ is

considered stable (or Lyapunov stable) if for every ε > 0 where ε is small, their exists δ > 0

such that ||ψ(t0) − x∗|| < δ. The solution ψ(t) then satisfies ||ψ(t) − x∗|| < ε for all later

times, t ≥ t0 [4].

If there exists a stable fixed point, as defined in Definition 2, then all trajectories passing

close to the fixed point within some well defined radius will continue to stay within that

radius forever (as t → ∞). However, points within that radius need not converge on the

stable fixed point. To meet that criteria a stronger definition is needed.

Definition 3. Asymptotically Stable Fixed Point. A fixed point x∗ is considered asymp-

tomatically stable if it is stable and their exists a δ such that ||ψ(t0)−x∗|| < δ. The solution

ψ(t) then satisfies limt→∞ ψ(t) = x∗.

If a fixed point is asymptotically stable, as defined in Definition 3, trajectories passing

close enough to it will eventually converge on that point. This type of equilibrium point is

most relevant for cosmology, with most stable fixed points also being asymptotically stable.

Note though that Definition 3 makes no mention of how long it takes for a trajectory to

converge on the asymptotically stable fixed point1. And finally, an unstable fixed point is

an equilibrium point which is not stable.

Let us mention a few important things about the phase space of an autonomous dynam-

ical system and the fixed points within it. Ignoring periodic orbits, different trajectories

within the phase space cannot cross each other. This is just another way of saying that the

solutions to the autonomous ODE are unique, assuming f(x) is smooth. An orbit between

two fixed points is called a heteroclinic orbit ; these will be of particular importance.

If all of the solutions ψ(t) within a well defined subspace S of the full phase space,

S ⊂ X ⊆ Rn, stay within that subspace for all t ∈ R, then we call the set of points x ∈ S

the invariant set and the subspace S the invariant manifold. In other words, the invariant

manifold is not connected to the rest of the phase space by any orbits. A similar concept is

that of the invariant submanifold : an invariant manifold with dimension one or more less

1A further condition known as exponential stability gives an estimate on the time taken to converge on

the fixed point.
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than that of the phase space. Invariant submanifolds separate the phase space into smaller,

independent sections which are not connected by any orbits.

Let us give an example in two dimensions, where the invariant submanifold will be a

one-dimensional line. Consider the autonomous system

ẋ = 2x2 − 3xy2 + x (2.4)

ẏ = x3 + 2xy + y . (2.5)

We can rewrite the first equation (2.4) as

ẋ = x(2x− 3y2 + 1) . (2.6)

Any orbit with the initial condition x0 = 0 will continue to stay on the x = 0 line. Likewise,

any orbit in the phase space which comes to the x = 0 line, say at t = t0, will continue to

stay on this line for all t ≥ t0. The phase space is divided into points above the x = 0 line

and points below it, over which no orbit can cross. An important consequence is that only

fixed points on this line can have incoming (or outgoing) trajectories that span the whole

phase space.

2.2 Linear Stability Theory

To understand the dynamics of trajectories close to a critical point we look to linear stability

theory. We can approximate the non-linear dynamics of complicated systems, still of the

form ẋ = f(x), by linearising about a critical point x∗. This approximation works if we

assume f(x) to be sufficiently regular. Taylor expanding f(x) around the critical point x∗

gives

f(x) = f(x∗) + (x− x∗)
∂f

∂x

∣∣∣∣∣
x=x∗

+ ... , (2.7)

where we will only need to consider the first partial derivatives [8]. By definition f(x∗) = 0,

so the evolution of the points (x − x∗) are governed by the Jacobian matrix evaluated at

the critical points,

J |x=x∗ =
∂f

∂x

∣∣∣∣
x=x∗

=


∂f1

∂x1
. . . ∂f1

∂xn
...

. . .
...

∂fn
∂x1

. . . ∂fn
∂xn


x=x∗

. (2.8)

The Jacobian matrix is also called the stability matrix, and the eigenvalues of (2.8) contain

information about the stability of the critical points x∗. The eigenvalues can be found either
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by hand, as we will see shortly in the next example, or with computational methods when

the system of equations are more complicated. The same can be said for the fixed points of

the system.

Let us briefly run through the classification of fixed points for linear systems, which

depend on the eigenvalues of its Jacobian matrix at the critical point (2.8). If all the

eigenvalues have positive real parts then the point is an unstable point (or repeller) and

trajectories are repelled from it. If all the eigenvalues have negative real part then we have

a stable point (or attractor) and trajectories are attracted to it. If at least two of the

eigenvalues have opposite signs then we have a saddle node, and trajectories are attracted

from certain directions and repelled in others. These three classifications cover the majority

of the fixed points found in cosmological systems. We will also encounter spirals in two

dimensions, which occur when the eigenvalues have a non-zero imaginary part. These can

be both stable or unstable, depending on the eigenvalues real part. One can go on to classify

a larger variety of critical points (see [8]-[9]), but only these will be relevant for this work.

Linear stability theory, as described above, is valid only when the fixed point is hyperbolic

[10], i.e. when the non-linear terms of f(x) do not determine the stability of the critical

point.

Definition 4. Hyperbolic Point. A fixed point x∗ of the system ẋ = f(x) is hyperbolic if

all of the eigenvalues of its Jacobian matrix have non-zero real part. If not, the point is

non-hyperbolic.

2.2.1 Example: 2D Linear stability theory

Let us work through a concrete example of applying linear stability theory in two dimensions.

Consider the non-linear dynamical system given by

ẋ = xy2 − y2 − 2x+ 2 (2.9)

ẏ = yx+ y . (2.10)

The fixed points (x∗, y∗) are at (1, 0), (−1,
√

2) and (−1,−
√

2). The Jacobian matrix is

found to be

J =

y2 − 2, 2xy − 2y

y, x+ 1

 , (2.11)
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which can be evaluated at each of the fixed points. The eigenvalues can then be found with

the characteristic equation [8],

det
(
J |x∗ − 1λ

)
= 0 , (2.12)

where λ is the eigenvalue and 1 is the identity matrix. Applying this for our Jacobian (2.11)

at the first fixed point (1, 0), we obtain the equation

(−2− λ)(2− λ) = 0 , (2.13)

which has the solutions λ = ±2. We can therefore conclude that the fixed point (1, 0) of

the system (2.9) & (2.10) is a saddle node.

Now consider the point (−1,
√

2). Applying the same method one finds the eigenvalue

equation is simply λ2 = 0. This critical point is therefore non-hyperbolic, meaning linear

stability theory fails. Most of the cosmological models we will investigate will have hyper-

bolic fixed points, but not all of them (for example the power-law model in Section 5.5). If

we wish to determine the stability of those non-hyperbolic points, we must go beyond linear

stability theory.

2.3 Lyapunov Method

In general, determining the stability of non-hyperbolic critical points is not straight forward.

The Lyapunov method in relation to most other methods is relatively simple and can be

very powerful. The process involves finding what is known as a Lyapunov function, which

can be thought of as a generalised energy function for the system and will be defined shortly

[12]. However, there is no known systematic way of finding such a function and the inability

to find one does not reveal anything about the stability of the critical point.

Definition 5. Lyapunov Function. Consider the fixed point x∗ of a smooth dynamical

system ẋ = f(x), where x ∈ X ⊂ Rn . Let V : Rn → R be a continuous function in a

neighbourhood U of x∗. The function V is a Lyapunov function if it satisfies [13]:

1. V (x) > V (x∗)

2. V has continuous first derivatives for {x ∈ U
∣∣x 6= x∗}

3. V̇ ≤ 0 for all {x ∈ U
∣∣x 6= x∗}

13



We understand the third requirement to mean

dV (x)

dt
=
∂V

∂x1

ẋ1 + . . .+
∂V

∂xn
ẋn

=
∂V

∂x1

f1 + . . .+
∂V

∂xn
fn

= ∇ · f(x) ≤ 0 . (2.14)

The existence of a Lyapunov function, as defined in Definition 5, guarantees the (lyapunov)

stability of the associated fixed point x∗. If condition three is replaced by a strict inequality,

V̇ < 0 for all {x ∈ U
∣∣x 6= x∗}, then the fixed point is asymptotically stable. Additionally, if

the function V (x) is radially unbounded, such that V (x)→∞ as |x| → ∞, then the fixed

point is globally stable (or globally asymptotically stable). As previously mentioned though,

being unable to find a suitable Lyapunov function for a fixed point does not guarantee

instability.

2.3.1 Example: Lyapunov method for a non-hyperbolic fixed point

Let us explicitly see how to treat a non-hyperbolic fixed point using the Lyapunov method.

We shall consider the dynamical system from section 2.5.2 of [4] as an example, given by

the set of autonomous equations

ẋ = x2y − γ(x− y)3 , ẏ = (x+ y)2 − y . (2.15)

Consider the fixed point (x, y) = (0, 0). The Jacobian evaluated at the fixed point,

J
∣∣
(0,0)

=

2xy − 3γ(x− y)2, x2 + 3γ(x− y)2

2(x+ y), 2(x+ y)− 1


(0,0)

=

0, 0

0, −1

 , (2.16)

implies the eigenvalue equation is given by

λ(1 + λ) = 0 . (2.17)

One can immediately see that this fixed point is non-hyperbolic, with one of the eigenvalues

equal to negative one λ = −1 and the other equal to zero λ = 0.

The Lypapunov candidate function we will be using for the fixed point is [4]

V =
1

2
x2 + αy4 , (2.18)

14



where α is a positive constant to be determined. It is clear that the Lyapunov function

already satisfies the first two requirements in Definition 5, and also that V (x, y) → ∞ as

|(x, y)| → ∞. Let us check the third requirement, V̇ ≤ 0 close to the critical point,

V̇ = xẋ+ 4αy3ẏ = x
(
x2y − γ(x− y)3

)
+ 4αy3

(
(x+ y)2 − y

)
. (2.19)

Around the fixed point (the origin) the lowest order terms will dominate. To see more

clearly if the requirement is satisfied, let us introduce polar coordinates x = rcos(θ) and

y = rsin(θ). The derivative of the function, (2.19), then becomes

V̇ =
(
− α sin4 θ − γ cos θ(cos θ − sin θ)3 + sin θ cos3 θ

)
r4 +O(r5) . (2.20)

One can then verify that for γ > 0 and sufficiently large values of α, the derivative V̇ will

be negative [4].

The function given in (2.18) is therefore a suitable lyapunov function, satisfying the

requirements in Definition 5 when γ > 0. In that case, the fixed point (0, 0) is glob-

ally asymptotically stable. We have hence demonstrated the effectiveness of the Lyapunov

method, along with seeing the usefulness of introducing polar coordinates; both of which

we will use in section 5.5.
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3 Modern Cosmology

In this section we will briefly review the foundations of modern cosmology (see [14] and [15]

for the two main references for this section). We shall start with the key assumption that the

cosmological principle holds: on sufficiently large scales the Universe is both homogeneous

and isotropic. In other words, there are no special points for comoving observers2 within the

Universe [14]-[16]. The other cornerstone of modern cosmology is the overwhelming evidence

for the accelerated expansion of the Universe (see Section 3.3). The mysterious source of

this accelerated expansion is commonly called dark energy and many theories attempt to

explain its nature. One such explanation is Einstein’s famous cosmological constant, a

constant term added to Einstein’s field equations resulting in the cosmological model know

as the Lambda-cold-dark-matter (ΛCDM) model.

In this section we will begin by introducing elements of Friedmann cosmology and derive

the cosmological evolution equations in the presence of a single fluid. We will outline some

of the key cosmological observations of the 21st century and the evidence for dark energy.

The cosmological constant and the ΛCDM model will be studied, and we will conclude this

section with a short discussion on the cosmological constant problem.

3.1 Friedmann Cosmology

The cosmological principle implies that the spacetime of our universe must be highly

symmetric, specifically, that the spatial components (ds3
3) be maximally symmetric. The

most general type of metric describing this spacetime in four dimensions is given by the

Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric3 gµν . In pseudo-spherical, polar co-

ordinates xµ = (t, r, θ, φ) this can be written as

ds2 = gµνdx
µdxν = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (3.1)

where a(t) is the scale factor and k is the spatial curvature.4 The scale factor a(t) gives the

rate of expansion of the universe, which we require to be strictly positive. The curvature

can take values k = −1, 0,+1, each corresponding to a universe with a different spatial

2We will usually refer to comoving observers simply as observers. Likewise, we will drop the ‘comoving’

when describing comoving coordinates. For more details on comoving coordinates see [16].
3This can be shown to be true in [17].
4Here t is a measure of cosmological time with respect to a (comoving) observer.
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geometry. For k = −1 we say the universe is open (or hyperbolic), for k = 0 the universe is

flat, and for k = +1 the universe is closed (or spherical). We shall be focussing on the case

of a spatially flat universe (k = 0) for reasons we will soon justify. See [18] for an example

of studying cosmological models with non-zero curvature.

To describe the relationship between the geometry of our spacetime and the matter

content within the universe, we look to Einstein’s field equations,

Gµν ≡ Rµν −
1

2
Rgµν = κ2Tµν , (3.2)

where Gµν is the Einstein tensor, Rµν is the Ricci curvature tensor defined in (1.3), R is

the Ricci scalar defined in (1.4) and gµν is the metric tensor. The constant κ is defined as

κ2 = 8πG
c4

and Tµν is the stress-energy-momentum tensor (or just energy-momentum tensor).

The energy-momentum tensor is sourced by the matter content within the universe, so again

the cosmological principle makes life easier for us. With the assumption of homogeneity and

isotropy we can model the matter content as a relativistic perfect fluid, being completely

characterised by its energy density ρ and pressure p (meaning no off-diagonal terms in the

energy-momentum tensor corresponding to shear stress). The energy-momentum tensor can

then be written as

T µν = (ρ+ p)uµuν + pgµν , (3.3)

where gµν is the inverse metric, such that gµηgην = δµν , and uµ is the four-velocity vector of

the fluid flow. The four-velocity is timelike and normalised,

uµuµ = gµνuνuµ = −1 , (3.4)

and has components uµ = (1, 0, 0, 0). The relationship between the energy density ρ and

pressure p of a perfect fluid is given by an equation of state (EoS) of the form p = p(ρ). If

the fluid is barotropic then the equation of state has the simple linear relation,

p = wρ , (3.5)

where w is the equation of state parameter. For normal matter5, w typically takes values in

the range [0, 1] - some key cosmological examples being w = 0 for matter (non-relativistic

particles including baryons and cold dark matter) and w = 1
3

for radiation (relativistic

particles such as photons). The equation of state parameter associated with a cosmological

constant, or vacuum energy, is w = −1, implying negative pressure.

5‘Normal’ here meaning what we understand to be permitted by macroscopic physics
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3.1.1 Evolution equations

Using the Einstein equation (3.2) and the FLRW metric (3.1) one can find the cosmological

equations relating the scale factor a(t) with the density ρ and pressure p, namely the Fried-

mann and the Acceleration equations. This relatively simple calculation involves finding

the Christoffel components (1.1) from the metric, plugging them into the Riemann tensor

(1.2), and then taking the trace: once to obtain the Ricci tensor (1.3) and again for the

Ricci scalar (1.4). The time-time component of Einstein’s equation (3.2) give rise to the

Friedmann equation,

H2 =
κ2

3
ρ− k

a2
, (3.6)

where H is the Hubble rate,

H =
ȧ

a
, (3.7)

and ȧ ≡ da
dt

is the derivative of a with respect to time t. Similarly, the acceleration equation

is found by considering the spatial components of Einstein’s equation (3.2),

2Ḣ + 3H2 =
k

a2
− κ2p , (3.8)

which can be rewritten using the Friedmann equation (3.6) as

ä

a
= −κ

2

6
(ρ+ 3p) , (3.9)

also known as the Raychaudhuri equation.

Equation (3.9) is particularly useful as it shows whether the scale factor a(t) is accel-

erating (ä > 0) or decelerating (ä < 0). In the first case (ä > 0), assuming a positive

Hubble rate H > 0, the universe is not only expanding but expanding at an accelerated

rate. In the second case (ä < 0), with H > 0, the universe is still expanding but the rate

of expansion is slowing down. We can rewrite the condition for accelerated expansion using

(3.9) as ρ+ 3p < 0. This also implies that the equation of state parameter from (3.5) must

be less than w < −1
3
.

Examining the Friedmann equation (3.6), it is useful to define the critical density as the

density required to produce a spatially flat universe (k=0),

ρc ≡
3H2

κ2
. (3.10)

One can then define the dimensionless density parameter (or relative energy density) as the

ratio of the density over the critical density,

Ω ≡ ρ(t)

ρc
. (3.11)
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Using observational data [19], the density parameter today Ω0 is calculated to be 1, corre-

sponding to a spatially flat universe (Ωk,0 = 0) to a 1σ accuracy of 0.25%. The density ρ

should more accurately be labelled the total energy density, as it is made up of the contribu-

tions from all the different sources of energy density in the universe. At the very least, this

includes matter ρm and radiation ρr. Other possibilities include a cosmological constant ρΛ

or contributions from one or more scalar fields, known more generally as quintessence. We

can therefore also split up the density parameter into its contributions from different sources,

including the curvature density parameter previously mentioned, Ω = Ωm + Ωr + Ωk + ...,

and an additional subscript 0 would indicate the value today. This is especially useful when

working with observational data. From here onwards we shall focus on the case of a spatially

flat universe (k = 0), and of a single fluid contribution at each a given time. For the most

part, this simplification is a good approximation of our Universe when it is dominated by a

single fluid during its different epochs [15].

The last equation we wish to derive is the fluid equation, which tells us how the energy

in the universe evolves. Therefore we wish to have an equation which includes the time

derivative of the energy density ρ. Consider the conservation of the energy-momentum tensor

(3.3), ∇µT
µν = 0, where ∇µ denotes the covariant derivative. Because of the symmetry of

Tµν , with no off-diagonal terms, this leads nicely to the fluid equation

ρ̇+ 3H(ρ+ p) = 0 . (3.12)

With an equation of state relating the density and the pressure, we can find an equation

for the density ρ(t) just in terms of the scale factor a(t) and the EoS parameter w. This can

then be substituted back into the Friedmann equation (3.6) in order to determine how the

scale factor evolves with time. Solving the fluid equation (3.12) with an equation of state

of the form (3.5) leads to

ρ ∝ a−3(1−w) , (3.13)

which is valid for w 6= −1. Substituting the above into the Friedmann equation (3.6),

remembering we are considering a spatially flat universe (k = 0), gives the general solution

a(t) ∝ t
2

3(1+w) . (3.14)

For a universe dominated by non-relativistic matter (Ωm = 1), the EoS parameter w = 0

gives

a(t) ∝ t
2
3 , (3.15)

19



known as the Einstein de Sitter solution. A universe consisting of only matter would expand

forever and the temperature would decrease monotonically, being inversely proportional to

the scale factor [14]. This end-of-the-universe scenario is hence known as the ’Big Chill’.

As we know, our Universe isn’t made up of only matter, but it turns out to be a good

approximation for when our Universe was roughly between t = 4.7× 104 and t = 9.8× 109

years old, also known as the matter epoch [15].

In the case of a radiation dominated universe (Ωr = 1) with w = 1
3
, the scale factor

evolves as

a(t) ∝ t
1
2 . (3.16)

This turns out to be a good approximation between the start of the Big Bang (or the end of

inflation) until the start of the matter epoch at t = 4.7×104 years, neglecting the transitional

phase where a two-fluid model is needed. The fate of a universe consisting of only radiation

is the same as the matter example previously discussed. In both of these cases the scale

factor evolves as a power-law function of time, and in both, the EoS parameter implies the

expansion rate of the universe is decelerating.

3.2 Dark Energy and Observation

Observational evidence from the Cosmic Microwave Background (CMB) Radiation [19] and

type Ia supernovae [20] both indicate that the Universe is currently undergoing accelerated

expansion (ä > 0). Since the cosmological equations for both a matter dominated and a

radiation dominated universe do not lead to accelerated expansion, it is clear that some-

thing is missing from our picture of the Universe. Some unknown form of energy must

be contributing to the overall energy density, aptly labelled dark energy. What’s more,

all current observational data points toward dark energy making up around 70% of the

cosmic energy budget, with a further 26% coming from an equally mysterious form of non-

relativistic matter (w = 0) known as cold dark matter (CDM) [19]. (See Table 1 for a list

of density parameters from the most recent Planck 2018 CMB data with the inclusion of

Baryon Acoustic Oscillation (BOA) data [19]). Observational data from Planck and type Ia

supernovae constrain the equation of state of dark energy to w = −1.006± 0.045. Another

useful cosmological parameter from Planck is the Hubble constant (the Hubble rate today),

with a value of H0 = 67.66 ± 0.42kms−1Mpc−1 [19]. However, it is worth mentioning that

this is in tension with the recent results obtained from the Hubble Space Telescope type Ia
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ΩΛ,0 = 0.6889± 0.0056

Ωm,0 = 0.3111± 0.0056

Ωb,0h
2 = 0.02242± 0.00014

Ωc,0h
2 = 0.11933± 0.00091

Ωk,0h
2 = 0.0007± 0.0019

Ωr,0 ∼ 0.0001

Table 1: Density parameters for today’s values of dark energy Λ, matter m, baryon matter b,

cold dark matter c, curvature k and radiation r respectively. The uncertainty in the Hubble

parameter is represented in h = 0.6766 ± 0.0042. The upper table values are taken from

the Planck CMB temperature, polarisation and lensing power spectra with the inclusion of

BOA data [19]. The lower table value is a naive estimate based on the same results.

supernovae, giving H0 = 73.24± 1.74kms−1Mpc−1 [21].6

As well as evidence from the CMB and supernovae, observations related to large scale

structure (LSS) also supports the claim that the Universe is now dominated by some form

of dark energy [23]-[24]. Moreover, a model of the universe with a period of radiation dom-

ination followed by matter domination, leading into a dark energy dominated phase seems

to best fit all the observational data (for an example, see the benchmark model introduced

by Ryden in [15]).

Despite making up such a huge fraction of the Universe’s energy density, the nature of

dark energy is truly still a mystery. The two most promising explanations are Einstein’s

famous cosmological constant Λ and quintessence in the form of scalar fields7. We shall first

talk about the cosmological constant and outline the ΛCDM model, and then address the

issues with such a model.

3.3 Cosmological Constant

Einstein’s field equations (3.2) have the important property that both sides of the equation

are divergence free, satisfying ∇µGµν = ∇µTµν = 0. Adding a bare cosmological constant

6More recent results from the Hubble Space Telescope and Gaia spacecraft in 2018 further add to the

tension with the Planck result for H0, with a Hubble constant of H0 = 73.52± 1.62kms−1Mpc−1 [22].
7Other possible explanations include modifying gravity to get rid of the need for any dark energy com-

ponent altogether (See [25] for a thorough review).
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term Λgµν to the left hand side of the equation does not spoil its covariance, giving us

Gµν + Λgµν ≡ Rµν −
1

2
Rgµν + Λgµν = κ2Tµν . (3.17)

The cosmological constant was originally added to Einstein’s field equations as an attempt

to obtain a static universe but is now the most popular explanation for dark energy, the

model commonly referred to as the Lambda-cold-dark-matter (ΛCDM) model.

Physically, the cosmological constant represents the vacuum energy density of empty

space, which is attributed to the zero-point energy of quantum fields [26]. The associated

equation of state has negative pressure ρΛ = −pΛ, thus the equation of state parameter is

w = −1. A cosmological constant dominated universe will undergo accelerated expansion.

The value of Λ can be calculated from observational parameters, which is found to be

approximately

Λ ' 10−52m−2 . (3.18)

For the evolution equations of (3.17), one follows the same procedure as before, arriving

at the Friedmann (3.6) and acceleration (3.8) equations with an additional cosmological

constant term:

H2 =
κ2

3
ρ+

Λ

3
, (3.19)

2Ḣ + 3H2 = −κ2p+ Λ , (3.20)

where the curvature k has been set to zero. The fluid equation (3.12) clearly remains the

same. If the cosmological constant contribution to the total energy density dominates then

the solution to (3.12) becomes

a(t) ∝ tHt , (3.21)

with H =
√

Λ
3

being constant. This is known as a de Sitter (dS) solution and the scale

factor increases exponentially with increasing time. A universe of this type always undergoes

accelerated expansion (ä > 0).

Just like the previous other single-fluid dominated universes we have considered, a de

Sitter universe cannot be an accurate model of our Universe for all times. This is because

in such a universe no structures could have had the chance to form. However, we know that

in the present day our Universe is accelerating and transitioning into a phase dominated

by a cosmological constant-like term. Therefore the dS solution is a good approximation

for our Universe after the period of matter domination. Moreover, the state of the Universe
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is approaching a true de Sitter space in the asymptotic future, when the relative energy

density of all other components goes to zero.

As previously mentioned, if the source of dark energy is a cosmological constant then the

vacuum has some positive energy associated with it. In string theory, this can alternatively

be realised as a scalar field sitting in the minima of its potential. One of the major current

goals in string theory is to construct these potentials corresponding to stable de Sitter vacua

(or positive cosmological constant). If one believes string theory, the inability to do so could

make a strong case for the nature of dark energy not being tied to a cosmological constant.

This approach shall be a key focus of this work in Sections 4 and 6.

3.3.1 The cosmological constant problem

Lastly, a discussion on the cosmological constant could not be complete without mentioning

the infamous cosmological constant problem. We shall only briefly describe the issues that

plague the cosmological constant and the ΛCDM model, but for a more complete description

see the review by Carroll [27]. A naive calculation of Λ in quantum field theory (QFT),

ignoring divergences and assuming a cut-off at the Planck scale mp = 1.2× 1019GeV, gives

an energy density of ρΛ ≈ 1074GeV4. If one instead works up to just the electroweak scale,

the calculated energy density is around ρΛ = 108GeV4. Compare these with the actual

energy density of Λ according to observation, ρΛ ≈ 10−47GeV4. This staggering 121 orders

of magnitude difference up to the Planck scale, or 55 orders of magnitude difference up the

electroweak scale, has long been a major cause for concern.

One may introduce counter terms, a bare cosmological constant ρΛ,B, in order to cancel

the energy density to match that of observation. However, this requires one to fine-tune

the value of ρΛ,B to over 50 orders of magnitude, which does not seem like a natural solu-

tion. This problem of fine-tuning is what is popularly meant by the cosmological constant

problem. As we are dealing with QFT, we are in the realm where renormalising theories

and adding counter terms is commonplace. And one uses observation and experiment to

fix the values of these counter terms in each theory. The deeper issue lies in the radiative

instability of the cosmological constant, whereby this issue of fine-tuning reappears in each

loop order of the perturbation theory. This is explained in much greater detail by Padilla

[28].

A further problem is related to the ratio of today’s dark energy density ΩΛ,0 and matter
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density Ωm,0, although this problem is not exclusive to a cosmological constant. As shown

previously in Table (1), the dark energy and matter densities are roughly of equal order,

ΩΛ,0 ∼ Ωm,0 ∼ O(1). This means that today we are observing the Universe in the relatively

brief transition between matter and dark energy domination, and any small change in the

initial conditions would have caused the Universe to not be in such a coincidental state.

This is known as the cosmic coincidence problem [29]. Any theory of dark energy would

wish to address this problem, and the cosmological constant explanation seems to have no

way of doing so.

For a possible solution to both of the problems mentioned, we look again to string

theory and a concept known as the string landscape. We shall briefly summarise the idea

here and refer the reader to two encompassing pieces of work on the topic by Susskind [30]

and Linde [31]. In some string theory (or inflationary multiverse) models, the number of

different predicted vacua states is enormous - up to around 10500 in some cases [32]. One

can interpret this as the existence of a multitude of different universes, or pocket universes,

each with a different vacuum state and value of the cosmological constant Λ. One of these

universes corresponds to ours, with a cosmological constant matching the one we observe.

Using anthropic reasoning it can be concluded that only universes that are able to support

intelligent life (observers) will be observed. In other words, the fact we are observing this

Universe with a value of Λ able to support intelligent life is anything but a coincidence. The

nature of these string vacua will be explored in greater detail in Section 4, and we how this

landscape arises.

This type of anthropic argument has also been applied generally to the cosmological

constant in the absence of string theory (for example [33]-[34]). In this case it is disliked

by many, either because it discourages further investigation for physical explanations or

because it can be seen as a tautology: we can observe the Universe because it can be

observed. Nonetheless, it does not mean that this unfavourable explanation is incorrect.

The Universe may just appear to be fine-tuned with no further physical explanation. We

wish instead to explore models which do not rely on such reasoning.
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4 Scalar Fields in String Theory

The purpose of this section will be to introduce the unfamiliar reader to elements of string

theory as well as to show its relation to the field of cosmology. Scalar fields appear naturally

in string theory, which have direct applications in cosmology. The two main areas being

inflationary regimes in the early Universe, and the late Universe with dark energy. We shall

focus on the late-time applications, otherwise known as Quintessence models (see [35]-[36]

for two motivating examples).

We will begin by simply stating some of the general properties of string theory and

covering some of the terminology that will be used in later sections. We will then move

on to a topic known as compactification, treating two well known examples: dimensional

reduction in Kaluza-Klein theory and flux compactifications in Einstein-Maxwell theory.

The aims of these examples will be to show how scalar field potentials are produced under

compactifications. They will also familiarise the reader with the mathematical techniques

used later in Section 6, when we look at the motivating string theory examples that will be

relevant for cosmology.

4.1 Introductory to String Theory

String theory is an attempt to explain the physical world in a unified framework, motivated

by the need to go beyond general relativity (GR) and quantum field theory (QFT).8 Both

GR and QFT are now thought to be only effective theories, whereby at some cut-off energy

scale they break down.9 In other words, they are not true descriptions of nature. String

theory, on the other hand, appears to be a consistent theory of quantum gravity despite

not yet being fully formulated. The subject area is expansive but the most popular variants

of string theory can be classified into two main categories: ten-dimensional superstring

theories, based on the principle of supersymmetry; and eleven-dimensional M-theory, which

is thought to unify all the superstring models [40].

Let us briefly review some of the general properties of string theory, all of which are

covered in much greater detail in [40]-[42]. In string theory, the fundamental point-like

8Originally, string theory arose in an attempt to understand the strong nuclear force in the late 1960’s.

It has since grown and become a potential candidate as a Theory of Everything [37]
9General relativity can in fact be quantised and treated as a well behaved QFT at ordinary energies [38],

but admits ultraviolet (UV) divergence at higher energies [39]
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particles of conventional physics are replaced by one-dimensional extended objects called

strings. The length of these strings ls gives the characteristic length scale, typically taken

to be of order Planck length ∼ lp = 1.6× 10−35m. The number of spacetime dimensions is

predicted by the theory itself, usually ten or eleven. These dimensions we do not observe

can be thought of as being too small to detect, compactified on some internal manifold. The

details of the manifold gives rise to the different properties of the different string theories.

We shall be particularly interested in the method of compactification as it determines the

form of the four-dimensional effective theory.

As previously mentioned, supersymmetry is a key concept in string theory, with most

realistic theories requiring it. The concept relates bosons to fermions, implying that each

boson has a corresponding superersymmetric fermion partner and vice-versa. Models based

on this principle are known as superstring theories. There are five distinct superstring

theories, all in ten spacetime dimensions: type I, type IIA, type IIB, heterotic E8 ×E8 and

heterotic SO(32). The details of these different theories can be found in either of [40]-[41]. A

number of dualities were found in recent years which relate some of the different superstring

theories previously listed, for example, T-duality relates the two type II and two heterotic

theories [40]. It turns out that all five of the superstring theories are related through a

web of dualities and can be realised as different limits of a higher dimensional string theory,

known as eleven-dimensional M-theory. M-theory is approximated in the low energy limit

as eleven-dimensional supergravity (11d SUGRA), which will be one of the key examples we

will focus on.

Superstring cosmology is a new and growing field of research situated at the intersection

between string theory and cosmology (see [43] for a short review or [44] for a more complete

review). Predictions specific to string theory may be observable and testable in the regime of

cosmology: the existence of scalar fields. The compactification of string theories from higher

dimensions down to four spacetime dimensions produces one or more scalar fields, which

could be candidates for the inflaton field driving inflation ([45]-[47]), the vacuum associated

with a cosmological constant ([30],[48]), or the scalar field(s) involved in quintessence ([35]-

[36]). Unfortunately though, obtaining these solutions through compactifications is not so

straightforward. A great deal of work over the past few decades has gone into obtaining

stable solutions; an attempt to circumvent the so-called moduli stabilisation problem, where

the scalar field potential has no stable minimum (see [49] for a cosmological perspective). A
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technique involving the addition of fluxes appears to be a way of stabilising the moduli, and

also gives rise to a landscape of possible vacua [50]. This is known as the string landscape,

which we mentioned briefly before.

As it so happens, the types of stabilised moduli which tend to arise in flux compactifi-

cations often correspond to anti-de Sitter spacetimes. Obtaining stable de Sitter solutions

turns out to be more of a challenge. We will later be investigating a recent claim that

all meta-stable10 de Sitter solutions are not represented in the landscape of effective string

theories. Instead it is proposed that they belong in the swampland11 [5]. Despite originating

in string theory, these ideas are undoubtedly linked to cosmology as it is the domain where

observational evidence would likely come from. We will now explore how scalar fields arise

from compactifications.

4.2 Introduction to Compactifications

4.2.1 Kaluza-Klein compactification

To get a taste for how compactification works, we shall start with the famous Kaluza-

Klein (KK) dimensional reduction12. Kaluza [52] and Klein [53] were originally interested

in unifying gravity and electromagnetism, but their method has since been generalised and

is now employed in the compactification of 10-dimensional superstring theories and 11-

dimensional M-Theory. The same techniques we employ here shall be later used in both of

those areas, so our focus will be on the methodology.

Kaluza and Klein hypothesised that a fifth spacetime dimension exists; an extension of

general relativity in an attempt to unify gravity and electromagnetism. Let us first explain

the Kaluza-Klein idea qualitatively for a general D = d+ 1 dimensional spacetime, where d

is the number of spacetime dimensions we observe. The extra dimension we do not observe

is known as the compact dimension which is curled up on a circle of radius L.

As an analogy, imagine an infinitely long two-dimensional cylinder of radius L, where

10‘Meta-stable’ means we that are not assuming the minima in question is a global one. Ruling out

meta-stable solutions is a stronger claim than just stable solutions.
11The string swampland, in contrast to the string landscape, refers to the semi-classical effective field

theories which appear consistent but are actually inconsistent. For more details see the original paper by

Vafa [51].
12Dimensional reduction differs from compactification because in the former we take the size of the

compact dimension to go to zero and consider only the massless modes, see equation (4.2).
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L

Figure 1: Kaluza-Klein cylinder of radius L (top). The length represents the non-compact

spacetime dimensions and the width represents the compact dimension. From far away the

cylinder appears as a one-dimensional line (bottom).

its length represents our d dimensional spacetime and its width represents the compact

dimension, illustrated in Figure 1. At a distance far from the cylinder, its finite width

would not be visible and it would appear to be a one dimensional line. This corresponds

to our spacetime appearing to only have d dimensions, assuming the L is small enough.

In Kaluza-Klein theory the length scale of the compact dimensions is taken to be of order

Planck length lp. Let us move on to show how we compactify these extra dimensions.

Starting with the gravitational part of the Einstein-Hilbert action in D = d+ 1 dimen-

sions, we have

S =
1

κ2
D

∫
dDx
√
−GRD , (4.1)

where κD is the D-dimensional gravitational coupling constant, G = det[GMN ] is the deter-

minant of the D-dimensional metric tensor and RD is the Ricci scalar in D dimensions. The

indices in the metric run over N,M = 0, 1...d,D. The next step is to compactify one of the

dimensions onto an internal manifold, namely a circle S1. In general, one can compactify

any number of dimensions onto a variety of manifolds; the topology of the manifold being

an important feature for string theory. Our choice of a circle means that we make one of the

coordinates periodic. We shall introduce coordinates xM = (xµ, y), where y corresponds to

the compact spatial dimension with periodicity defined by y = y + 2πL, Greek letters run

over d dimensions and L is the radius of the compact dimension. Along this one-dimensional

line, the circumference of S1, we have identified any two points which differ by 2πL.

Expanding the metric GMN in terms of its Fourier series gives [25]

GMN(x, y) =
∞∑
n=0

G
(n)
MN(x) exp

(
iny

L

)
. (4.2)

Each value of n corresponds to a different mode (or field or particle). The n = 0 mode is

massless and the others have mass M = |n|
L

. If L is very small then the masses of each n 6= 0

mode will be very large. For example, the Planck length lP and associated Planck energy

EP are around 10−35m and 1019GeV respectively. The energies of these massive modes are
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beyond what we could ever hope to resolve, so we are justified in focussing on the low-energy

approximation by considering only the 0th mode. The metric is then independent of y and

we will be free to integrate out the compact dimension. The KK ansatz for the massless

mode is given by the following line element [54],

ds2
0 = G

(0)
MN(x)dxMdxN = gµν(x)dxµdxν + e2Φ(x)

(
Aµ(x)dxµ + dy

)2

, (4.3)

where gµν is the metric for the non-compact spacetime, Φ is the scalar dilaton field and Aµ

is the electromagnetic gauge field. It is the dilaton Φ which parametrises the structure of

the compact manifold [49].

Under the compactification, the full derivation given in Appendix A.1, the action (4.1)

in d = 4 dimensions becomes [25] [54]

SE(0) =
2πL

κ2
D

∫
d4x
√
−g̃
[
R̃d −

(1

2

)
(∇̃Φ)2 − 1

4
e−
√

3ΦF̃ 2
]
. (4.4)

Here we encounter a number of new terms (see Appendix A.1 for the full details). The

last term F̃ 2 = F̃µνF̃
µν represents the electromagnetic field strength squared. The tilde

indicates that a conformal transformation (or Weyl rescaling) of the metric has been made,

and those terms are now with respect to the new metric. The square of the derivative of

Φ is the kinetic energy component of the field and the factor of 2πL comes from integrated

circumference of the compact dimension.

Let us examine the action in more detail. The kinetic term is canonically normalised and

the Ricci scalar is coupled only to the metric, which means the action in the Einstein-Hilbert

form (or the Einstein frame). There is a non-trivial coupling between F 2 and the dilaton

field, which converges in the limit Φ→∞. To reduce the action to Einstein-Maxwell theory

in four dimensions, the dilaton would have to be set to zero. However, when examining the

field equations of (4.4) one finds that there are interactions between the fields which prohibit

us from doing this [25]. Another way of saying this is that switching off the dilaton is not

a consistent truncation of the higher dimensional theory [55]. If Φ cannot be set to zero,

one could instead posit that Φ must remain constant and close to zero. Another reason for

requiring Φ to be small is that the physical size of of the compact dimension is given by

2πLeΦ. A constant small Φ is required for the dimension to remain undetectable and stable

from decompactification. However, this is also unachievable in the absence of a potential

V (Φ).

29



This problem appears more generally in all KK-compactifications, where massless scalar

fields, such as the dilaton, are not stabilised by a potential and their vacuum expectation

values (VEVs) are unconstrained. This is what is known as the moduli stabilisation problem,

which, until recently, was a major obstacle when constructing consistent 4-dimensional

compactifications in string theory [40].

4.2.2 Flux compactifications

To resolve the moduli stabilisation problem, a method known as flux compactification was

developed in the early twentieth century. We shall briefly explain what these flux com-

pactifications are and how they work with a discussion of six-dimensional Einstein-Maxwell

theory. For a more in-depth review than we shall be addressing see [56] or [57].

Following the example laid out by Douglas and Kachru in [57], let us begin by considering

Einstein-Maxwell theory in six dimensions and compactifying down to four dimensions on

a sphere S2 with genus g = 0.13 The Lagrangian takes the form

S =

∫
d6x
√
−Gg

(
M4

6R6 −M2
6 |F 2

2 |
)
, (4.5)

where G6 is the metric determinant, R6 is the Ricci scalar and F2 represents the two-form

magnetic flux or field strength. We will absorb the fundamental mass scale M6 into the

dimensions of the other terms for simplicity.

To compactify to four dimensions, let us use the metric ansatz

ds2 = gµνdx
µdxν + L2(x)γmn(y)dymdyn , (4.6)

where m and n run over the two dimensions of the compact space and γmn is its correspond-

ing metric. Similar to in our previous example, the modulus field L(x) is a function of the

non-compact coordinates xµ and related to the size of the compact dimension. The physical

volume of the compact dimension is given by L2(x)V2, where V2 is the volume calculated

from the compact metric γmn [42].

Without fluxes turned on (setting F2 to zero) one goes through a similar calculation as

before, reducing to four dimensions and performing a Weyl rescaling to the Einstein frame.

The resulting 4d effective theory has a potential of the form

V (L) ∼ − 1

L4
. (4.7)

13For a more general S2 with genus g, see [58]. It will however turn out that only genus g = 0 leads to a

stabilised modulus.
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This is clearly unstable as the field L(x) will runaway to zero, the size of the compact sphere

shrinking to zero.14 The solution to this problem comes with the inclusion of a non-zero

flux (4.5). Let us thread the two-sphere S2 with N units of flux∫
S2

F2 = N . (4.8)

The contribution to the 4d theory from the flux term are as follows. By flux quantisation,

the flux term goes as F2 ∼ N
L2 . So for F 2

2 we have an N2

L4 contribution. Integrating over the

compact dimension gives an L2 contribution, and the Weyl rescaling brings an additional

factor of 1
L4 . Therefore the flux potential goes like N2

L6 and the full potential has the form

V (L) ∼ N2

L6
− 1

L4
. (4.9)

It can now be seen that with the addition of fluxes the moduli field L(x) can been stabilised.

The potential (4.9) exhibits stable minima which depend on the value of N . For L > 0 the

minimum (or critical radius) is roughly at L ∼ N .

An important feature of flux compactifications is that for each different value of N we

have a different stabilised critical radius. Each of these radii is related to a vacuum energy,

and hence, the landscape of all possible vacua is vast. For the potential in our example

(4.9), the associated vacuum energy is negative and corresponds to an anti-de Sitter (AdS)

spacetime. Many string theory models suffer the same problem, and an accompanying host

of no-go theorems [59] [60] claimed to rule out consistent compactifications to de-Sitter

spacetimes. In recent years, there have been positive developments which circumvent these

theorems, the most notable being the KKLT constructions [48]. The basic idea is that

methods such as compactification are used to stabilise the moduli in a supersymmetric anti-

de Sitter (AdS) vacuum. And then with the inclusion of objects known as D3 branes, the

AdS vacuum can be uplifted to a meta-stable de Sitter ground state [45]. In Section 6

we will return to some of these topics and see how they are fundamentally important for

cosmology.

14For genus g 6= 0 the potential is either: zero and L is a modulus (g = 1); or positive 1
L4 and L is also

unstable (g > 1) [58].
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5 Scalar Field Quintessence

In this section we will see how canonical scalar fields play a role in cosmology, specifically in

late-time quintessence models. Using the right choice of variables it is possible to transform

the cosmological equations into a closed set of autonomous equations, which can then be

studied with the dynamical systems techniques introduced in Section 2. The observed

cosmological parameters we looked at in Section 3.2 will be particularly useful here, giving

us constraints by which to fit our models if we want them to be accurate representations

of our Universe. As an added note, we will often refer to dark energy and scalar fields

synonymously, especially in the context of observation.

The three types of scalar field models we will discuss in this section are the single expo-

nential, the double exponential and the power-law potentials. There are a much wider class

of models that can be explored (see [4]), but these three in particular display phenomenolog-

ically interesting properties. Using a mix of qualitative analysis and numerical simulations

we will accurately be able to characterise not just the late-time but also the evolutionary

behaviour of all three models.

5.1 Canonical Scalar Fields in Cosmology

Let us consider the cosmology of a canonical scalar field minimally coupled to matter in

four spacetime dimensions. The action for such a system is given by [4]

S =

∫
d4x
√
−g

(
R

2κ2
+ Lm + Lφ

)
, (5.1)

where R is the Ricci scalar,
√
−g is the metric determinant and Lm is the Lagrangian for

matter fields. The canonical scalar field Lagrangian Lφ has the form

LΦ = −1

2
gµν∂µφ∂νφ− V (φ) , (5.2)

where V (φ) is the scalar field potential, which we require to be positive. Varying the action

with respect to φ leads to the Klein-Gordon equation,

�φ− V,φ = 0 , (5.3)

where V,φ = ∂V
∂φ

and �φ = ∇µ∇νφ. Variation with respect to the metric gµν yields the

gravitational field equations,

Rµν −
1

2
gµνR = κ2(Tµν + T φµν) , (5.4)
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where we define the energy-momentum tensor for a canonical scalar field as

T φµν = ∂µφ∂νφ−
1

2
gµν(∂φ)2 − gµνV (φ) , (5.5)

and (∂φ)2 ≡ gab∂
aφ∂bφ.

Just like when deriving the cosmological evolution equations in section 3.2, it is useful

to assume that the spacetime we are dealing with is accurately described by the FLRW

metric (3.1) and that the matter content can be modelled as a single perfect fluid (3.3) with

a barotropic equation of state p = wρ. If we also assume that the spacetime is flat (k=0)

then the FLRW metric, in Cartesian coordinates, is given by

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
. (5.6)

From the field equations (5.4) one can derive the Friedmann and acceleration equations, as

shown in Appendix B.1,

3H2 = κ2
(
ρ+

1

2
φ̇+ V (φ)

)
, (5.7)

2Ḣ + 3H2 = −κ2
(
ωρ+

1

2
φ̇2 − V (φ)

)
. (5.8)

The Klein Gordon equation (5.3) can also be rewritten in a simple form,

φ̈+ 3Hφ̇+ V,φ . (5.9)

The energy density and pressure for the scalar field φ can be defined as

ρφ =
1

2
φ̇2 + V (φ) , (5.10)

pφ =
1

2
φ̇2 − V (φ) . (5.11)

Using these definitions, the equation of state is then given by

wφ =
pφ
ρφ

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (5.12)

which can take values in the range [−1, 1]. It is important to remember that, unlike the

EoS for matter, the scalar field EoS wφ is a dynamically evolving parameter and can change

over time. When the kinetic energy 1
2
φ̇2 dominates over the potential energy V (φ) in (5.12),

wφ = 1. Conversely, when the potential energy dominates we have wφ = −1. The latter case

is the physically interesting one, where the scalar field can be the cause of the accelerated

expansion of the universe. Models where the potential energy dominates are commonly
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known as slow-roll models, where the scalar field φ is slowly rolling in its potential V (φ)

such that φ̇ is small in comparison [61].15 Hence, we can already see how a canonical scalar

field could, in principle, be a candidate for dark energy. Unlike a cosmological constant,

scalar fields are a dynamical explanation of dark energy, which leads to interesting new

features that we shall soon explore.

5.2 Dynamical Systems Approach

If we are to take a dynamical systems approach, the next obvious step is to transform the

cosmological equations (5.7), (5.8) and Klein-Gordon equation (5.9) into a set of autonomous

differential equations. To do so, we introduce new variables defined as

x =
κφ̇√
6H

; y =
κ
√
V√

3H
, (5.13)

first introduced by Copeland et al. in [62]. We will refer to these variables as expansion

normalised (EN) variables. We will assume that the scalar potential V is positive, and

therefore y ≥ 0 for positive H.16 This will indeed be the case for all the potentials we will

be dealing with. See Appendix B.2 for the derivation of all key equations in EN variables.

Consider first the Friedmann constraint (5.7), which written in terms of the new EN

variables is given by

1 = Ωm + x2 + y2 , (5.14)

where the density parameter (or relative energy density) for matter is defined as

Ωm =
κ2ρ

3H2
. (5.15)

Using the fact that we require Ωm + Ωφ = 1, we can deduce that the total relative energy

density of the scalar field is given by

0 ≤ Ωφ = x2 + y2 ≤ 1 , (5.16)

where x2 and y2 represent the kinetic energy density and potential energy density of the

scalar field respectively. The upper bounds come from the fact that the energy density of

matter cannot be negative, ρ ≥ 0. The equation of state (5.12) can then be rewritten as

wφ =
x2 − y2

x2 + y2
. (5.17)

15The same concept of slowly rolling scalar fields is also popular in inflationary models.
16If this is not the case one could define y = κ

√
|V |/(

√
3H).
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Now that we have the density parameters for both matter and the scalar field, we can

define the effective EoS parameter of the universe as the ratio of the total pressure to the

total energy density. Written in terms of x and y,

weff ≡
ptot
ρtot

=
p+ pφ
ρ+ ρφ

= wΩm + wφΩφ . (5.18)

= w(1− x2 − y2) + x2 − y2 . (5.19)

The effective EoS tells us the state of the universe, which can now be described solely in

terms of x, y, and w. For example, a matter dominated universe with weff = w has x = 0

and y = 0. In terms of the phase space (x, y) this is simply the origin. Accelerated expansion

is given by the condition weff < −1/3, which will also correspond to certain regions of the

phase space. Two more points of interest are at (±1, 0) and (0, 1) in the phase space. The

former corresponds to a universe completely dominated by the kinetic energy of the scalar

field, with an effective equation of state weff = 1 (also known as a stiff matter fluid). The

point (0, 1) corresponds to a universe dominated by the potential energy of the scalar field.

The effective equation of state is then weff = −1, which behaves like a cosmological constant

dominated (or de Sitter) universe and is undergoing accelerated expansion.

The physical phase space, the phase space of physically acceptable solutions, is con-

strained by (5.16). This is simply a circle of radius one centred on the origin. If we include

the condition that V not be negative (y ≥ 0), the physical phase space is cut in half along

the x-axis leaving us with a semicircle in the upper half plane.17 This is the region in which

we will be interested in. Orbits outside of the physical phase space, which we will simply

refer to as the phase space from now on, will not be considered.

The acceleration equation (5.8) and Klein-Gordon equation (5.9) can be rewritten as

a dynamical system by using the EN variables defined in (5.13), the derivation shown in

Appendix B.2. The set of equations for the system are given by

dx

dN
≡ x′ = −3

2

[
2x+ (w − 1)x3 + x(x+ 1)(y2 − 1)−

√
2√
3
λy2
]
, (5.20)

dy

dN
≡ y′ = −3

2
y
[
(w − 1)x2 + (w + 1)(y2 − 1) +

√
2√
3
λx
]
, (5.21)

where N ≡ log a and we have defined

λ = −V,φ
κV

. (5.22)

17Note that points along the x-axis (y=0) are included in the physical phase space.
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In general, the set of equations (5.20), (5.21) and (5.22) do not represent a closed autonomous

system because there is an explicit dependence on φ in the λ definition. It may already be

obvious that for certain potentials λ will have no φ dependence18, but to deal with the more

general case where λ is a variable, let us consider its evolution by taking the derivative,

dλ

dN
≡ λ′ = −

√
6
(
Γ− 1)λ2x , (5.23)

where

Γ ≡ V V,,φ
V 2
,φ

, (5.24)

and we understand V,,φ to mean the second derivative with respect to φ [63]. If the function

λ(φ) is invertible then it is possible to write Γ as a function of λ, thereby closing the

dynamical system with the set of three autonomous equations (5.20), (5.21) and (5.23).

Consider the phase space of the dynamical system (5.20), (5.21) and (5.23). There

exists an invariant submanifold at y = 0, about which trajectories cannot cross. This means

that even had we not previously ruled out negative values of y, trajectories with positive

or negative values of y would stay separate. Moreover, the system is invariant under the

transformation y → −y, so the qualitative dynamics for positive or negative values of y are

the same. Let us move on to exploring concrete examples with potentials of different forms.

5.3 Single Exponential Potential

The first form of potential we shall be considering is that of a single exponential potential.

Exponential potentials arise naturally in many areas of physics, particularly in relation to

high-energy phenomenon such as string theory and inflation (for a review see [47] or for

well known examples see [48] ). In string theories and superstring theories, exponential

potentials often emerge during the compactifications from higher dimensions down to four

dimensions (see Section 4). We will see two more explicit examples of this in Section 6. As

for the single exponential potential, it is the simplest type of quintessence model and also

has interesting dynamical properties. It has been studied extensively, but somewhat less

with a dynamical systems approach; the most notable example being credited to Copeland

et al [62]. We will use the results of that work as a guide for this section.

18In fact, the EN variables were originally introduce in [62] to study the case of an exponential potential

where λ is simply a constant parameter.
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The single exponential potential is written as

V (φ) = V0 exp−κλφ , (5.25)

where V0 > 0 is a positive constant and λ is a constant parameter, in line with (5.22). The

dynamical system is now closed with just the x′ and y′ equations, (5.20) and (5.21), which

represents a two dimensional autonomous system,

x′ = −3

2

[
2x+ (w − 1)x3 + x(w + 1)(y2 − 1)−

√
2√
3
λy2
]
, (5.26)

y′ = −3

2
y
[
(w − 1)x2 + (w + 1)(y2 − 1) +

√
2√
3
λx
]
. (5.27)

The phase space for the above system is the upper half circle with radius one in the (x, y)

plane. Also note the invariance under the simultaneous transformation x → −x and λ →

−λ, implying one only needs to consider positive values of λ to understand the full phase

space dynamics (negative values corresponding to a reflection in the y-axis).

5.3.1 Critical points and stability

The critical points of the system (5.26)-(5.27) are given in Table 2. Also included are the

key cosmological parameters defined in Section 5.2. The existence of the fixed point is

determined by seeing under what conditions that point stays within the phase space, i.e.

satisfying the Friedmann constraint x2 + y2 ≤ 1. The last column of Table 2 is of significant

importance as this describes how the universe is behaving. In Table 3 we outline the sta-

bility of each of the critical points along with listing their eigenvalues. Let us now discuss

each critical point in greater detail.

Point O: The critical point at the origin of the phase space represents the matter dom-

inated solution, the universe being completely characterised by the matter EoS parameter

(weff = w). This point exists for all values of w and λ. The sign of the eigenvalues (Table

3) are always opposite for w ∈ [0, 1), which is satisfied for all physically relevant equations

of state (e.g. matter w = 0 and radiation w = 1/3).19 This implies that the critical point

19The case when w → 1, whilst not physical, is interesting in terms of the phase space dynamics. Point O

becomes nonhyperbolic, however, its other eigenvalue is still positive and the point is therefore asymptoti-

cally unstable. As w approaches one, the strength of the attraction towards the saddle node along the x-axis

decreases until it finally becomes an unstable point at w = 1. This is confirmed by the phase portraits.
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Point x y Existence Ωm Ωφ wφ weff

O 0 0 Always 1 0 - w

A± ±1 0 Always 0 1 1 1

B

√
3
2

(1+w)

λ

√
3
2

(1−w2)

λ
λ2 ≥ 3 + 3w 1− 3+3w

λ2
3+3w
λ2 w w

C λ√
6

√
1− λ2

6
λ2 < 6 0 1 λ2

3
− 1 λ2

3
− 1

Table 2: Critical points and cosmological parameters for the system (5.26)-(5.27).

is a saddle node. Trajectories are attracted along the x-axis and repelled along the positive

y-axis. The scalar field equation of state is undefined as both its kinetic energy and poten-

tial energy are zero here. There is no accelerated expansion (weff > −1/3), and the scalar

field plays no important role at this point. Lastly, we note that any orbits coming through

or from this point must be extremely fine-tuned, having exactly y = 0 as an initial condition.

Points A±: The critical points at (±1, 0) represent the scalar field kinetic energy dom-

inated solutions. The effective EoS weff = wφ is always 1 and the universe behaves like

a stiff matter fluid (no accelerated expansion). This point also exists for all values of w

and λ. The eigenvalues for both points are either both positive (implying instability), or

of opposite sign (implying a saddle). This is subject to the value of the parameter λ, the

conditions stated in Table 3. From these conditions one can see that for certain values of

λ it is possible to have both points unstable (λ2 ≤ 6) or one stable and the other a saddle

(λ2 > 6), but not both a saddle point at the same time. Being the only unstable points in

the phase space, A+ and/or A− represent the past attractors (or repellers) for all trajec-

tories that don’t originate at a fixed point (i.e. orbits can be traced back to one of these

points as N → −∞). However, a stiff matter fluid with weff = 1 does not represent an

acceptable EoS in terms of macroscopic physics. These points are thought to correspond

to the very early universe and so are often ignored in the context of dark energy applications.

Point B: This critical point, which moves around the phase space depending on the value

of w and λ, is known as the scaling solution [64]. The scalar field equation of state matches

that of the matter equation of state, wφ = w. Therefore, the universe always behaves as

if dominated by matter weff = w, regardless of the values of the density parameters Ωm
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Point Eigenvalues Stability

O
{
− 3

2
(1− w), 3

2
(1 + w)

}
Saddle node

A+

{
3− 3w, 3−

√
3
2
λ
} Unstable point for λ ≤

√
6

Saddle node for λ >
√

6

A−
{

3− 3w, 3 +
√

3
2
λ
} Unstable point for λ ≥ −

√
6

Saddle node for λ < −
√

6

B
{
− 3

4

[
(1− w)± ∆

λ2

]} Stable point for 3 + 3w ≤ λ2 ≤ 24(w+1)2

9w+7

Stable spiral for λ2 ≥ 24(w+1)2

9w+7

C
{
λ2 − (3 + 3w), λ2

2
− 3
} Stable point for λ2 < 3 + 3w

Saddle node for 3 + 3w ≤ λ2 ≤ 6

Table 3: Eigenvalues and stability for the critical points of the system (5.26)-(5.27), where

∆ =
√

(w − 1)λ2(−24− 48w − 24w2 + 7λ2 + 9wλ2).

and Ωφ. This solution is especially important as it could explain how a scalar field could be

present in the Universe yet not disrupt structure formation, regardless of its relative energy

density - meaning no need for fine-tuning of the scalar field energy density. It does not,

however, represent a universe which is undergoing accelerated expansion. The fixed point

exists for λ > 3 + 3w and is always stable (see Table 3 for eigenvalues).20

Point C: This critical point’s position in the phase space is dependant on the value of

the parameter λ, and it represents a universe dominated by the scalar field potential energy.

The effective EoS is then determined by the scalar field, weff = wφ, which depends directly

on the value of λ and is given by weff = λ2 − 3. Importantly, this means that it can take

values between (−1, 1). Accelerated expansion occurs when weff < −1/3 which translates

to λ2 < 2. In the limit that λ → 0 the potential (5.25) becomes the constant V0. This

is simply a cosmological constant dominated universe that undergoes de Sitter accelerated

expansion. The critical point C exists for λ2 < 6 and is either a stable point for λ2 < 3+3w

20In almost all cases when w = 0, point B is actually a stable spiral and trajectories tend to circle around

the point before converging on it.
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or a saddle node for λ2 ≥ 3 + 3w. Note that when point B exists in the phase space, point

C must always be a saddle node; both cannot exhibit stable solutions at the same time.

5.3.2 Phase space analysis

Let us now examine the phase space and trajectories for the single exponential potential

model by plotting the phase portraits with different values of the parameter λ. Restrict-

ing ourselves to the upper half unit circle, we find that the dynamics of the phase space

can be encapsulated with just three different sets of values for λ, namely: λ2 < 3 + 3w,

3 + 3w ≤ λ2 < 6, and λ2 ≥ 6. This can be seen from the existence and stability conditions

in Tables 2 and 3. Another important feature we would like to show in our phase portraits

is the effective equation of state parameter weff , which is achieved through a simple contour

plot. Obviously the value of the cosmological fluid equation of state w affects the phase

space and the effective equation of state weff . However, with the focus being on late-time

dynamics and dark energy applications, setting w = 0 is a sensible choice. The last point to

note is that in these examples we will only consider positive values of λ; negative values are

a reflection in the phase space about the y-axis and the qualitative behaviour is identical.

Figures 2, 3 and 4 show the three distinct cases of phase portraits with λ = 1, 2 and 3

respectively. Also shown are the regions of accelerated expansion, heteroclinic orbits and

the value of weff as a contour map.

Case 1 (λ <
√

3): The critical points that exist for these values of the parameter λ are

A±, O and C. The two unstable points A± are the past attractors for all trajectories in the

phase space except the heteroclinic orbit O ⇒ C (red line in Figure 2). The saddle point O

attracts orbits close to the x-axis and repels them towards point C. Because point C is the

only stable point and attracts all trajectories in the phase space, it must be globally stable.

If λ <
√

2 then point C corresponds to accelerated expansion, represented by the region

inside the blue dashed line in Figure 2. When λ >
√

2, the critical point C moves out of

the accelerating region (as seen in Figure 3). It always lies on the unit semicircle, which is

evident from its coordinates (Table 2) satisfying x2 + y2 = 1.

There are in fact two more possible heteroclinic orbits which aren’t highlighted in Fig-

ure 2. They connect the past attractors A± with the origin O. We can therefore define

the heteroclinic sequence [4] as the series of heteroclinic orbits that a trajectory can follow,
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Figure 2: Phase portrait of (5.26)-(5.27) for λ = 1 and w = 0. The contour plot shows

weff ∈ [−1, 1]. The red line is the heteroclinic orbit connecting points O and C. The blue

dashed line represents the region with accelerated expansion (weff < −1/3). Point C is the

only stable point of the phase space, situated in the accelerating region.

which connect some or all the fixed points. There are two such sequences: A− ⇒ O ⇒ C

and A+ ⇒ O ⇒ C. Trajectories that follow along, or close to, these orbits will correspond

to a universe that initially begins in the stiff-fluid phase. It then enters a period of matter

domination with an equation of state w, before heading off into a phase dominated by the

potential energy of the scalar field (accelerating for λ <
√

2). The last two stages would

provide a realistic cosmological model for the Universe, but a stiff-fluid equation of state

for early times is unfavourable. This requires one to fine-tune the initial conditions around

the origin for physically acceptable solutions; a general feature for the single exponential

potential model.

Case 2 (
√

3 ≤ λ <
√

6): When λ is constrained between
√

3 and
√

6, all the critical

points in Table 2 exist in the phase space (see Figure 3). Both the critical points A± are

unstable and again represent the past attractors where all non-heteroclinic orbits can be

traced back to. The saddle node O behaves the same as in Case 1, except now it repels
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trajectories in the direction of the heteroclinic orbit O ⇒ B. The critical point C is now

also a saddle node, attracting trajectories along the unit semicircle (x2 +y2=1) and repelling

them along a heteroclinic orbit towards point B. The global attractor of the phase space

is the stable point B, which, along with point C, is not in the accelerating regime. The

heteroclinic sequences can now either go like A± ⇒ O ⇒ B or A± ⇒ C ⇒ B

As can be seen in Figure 3, neither of the heteroclinic sequences can really be used as

a realistic model for late-time dark energy applications. This is because all of the critical

points in the phase space lie outside of the accelerating regime (λ <
√

2). In particular,

the global attractor B represents the matter scaling solution, where the scalar field mimics

the matter equation of state wφ = w. Hence the effective equation of state is weff = w.

In order to achieve a period of matter domination followed by accelerated expansion, one

would need λ close to
√

3 and to follow an orbit from A− above O into the blue dashed

zone, before it is consequently attracted to the scaling solution B. Unfortunately, such an

orbit either passes too quickly through the matter dominated phase for structure formation

(somewhere across the diagonal contour line weff = 0), or does not enter the accelerating

region.

Case 3 (λ ≥
√

6): In this case, there are again 4 critical points in the phase space, A±,

O and B. This time however, only one of the A± points is unstable and the other is a saddle

node. For λ ≥
√

6 the past attractor for the whole phase space is A− and the saddle node

is A+.21 The critical point B is a stable spiral and heteroclinic orbit O ⇒ B follows this

motion (see Figure 4). No solutions correspond to an accelerating universe and there are no

viable cosmological trajectories. In the limit that λ → ∞, the fixed point B merges with

point O at the origin, which can be seen explicitly by considering the coordinates in Table

2. In this limit, the phase space is simply represented by trajectories following clockwise

circular motion, originating from the negative x-axis and coming round to end at positive

x-axis.22 This corresponds to the potential V (φ)→ 0.

From each of the three cases examined above, we can determine that the most viable

single exponential potential model is when λ is constrained to λ <
√

2 and we follow the

21If we were to consider λ ≤ −
√

6 the stability of these points would be swapped.
22This can be inferred by looking back at x′ and y′ equations (5.26)-(5.27) and taking the limit λ→∞.

Then, x′ ∝ y2 and y′ ∝ −xy. Considering the different points where x and y are negative or positive, the

direction of motion can be deduced.
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Figure 3: Phase portrait of (5.26)-(5.27) for λ = 2 and w = 0. The contour plot shows weff ∈

[−1, 1]. The red line is the heteroclinic orbit connecting points O and B. A heteroclinic

orbit also exists between points C and B (not shown). The blue dashed line represents the

region with accelerated expansion (weff < −1/3). Point B is the only stable point of the

phase space and point C is a saddle point. Neither B nor C are in the accelerating region.

heteroclinic orbit from the saddle node O to the late-time attractor C (see Figure 2 as an

example). The condition λ <
√

2 ensures that point C exists as a stable critical point and

is within the accelerating region. A trajectory that passes close to point O ensures that at

some point in the universes’ past, it was dominated by matter with an effective equation of

state equal to that of the matter equation of state w.

5.3.3 Evolution of cosmological parameters

To see exactly how long the period of matter domination lasts for, and the evolution of

the other cosmological parameters, the solutions of the autonomous equations (5.26)-(5.27)

for N ≡ log a have been plotted in Figure 5. Beginning at a point close to the origin

(x, y) ≈ (0, 0) at N = 0, we solve for both increasing and decreasing N . Increasing N

corresponds to the future trajectory from the origin, whilst decreasing N corresponds to

the past trajectory. We have used the same values of λ = 1 and w = 0 as in first phase
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Figure 4: Phase portrait of (5.26)-(5.27) for λ = 3 and w = 0. The contour plot shows

weff ∈ [−1, 1]. The red line is the heteroclinic orbit connecting points O and B. The blue

dashed line represents the region with accelerated expansion (weff < −1/3). Point B is a

stable spiral and the only stable point of the phase space. It is not within the accelerating

region.

portrait (Figure 2). With these parameters we obtain a sufficiently long period of matter

domination where the effective equation of state is at zero. At a later time, the scalar field

potential energy comes to dominate, with the effective equation of state being well below

−1/3 (the condition for accelerated expansion). We also notice that at very early times

the scalar field kinetic energy dominates - the so called stiff-matter solution. As previously

mentioned, we expect the early time solutions to be non-physical, with perhaps some other

physics coming into play, e.g. effects from radiation, or inflation at very early times.

Using Figure 5 we can make some rough estimations for the times when different events

occurred. The equations relating the independent variable N and the redshift z, which has

been derived in Appendix B.3, is given by

z = eN0−N − 1 , (5.28)

where we have used that both N0 = 5 and z = 0 today. Using this equation we find that
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Figure 5: Evolution of cosmological parameters: effective equation of state weff , scalar field

equation of state wφ, matter density parameter Ωm and scalar field density parameter Ωφ.

Solutions for λ = 1 and w = 0, and the initial conditions x[N = 0] = 0 and y[N = 0] = 0.001.

the matter-dark energy equality at roughly N = 4.6 corresponds to a redshift of z = 0.49.

This prediction agrees reasonably with that found in literature [65]. One could also relate

this redshift to time, using a model dependent equation. In Appendix B.3 we do this for a

the cosmological model consisting of matter and dark energy. If we extrapolate further into

the past to where the scalar field kinetic energy starts to dominate, N ≈ −10, we obtain a

redshift in the millions, z ≈ 3.3× 106. This is clearly very early in the universes’ evolution

and we know not to trust these solutions.

What we can instead do, knowing that the matter-radiation equality occurred at a

redshift of roughly z = 3411 (taken from the Planck 2018 results [19]), is use the start of

the matter domination era as a cut-off point where our model should stop being trusted.

The reason being is that we have included only a single matter fluid, and the solutions

and phase space may not be accurate representations before this point.23 This calculation,

found in Appendix B.3, gives a value of N ≈ −3. This is long after the effective equation of

state weff has dropped down to zero in Figure 5. Thus we still retain all of the favourable

late-time dynamics after this cut-off point.

23In fact, a model including a radiation-like fluid along with matter and a scalar field produces qualitatively

different dynamics including the number of fixed points. See [66] as an example, also with a dynamical

systems approach).
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Another feature of Figure 5 that is immediately obvious is the apparently small crossover

between the matter density parameter Ωm and the scalar field density parameter Ωφ. The

fact that today we are in this transitioning period seems highly unlikely (i.e. the coincidence

problem). However, if we plug in two conservative values of N for when both the matter and

scalar field density parameters are significant (e.g. > 0.1), we find that the transition period

is not as brief as it seems. For N = 4.5, such that the effective equation of state is still less

than −1/3, to N = 5.5, we have a period between the redshifts z = 0.65 and z = −0.40. In

Appendix B.3 we calculate this to correspond to slightly less than the Hubble time, which

is of the order of the age of the universe (approximately between t ≈ 7 × 109 year sand

t ≈ 21 × 109 years). This means that for this model with these specific parameters, being

in a transitioning state from matter to dark energy may not be so coincidental.

This apparent relaxation of the coincidence problem can be better understood by looking

back at the phase portraits of Section 5.3.2. The parameters for the model considered in

Figure 5 correspond to a universe with extremely-fine tuned initial conditions, as we required

that the orbit pass through the point (x, y) = (0, 0.001). Looking at the phase portrait in

Figure 2, which has the same values of λ and w, we see that this orbit follows the heteroclinic

one from point O to point C. Along this path the trajectories have the slowest speed24 and

therefore correspond to the slowest change in the cosmological parameters. If we instead

think in terms of the energy densities, which is more familiar in cosmology, we have required

the initial energy density of the scalar field to be sufficiently small that it evolves in such a

way to produce the desired results. The problem has simply been repackaged as a problem

of fine-tuning of initial conditions. It is now clear that the cosmic coincidence problem and

the initial conditions problem are just two sides of the same coin.

To see the extent of this fine-tuning problem and whether the initial energy densities

can be relaxed, let us consider orbits starting from elsewhere in the phase space. It turns

out that one reproduces the same solutions as in Figure 5 as long as the y value is very

close to zero (to four significant figures for x → ±1). Remember that in EN variables, y

is proportional to the scalar field potential energy (5.13), so we are requiring the potential

V (φ) ≈ 0. This is also evident from the phase portraits. If one deviates just slightly from

the y-axis (for λ <
√

3) the matter solution weff = w is only temporarily obtained when

passing through the line y = |x| (which can be seen on the contour plots of Figures 2, 3 and

24By speed we mean the rate at which they move through the phase space with respect to N .
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4).

For values of λ >
√

3, one always obtains scaling solutions at late times, but the attractor

(point B) is never accelerating. In Figure 19 of Appendix C, further plots showing the

evolution of the cosmological parameters for λ = 1 and λ = 3 with different initial conditions

are displayed. Figure 19a is in agreement with the conclusions reached above about the

strong dependence on initial conditions, whilst Figure 19b shows the scaling behaviour for

λ = 3.

To summarise what we have found for the single exponential potential model, one is able

to achieve phenomenologically interesting solutions for different values of the parameter λ.

The late-time dark energy attractor and the late-time scaling solutions being of particular

interest, though not mutually compatible. Given certain initial conditions, one can produce

semi-realistic cosmological models which are consistent with observation, though they must

be fine-tuned and suffer the same problems as the cosmological constant model. The early-

time solutions are non-physical but we know the single fluid model to be unrealistic at

those points [66] for a more recent treatment including both radiation and dark matter

components).

5.4 Double Exponential Potential

In the single exponential case, we noted that one could not achieve both scaling solutions and

stable accelerating solutions. However, it was discovered by Barreiro, Copeland and Nunes

[67] that a double exponential potential quintessence model can in fact obtain both of these

solutions simultaneously. The reasoning being that if a single exponential can produce both

the solutions but for different values of λ, then two exponentials with different exponents,

α and β, should be able to produce both solutions at the same time. If α is large and β is

small, then in the early universe the α contribution will be relevant and for later times the

β term will be relevant.

Consider the potential

V (φ) = V1e−καφ + V2e−κβφ , (5.29)

where α, β, V1 and V2 are constants.25 For the potential above, the definition of λ (5.22) is

not a constant parameter and instead a function of φ. Therefore to close the set of dynamical

25We stress here that realistic values of V1 and V2 must be chosen to be order ρΛ ≈ 10−47GeV4 so as to

match the observed value of Λ today [67]. There still exist this seemingly unnatural fine-tuning.
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equations, (5.20)-(5.21), we would need to include its evolution, the λ′ equation (5.23).

One can see that λ(φ) is indeed invertible and the function Γ(λ) (5.24) can be obtained.

However, an alternative route is to use a different set of variables, a simple extension of

the EN variables previously considered, which transforms the cosmological equations (5.7),

(5.8) and (5.9) into a closed autonomous system. The advantage of this approach is that

the system is already compact. The derivation of the equations used in this section under

the change of variables is given in Appendix B.2.2.

The choice of variables, as employed by Li et al. [68], are given by

x =
κφ̇√
6H

, y =

√
κ2V1e−καφ

3H2
, z =

√
κ2V2e−κβφ

3H2
. (5.30)

Following the same procedure as in Section 5.2, one arrives at the Friedmann constraint,

1 = Ωm + x2 + y2 + z2 , (5.31)

where Ωm = κ2ρ/(3H2) is defined as before. The scalar field density parameter, along with

the constraints for x, y and z, is given by

0 ≤ Ωφ = x2 + y2 + z2 ≤ 1 . (5.32)

The kinetic energy density of the scalar field is again represented by x2, and the potential

energy density is represented by the combination of y2 + z2.

The equation of state for the scalar field, defined in (5.12), can be written in terms of

the new variables as

wφ =
x2 − y2 − z2

x2 + y2 + z2
. (5.33)

The effective equation of state can then be written as

weff = wΩm + wφΩφ

= w(1− x2 − y2 − z2) +
(x2 − y2 − z2

x2 + y2 + z2

)
(x2 + y2 + z2)

= w(1− x2 − y2 − z2) + x2 − y2 − z2 .

(5.34)

The scalar field equation of state wφ can take values in the range [−1, 1], which is the same

as in the singe exponential case. The physical phase space is constrained by equation (5.32),

which is a sphere of unit radius centred on the origin. However, arguments can be made for

considering only positive values of y and z, which we shall see explicitly in the dynamical
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Point x y z Existence Ωφ wφ weff

(i) 0 0 0 Always 0 - w

(ii)± ±1 0 0 Always 1 1 1

(iii)
√

3
2

(1+w)
α

√
3(1−w2)

2α2 0 α2 ≥ 3(1 + w) 3(1+w)
α2 w w

(iv)
√

3
2

(1+w)
β

0
√

3(1−w2)
2β2 β2 ≥ 3(1 + w) 3(1+w)

β2 w w

(v) α√
6

√
1− α2

6
0 α2 ≤ 6 1 α2

3
− 1 α2

3
− 1

(vi) β√
6

0
√

1− β2

6
β2 ≤ 6 1 β2

3
− 1 β2

3
− 1

(vii) 0
√
b√

b−a ,
√
a√
a−b αβ < 0 1 −1 −1

Table 4: Critical points and cosmological parameters for the system (5.35)-(5.37).

equations. Therefore we can safely consider the variables in the range x ∈ [−1, 1] and

y, z ∈ [0, 1].

Employing the variables defined in (5.30), and shown clearly in Appendix B.2.2, the

acceleration equation (5.8) and Klein-Gordon equation (5.9) can be written as a three-

dimensional dynamical system defined by the autonomous equations

x′ = −3

2
x
[
(w + 1)(x2 + y2 + z2 − 1)− 2x2 + 2

]
+

√
3√
2

(
αy2 + βz2

)
, (5.35)

y′ = −3

2
y
[
(w + 1)(x2 + y2 + z2 − 1)− 2x2

]
−
√

3√
2
αxy , (5.36)

z′ = −3

2
z
[
(w + 1)(x2 + y2 + z2 − 1)− 2x2

]
−
√

3√
2
βxz , (5.37)

where prime denotes the derivative with respect to N = log a. These equations are the same

as those given in [68]. As previously hinted at, both the y′ and z′ equations have invariant

submanifolds for y = 0 and z = 0 respectively. Additionally, they are symmetric under

the individual transformations y → −y and z → −z. For this reason, we can consider just

the positive values of y and z. The equations are also invariant under the simultaneous

transformations that x→ −x along with α→ −α and β → −β. However, we will still need

to consider both positive and negative values of the exponents α and β because of their sign

relative to each other.
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Point Eigenvalues Stability

(i)
{
− 3

2(1− w), 3
2(1 + w), 3

2(1 + w)
}

Saddle

(ii)+

{
3− 3w, 3−

√
3
2α, 3−

√
3
2β
} Unstable for α, β ≤

√
6

Saddle for α or β >
√

6

(ii)−
{

3− 3w, 3 +
√

3
2α, 3 +

√
3
2β
} Unstable for α, β ≥ −

√
6

Saddle for α or β < −
√

6

(iii)
{
− 3

4

[
(1− w)± ∆α

α2

]
, 3(w+1)(α−β)

2α

}
Stable

{
β < α < −

√
3w + 3

√
3w + 3 < α < β

(iv)
{
− 3

4

[
(1− w)± ∆β

β2

]
, 3(w+1)(β−α)

2β

}
Stable

{
α < β < −

√
3w + 3

√
3w + 3 < β < α

(v)
{
α2 − 3w − 3, 1

2

(
α2 − 6

)
, 1

2α(α− β)
}

Stable

{
0 < α <

√
3w + 3 for α < β

−
√

3w + 3 < α < 0 for α > β

(vi)
{
β2 − 3w − 3, 1

2

(
β2 − 6

)
, 1

2β(β − α)
}

Stable

{
0 < β <

√
3w + 3 for β < α

−
√

3w + 3 < β < 0 for β > α

(vii)
{
− 3(w + 1), −3±

√
12αβ+9
2

}
Stable

Table 5: Eigenvalues and stability for the critical points of the system (5.35-

(5.36), where ∆α =
√

(w − 1)α2(−24− 48w − 24w2 + 7α2 + 9wα2) and ∆β =√
(w − 1)β2(−24− 48w − 24w2 + 7β2 + 9wβ2).
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5.4.1 Critical points and stability

The critical points of the system (5.35)-(5.37) are shown in Table 4. The stability analysis

of the critical points along with their eigenvalues is displayed in Table 5. The stability of

all the critical points has been determined with linear stability theory (Section 2.2) and the

results match those found by Li et al. [68]

We see that for the double exponential potential there are three more critical points

than in the single exponential case, but only one of these points is distinctly new. Because

most of the critical points in Table 4 share similarities with the critical points in the single

exponential case, we shall focus mainly on the qualitatively new features. The stability

of all the points has been determined with linear stability theory based on the calculated

eigenvalues.

The critical point (i) is the origin of the phase space and corresponds directly to point O,

sharing the same properties as its single exponential counterpart. It is the matter dominated

solution whose existence is guaranteed, and it is always a saddle point. The two points (ii)±

at (±1, 0, 0) are the possible early time attractors and represent the scalar field kinetic

energy dominated stiff-matter solutions. Their existence is also guaranteed and they can be

either unstable or saddles. They are analogues to the points A±, with the subtle difference

that both (ii)+ and (ii)− can be saddle points at the same time.

The two points (iii) and (iv) (see Table 4 for coordinates) are the scaling solutions,

where the scalar field equation of state matches the matter equation of state wφ = w. They

correspond to the scaling solution for the single exponential potential, point B, with the

single exponent λ of point B replaced by either α for point (iii) or β for point (iv). Their

stability conditions (Table 5) ensure that only one of the two points can exist as a stable

point in the same phase space.

Likewise, points (v) and (vi) share the same properties with the late-time attractor

point C, (see Table 4 for coordinates ). They represent the scalar field potential energy

dominated solutions and can both correspond to accelerated expansion. At the critical

point (v), the universe undergoes accelerated expansion when α2 < 2. At the critical point

(vi), accelerated expansion occurs for β2 < 2. For a given value of α and β, only one of the

critical points (v) and (vi) can be stable (see Table 5 for the exact conditions).

The last critical point (vii) shares no analogue with the single exponential case. Its

existence is dependant on one of α or β being positive and the other being negative. The
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scalar field potential (5.29) then exhibits a stable minimum for some positive value of φ.

The scalar field equation of state wφ is always equal to negative one here. This is then just

a de Sitter solution (or positive cosmological constant), which was not realised as a critical

point for the single exponential. We did see that in the special case when λ = 0, the fixed

point C acted as a cosmological constant with V = V0. However, this is strictly different

from the situation presented here. In the previous case, the value of φ was unconstrained26,

whereas here it is sitting in the minimum of a potential well, determined by the coefficients

α and β. Because of the existence condition, αβ < 0, the eigenvalues always have negative

real part, with the last two also having an imaginary component for αβ < −3/4.

For the time being, let us restrict ourselves to positive values of α and β. We find that

we can obtain both stable scaling solutions and stable accelerated expansion solutions in

the same phase space, so long as α and β satisfy α >
√

3(1 + w) and β <
√

2 (or the same

conditions with α and β swapped over). The inability to obtain both of these solutions in

the single exponential case is what led to its fine-tuning problems.

5.4.2 Phase space and evolution analysis

The phase space of the dynamical system (5.35)-(5.37) is three-dimensional and much more

complicated than the previous 2d case (5.26)-(5.27). To represent all of the distinct cases of

the different fixed points in Table 4, a large number of phase portraits must be drawn, and

the dynamics of the trajectories are not so clear. For this reason, it is better to consider

individual orbits, which we solve numerically.

In figure 6 we have plotted the solution for a specific set of initial conditions, with

the parameters set to α = 3, β = 4 and w = 0. Figure 6a shows the orbit for such a

solution, with the yellow point indication the initial conditions and solving for increasing

and decreasing N . One immediately sees that the critical point (ii)− is the past attractor.

The orbit then circles round and is attracted towards the saddle at the origin, point (i),

before ending up at the late-time attractor point (iii). The solution then corresponds to the

scaling solution at late times, with weff = w. This is confirmed in Figure 6b, where the

evolution of the cosmological parameters has been plotted. In the past, at point (ii)−, the

effective equation of state is equal to +1. The effective equation of state parameter weff

then drops down to w = 0, where it stays for all later times.

26Reminiscent of the moduli stabilisation problem in string theory.
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(a) Orbit of single trajectory through phase space. The yellow point represents the

initial conditions at (0.7, 0.1, 0) for N = 0. Point (i) is represented by the green ball,

points (ii)± are represented by the black balls and point (iii) is represented by the

red ball. The future of the orbit is towards the stable point (iii). See Table 4 for

coordinates.

-5 5 10
N

-1.0

-0.5

0.5

1.0

weff

wϕ

Ωϕ

Ωm

(b) Evolution of cosmological parameters.

Figure 6: Numerical solutions to the autonomous equations (5.35)-(5.37) for α = 3, β =

4 and w = 0. Subfigure (a) shows one individual orbit, whilst Subfigure (b) shows the

corresponding evolution of the cosmological parameters. The yellow point in Subfigure (a)

corresponds to N = 0 in Subfigure (b).
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With the values α = 10, β = 1 and w = 0, let us consider a different trajectory.

In Figure 7 we see the scalar field potential energy dominated fixed point acting as the

late-time attractor. The orbit in Figure 7a again begins at the past attractor, point (ii)−,

before circling round and coming up (in the z-direction) to point (vi). The evolution of the

cosmological parameters (Figure 7b) confirms that the scalar field dominates at this point,

and the effective equation of state is given by β2

3
−1. For our value of β = 1, this corresponds

to an accelerating expansion region.

In Figure 8 we have plotted the solutions for α = 10, β = 1, w = 0, and a range of

different initial conditions. In figure 8a the heteroclinic orbits have also been plotted as

dashed lines: point (ii)− → (vi) (purple), point (ii)+ → (vi) (pink), and point (iii) → (vi)

(black). The yellow orbit ends up at the saddle point (iii) because its initial condition was

in the x-y plane with z = 0. The evolution of the cosmological parameter for specific orbits

has also been plotted in Figure 8b. One can see that the red and green orbits, although

having very different trajectories in the phase space, could both translate to viable models

of the Universe. We are also assuming that the unrealistic early time predictions not be

considered for the same reason as in the singe exponential case. Specifically, that we have

neglected the presence of radiation.

The last solution we have plotted is for or α < 0 and β > 0 in Figure 20 of Appendix

C. In this case, the late-time attractor is always the the de-Sitter solution, critical point

(vii). One can obtain significant periods of matter domination followed by accelerated

expansion, with less of a dependence on initial conditions. For this reason, these solutions

are phenomenologically favourable. However, the de Sitter solution will not be a viable

consideration when we move on to our string theory motivated examples. This will become

more clear in Section 6.

In summary, we note that the dynamical approach used in this section has revealed a

lot about the late-time dynamics of the double exponential potential model. In Figure 8 we

have seen how for a range of different initial conditions, corresponding to different initial

relative energy densities for the scalar field (5.31), can be attracted towards the saddle

scaling solution (iii), before being attracted to the late-time accelerating solution (vi). This

means that even if the initial energy density of the quintessence field ρφ is greater than

that of matter ρ, we can still obtain scaling solutions with the right conditions for matter

formation. This was first noted by Barreiro et al. [67]. Lastly, we issue a reminder that
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(a) Orbit of single trajectory through phase space. The yellow point represents the

initial conditions at (−0.2, 0.6, 0.05) for N = 0. Points (ii)± are represented by the

black balls, point (iii) is represented by the red ball and point (vi) is represented by

the blue ball. The future of the orbit is towards the stable point (vi). See Table 4 for

coordinates.
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(b) Evolution of cosmological parameters.

Figure 7: Numerical solutions to the autonomous equations (5.35)-(5.37) for α = 10, β =

1 and w = 0. Subfigure (a) shows one individual orbit, whilst Subfigure (b) shows the

corresponding evolution of the cosmological parameters. The yellow point in Subfigure (a)

corresponds to N = 0 in Subfigure (b).
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(a) Orbit of multiple trajectories through phase space. Point (i) is represented by the

green ball, points (ii)± are represented by the black balls, point (iii) is represented by

the red ball and point (vi) is represented by the blue ball. The future of the orbit is

towards the stable point (vi). The dashed lines represent heteroclinic orbits.
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(b) Evolution of weff for some of the trajectories plotted above.

Figure 8: Numerical solutions to the autonomous equations (5.35)-(5.37) for α = 10, β = 1

and w = 0. Subfigure (a) shows several orbits with different initial conditions, whilst

Subfigure (b) shows the corresponding evolution of weff for those orbits

56



the dynamics models with more than barotropic fluid can be qualitatively different. For

example, in [67], the presence of radiation allows one to choose a wider variety of initial

conditions than we have considered here. One can also go on to include couplings between

the matter and dark energy sectors [69].

5.5 Power-Law Potential

The last form of potential we shall consider is the inverse power-law potential, or the Ratra-

Peebles potential [70]-[71], which can be well motivated from supersymmetry phenomenology

and has notably interesting features.

Consider a potential of the form

V (φ) =
Mα+4

φα
, (5.38)

where M and γ are both positive constants. One immediately sees that in order to have a

closed set of autonomous equations, one must consider the evolution of λ, given in equation

(5.23). This is because λ is now a variable which depends on φ,

λ = −V,φ
κV

=
α

κφ
, (5.39)

which can range from λ = −∞ to λ = +∞.

We find that the function Γ is given by

Γ =
V V,,φ
V 2
,φ

=
α + 1

α
, (5.40)

which is constant and depends only on the parameter α. The set of autonomous equations

governing the dynamics of a potential of the form (5.38) is then given by

x′ = −3

2

[
2x+ (w − 1)x3 + x(x+ 1)(y2 − 1)−

√
2√
3
λy2
]
, (5.41)

y′ = −3

2
y
[
(w − 1)x2 + (w + 1)(y2 − 1) +

√
2√
3
λx
]
, (5.42)

λ′ = −
√

6

α
λ2x . (5.43)

Note again the symmetry; under the simultaneous transformation x → −x and λ → −λ,

the system remains invariant. For this reason we can consider only the positive values of

λ, which now ranges from λ = 0 to λ = +∞. The symmetry in the y coordinate from the

previous examples is also present, allowing us to ignore negative values of y.

57



As noted in [4], the phase space for the system is non-compact with λ stretching to

positive infinity. To instead make it compact27, we follow the work of Ng et al. [49] and

introduce a new coordinate defined by

z =
λ

λ+ 1
, (5.44)

so that λ = z/(1−z). With this new definition, the equations (5.41)-(5.43) can be rewritten

as

x′ = −3

2

[
2x+ (w − 1)x3 + x(w + 1)(y2 − 1)−

√
2√
3

z

1− z
y2
]
, (5.45)

y′ = −3

2
y
[
(w − 1)x2 + (w + 1)(y2 − 1) +

√
2√
3

z

1− z
x
]
, (5.46)

z′ = −
√

6

α
z2x . (5.47)

The phase space is then reduced to the positive y-half cylinder with z ranging from 0 to 1.

The z = 1 points, however, are divergent, as can be seen in the last terms of the x′ and

y′ equations. These points correspond to λ → ∞. To remove these singularities we follow

the procedure taken in [4] and multiple the right hand side of equations (5.45) to (5.47) by

(1− z). This allows us to study the phase space in the limit that λ→ +∞ at z = 1. This

slight trick does not change the qualitative features of the system, with all the symmetries

discussed still intact.

The final set of equations forming the autonomous system that we shall be studying are

given by following,

x′ = −3

2
(1− z)

[
2x+ (w − 1)x3 + x(w + 1)(y2 − 1)

]
+

√
3√
2
zy2 , (5.48)

y′ = −3

2
y(1− z)

[
(w − 1)x2 + (w + 1)(y2 − 1)

]
−
√

3√
2
xyz , (5.49)

z′ = −
√

6

α
(1− z)z2x , (5.50)

and the phase space bounded by −1 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. The cosmological

parameter are governed by the same x and y equations derived in Section 6.3.

27‘Compact’ here being different to use of the word in previous sections regarding string theory.
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Point x y z Existence Ωφ wφ weff

Oz 0 0 Any Always 0 - w

A± ±1 0 0 Always 1 1 1

Bx Any 0 1 Always x2 1 x2(1− w) + w

C 0 1 0 Always 1 −1 −1

Table 6: Critical points and cosmological parameters for the system (5.35)-(5.37). The

constant κ has been set to one.

5.5.1 Critical points and stability

The critical points obtained from equations (5.48)-(5.50) are displayed in Table 6, along

with the cosmological parameters. The first significant difference about this phase space,

compared to the exponential examples considered earlier, is that two of the critical points

correspond to a line of critical points or critical line. Moreover, for the critical line Bx, where

x can take any value, the cosmological parameters Ωφ and weff depend on the position of

the x coordinate. This will be explored in more detail when considering the phase portraits.

All of the critical points in the phase space exist for all values of α and w.

The stability of each point, along with its eigenvalues, is given in Table 7. At least one

of the eigenvalues for every critical point is equal to zero. This means all of the points are

non-hyperbolic and must be treated carefully. The stability analysis of the points marked

with a * in Table 7 are credited to the work done by Tamanini [72], where a combination

of more advanced techniques such as centre manifold theory and computational methods

have been used (see [4] for the review based on the same work, or [73] for an introduction

on centre manifold theory). Let us move on to discussing each point.

Points Oz: The line of critical points on the z-axis from z = 0 to z = 1 are the matter

dominated solutions and the scalar field plays no role. Just like for the single exponential

potential, the scalar field equation of state is undefined and the effective equation of state

is always weff = w. The stability of the critical line, though non-hyperbolic, can still be

determined just by examining the eigenvalues in Table 7. Because (w+1) is always positive,

(w − 1) is always negative and (z − 1) is always positive, the two non-zero eigenvalues are

always of opposite sign. Therefore the critical line is always a saddle.
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Point Eigenvalues Stability

Oz

{
0, − 3

2
(z − 1)(w ± 1)

}
Saddle

A+

{
0, 3, 3− 3w

} Unstable* for α < 0

Saddle* for α > 0

A−
{

0, 3, 3− 3w
} Unstable* for α > 0

Saddle* for α < 0

Bx

{
0, −

√
3√
2
x,

√
6
α
x
} Saddle for x > 0 and α > 0

Saddle for x < 0 and α > 0
Stable* for x > 0 and α < 0

Unstable* for x < 0 and α < 0

C
{

0,−3,−3− 3w
} Stable* for α > 0

Saddle* for α < 0

Table 7: Eigenvalues and stability for the critical points of the system (5.48)-(5.50). Stabil-

ities marked with a * indicate that non-hyperbolic methods must be applied.
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Points A±: The two critical points at (±1, 0, 0) are the stiff-matter solutions we’ve

encountered in both the previous examples. The scalar field kinetic energy dominates at

these points, with the effective equation of state always being weff = 1. As noted earlier,

they are physically unfavourable and not relevant to the late-time dynamics. The critical

points are non-hyperbolic with two of the eigenvalues being positive and the other being

zero. As none of the eigenvalues are negative, we can infer that the points are at least

asymptotically unstable. But to determine whether they are repellers or saddles, one must

use more advanced techniques; in this case, centre manifold theory. This has been considered

by Tamanini [72] and Bahamonde et al [4] leading to the stability conditions presented in

Table 7.

Points Bx: Here we have another critical line, this time connecting the points (−1, 0, 1)

and (1, 0, 1). The relationship between z and λ (5.44) implies that any point with z = 1

actually corresponds to the limit that λ → ∞. The points Bx therefore characterise the

asymptotic behaviour of orbits when λ → ∞. The scalar field density parameter varies

depending on the x coordinate, Ωφ = x2, and can take values in the range 0 ≤ Ωφ ≤ 1.

The scalar field equation of state is always 1, as x2 simply represents the kinetic energy.

The effective equation of state therefore varies depending on the value of x, and is given by

weff = x2(1 − w) + w, which ranges between w and 1. The eigenvalues of Bx, displayed

in Table 7, are non-hyperbolic. When α > 0 the two non-zero eigenvalues are always of

different sign, and so the critical line can be determined to be a saddle. In the case when

α < 0, the two non-zero eigenvalues have the same sign and non-hyperbolic methods must

be considered. Tamanini [72] has shown through the use of centre manifold theory and

numerical methods that the critical line is stable for x > 0 and α < 0, and unstable for

x < 0 and α < 0.

Points C: The last critical point is the scalar field potential energy dominated solution,

with an equation of state weff = wφ = −1. At the point, the universe undergoes accelerated

expansion, satisfying weff < −1/3. Since the point is non-hyperbolic and both of the non-

zero eigenvalues are negative, we shall make use of the Lyapunov method covered in Section

2.3. Beforehand, we note that numerical simulations [72] yield the stability results listed in

Table 7. These results will also be confirmed from our phase space analysis.
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5.5.2 Lyapunov method for the non-hyperbolic critical point C

For the fixed point C, let us consider the Lyapunov candidate function suggested in [4] and

defined by

V = x8 + (y − 1)6 + c1z
4 + c2x

2z4 , (5.51)

where c1 and c2 are coefficients to be determined. The function satisfies the first two

conditions of Definition 5: that V (x, y, z) > V (1, 0, 1) and that V is differentiable. The

third requirement is that V ′ ≤ 0. The derivative of (5.51) is given by

V ′ = 8x7x′ + 6(y − 1)5y′ + 4c1z
3z′ + 2xx′z4c2 + 4z3z′c2x

2 . (5.52)

Expanding the above equation with the definitions of x′ (5.48), y′ (5.49) and z′ (5.50) yields

the slightly longer expression

V ′ = 8x7

[
− 3

2
(z − 1)

[
2x+ (w − 1)x3 + x(w + 1)(y2 − 1)

]
+

√
3√
2
zy2

]
+

6(y − 1)5

[
− 3

2
y(z − 1)

[
(w − 1)x2 + (w + 1)(y2 − 1)

]
−
√

3√
2
xyz

]
+

4c1z
3

[
−
√

6

α
(1− z)z2x

]
+

2xz4c2

[
− 3

2
(z − 1)

[
2x+ (w − 1)x3 + x(w + 1)(y2 − 1)

]
+

√
3√
2
zy2

]
+

4z3c2x
2

[
−
√

6

α
(1− z)z2x

]
.

(5.53)

Examining the above function, it is difficult to tell whether the third requirement is satisfied.

However, just like in the example in Section 2.3, it is useful to transform to polar coordinates

x = r sin θ cosφ, y = 1 + r sin θ sinφ and z = r cos θ. In polar coordinates, we have an

expression with a large number terms from order r6 to r11. Collecting the lowest order

terms gives

V ′ = r6

[
√

6 sin θ cos5 θ cosφ
(
c2 − 4c1

1

α

)
− 6c2 sin2 θ cos4 θ cos2 φ

−18(w + 1) sin6 θ sin6 φ

]
+O(r7) .

(5.54)

This matches the results shown in [4]. To deal with the above function, consider the powers

of r and the trigonometric functions. Any even power is guaranteed to be positive. The
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third term will then always be negative for suitable values of w, and the second term will

be negative for c2 > 0. To eliminate the first term, we can simply set c2 = 4c1/α. As we

require c2 to be positive, we place the restriction that α > 0. Lastly, we can set c1 = 1 for

simplicity, leaving us with

V ′ = −r6 sin2 θ
[24

α
cos4 θ cos2 φ+ 18(w + 1) sin4 θ sin6 φ

]
+O(r7) . (5.55)

We see that the function satisfies V ′ < 0 so long as w > −1 and α > 0. Therefore point

C is guaranteed to be stable for these conditions. The function can take a value of 0 when

θ = 0, meaning the point is not confirmed to be asymptotically stable. Lastly, we note that

as ||(x, y, z)|| → ∞ the Lyapunov function also diverges V →∞, implying global stability.

5.5.3 Hypersurface phase space analysis

All of the points for the inverse power-law potential have turned out to be non-hyperbolic,

so determining their stability has been less straight forward than the previous examples

(see Table 7). One method that proves useful is consulting the phase portraits for the

non-saddle cases. As expected, the three-dimensional dynamics of the system is also quite

complex, so let us instead first focus on the two-dimensional hypersurfaces of constant x,

y or z for simplicity. In these cases we will not have to result to using numerical methods.

Our treatment shall not be too in-depth, so we direct the reader again to the work of

Bahamonde et al. [4] for a more complete analysis of the inverse power-law phase space,

specifically Chapter 4.4. Our focus here will be to show the characteristic behaviour of the

critical line Bx for both positive and negative values of α. We will also use a matter equation

of state parameter w = 0.

In Figure 9 we take a look at the hypersurface of constant y = 0, i.e. the x-z plane. The

parameter α has been set to positive one. Coordinates will be given in the form (x,−, z)

here to avoid confusion. The coordinates of the critical points listed in Table 6 indicate

that Oz, A± and Bx should all be present here, though we are seeing a simplified picture.

In this plane, we see that points are repelled vertically downwards at x = 1, and attracted

into the central line x = 0. From the other side, points are repelled vertically upwards at

x = −1 and attracted towards the same central line x = 0, as well as to the horizontal

line from (−1,−, 1) to (0,−, 1). The point A− at (−1, 0, 0) represents the past attractor,

and the point A+ at (1, 0, 0) is a saddle. From table 7 we know that Ox is always a saddle

point, represented by the central line at x = 0. We see from Figure 9 that all trajectories
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Figure 9: Phase space in the x-z plane for constant y = 0 and α = 1.

in this plane are attracted towards the central line, therefore the saddle must repel them in

the positive y direction (out of the paper). Lastly, consider the critical line Bx, the top of

the phase portrait. For α > 0 we concluded that the line is a saddle for all values of x (see

Table 7). This means that for x > 0, trajectories must be going towards the Bx from the

y direction. For x < 0, the converse must be happening, with trajectories being repelled in

the y direction.

In Figure 10 we look again at the x-z plane for y = 0, but this time with α = −1. The

dynamics in comparison to the previous case are simple: the phase space is reflected about

the z-axis. Point A+ is now the past attractor and A− is a saddle. The critical line of

matter dominated solutions Oz is also still a saddle. The biggest qualitative change is that

the critical line Bx is now stable for positive values of x, and unstable for negative ones.

This makes sense as we concluded trajectories are incoming from the y direction for positive

x, and outgoing for negative x. This is confirmed in the next phase diagram.

Looking now in the x-y plane for constant z = 1, the asymptotic behaviour as λ→∞,

we note that the equations 5.48 and 5.50 are independent of α. In Figure 11 we see that

trajectories always perform circular motion, beginning at the line from points (−1, 0,−)

to (0, 0,−) and ending at the line from points (0, 0,−) to (1, 0,−). The critical point at

(0, 0,−) belongs to the critical line Oz and behaves as a centre. This is confirmed by the

eigenvalues in Table 7, which all vanish for x = 0. The line corresponding to x = 0 is the
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Figure 10: Phase space in the x-z plane for constant y = 0 and α = −1.

critical line Bx. Our assumptions from the previous two figures that trajectories are repelled

(in the y direction) for negative values of x and attracted (in the y direction) for positive

values of x was indeed corrected. Hence, using these simplified hypersurfaces we have been

able to accurately characterise the behaviour of critical line Bx.

In the final Figure, 12, we see the x-y plane for constant z = 0. The critical points in

Table 6 that should be present here are Oz, A± and C. Again, the value of the parameter α

does not change the phase space. The bottom corners are the critical points A±, whilst the

origin (0, 0, 0) is a critical point belonging to the critical line Oz. All of the trajectories in

this plane are attracted to the critical point C, which sits firmly in the accelerating region

(blue shaded region). Along the z = 0 surface, point C appears to be stable. For α > 0 at

least, we have confirmed the point is globally stable with the Lyapunov method. However,

the analysis performed by [72] shows that for α < 0 the critical point C is in fact a saddle.

In that case, it attracts trajectories in the x-y plane and repels them up through the three-

dimensional phase space to the positive x values of the critical line Bx. One may also see

the similarities between this phase portrait (Figure 12) and the single exponential potential

ones (Figure 6-8). In fact, the x-y plane here corresponds exactly to the single exponential

for λ = 0, which is the cosmological constant solution.
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Figure 11: Phase space in the x-y plane for constant z = 1 (λ→∞).
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Figure 12: Phase space in the x-y plane for constant z = 0. The blue shaded region

corresponds to accelerated expansion (weff < −1/3)
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5.5.4 Inverse power-law tracking behaviour

One key property of the inverse power-law potential that what we have not yet investigated

is known as the tracking behaviour. The two-dimensional phase portraits do not efficiently

show this behaviour, so we shall once again plot specific trajectories within the full three-

dimensional phase space using a numerical solver. Let us consider positive values of α

(Γ > 1), which will lead to the phenomenologically interesting tracking solutions. In Figure

13a we plot trajectories in the phase space for the inverse power-law potential (5.48)-(5.50),

with α = 10 (Γ = 1.1) and w = 0. The critical point A− is the past attractor and all

trajectories originate from this point. In the z = 1 plane we see the circular behaviour

depicted previously in Figure 11, where trajectories move from negative to positive values

of x. This is the critical line Bx, which acts as a saddle for α > 0. The trajectories then

follow paths down through the phase space close to the saddle line Oz before being being

attracted to late-time accelerating attractor, point C.

The way in which all of the trajectories converge on a similar path towards point C is of

particular interest, hence the name tracking solutions [63]. To be clear, the word ‘tracking’

refers to the various trajectories with different initial conditions all converging on the same

orbit. In figure 13b we plot a typical evolution for the effective equation of state along this

tracking orbit. Ignoring the stiff-matter solution at early times, one sees that weff tracks

along with the matter equation of state before entering a period of accelerated expansion

with weff = −1 at point C.

To achieve this same type of behaviour in the single exponential case we had to fine-tune

the initial conditions sufficiently close to the origin. We noted that this corresponded to

forcing the initial energy density of the scalar field to be close to zero. With the tracking

solutions obtained in Figure 13 however, we have alleviated the dependence on the initial

conditions. We do though still require that trajectories eventually come to the z = 1 plane

earlier in their history, which is the asymptotic limit of λ → ∞. Two arguments laid out

by Bahamonde et al. in [4] lead to the conclusion that this is indeed realised. The first is

purely mathematical and related to the centre manifolds of the phase space, which we will

not address here. In the second, they use the definition of λ, given in equation (5.39), to

relate the amplitude of the field φ and the coordinate z,

z =
1

1 + κφ
α

. (5.56)
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A small scalar field φ is favourable in the early Universe because it avoids the problems

associated with large field excursions, which relates to the breakdown of the effective field

theory description. If then we can assume that κφ � α at early times, we know that the

trajectories will follow a path close to the z plane and then converge on the tracking solution.

Lastly, although we did not cover it here, we mention some of the key behaviour of the

direct power-law potential. For α < 0 (Γ < 1), one obtains what are is known as thawing

behaviour [74]. In this scenario, the scalar field is frozen in the past, with an equation of

state wφ = −1, and only recently does it begin to evolve, its equation of state becoming less

negative. For more on thawing models with a dynamical systems approach see [75].

This concludes our study of scalar field models. We have now seen some of the key

dynamical properties for the single exponential, the double exponential and the inverse

power-law potentials. There are of course many more different forms of potentials than we

have considered here, and whole classes of models that we haven’t mentioned. For example,

phantom models where the scalar field equation of state can take values lower than −1.

These belong in a whole different class of models, where we are not limited to to just

canonical scalar fields. For more on these other forms of potential, as well as the study of

non-canonical scalar fields, we refer the reader to the works of Copeland et al. [76], [4].
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(a) Trajectories for the inverse power-law with α = 11 (Γ = 1.1). The critical points

A± are represented by the black points, with A− being the past attractor of the phase

space. The future attractor C is represented by the red point.
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(b) Evolution of the effective equation of state for a typical trajectory. It tracks the

matter equation of state for some time before coming to weff = −1 at the late time

attractor.

Figure 13: Numerical solutions for the inverse power-law with Γ = 1.1.
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6 Dynamical Systems Approach to the String Swamp-

land Criterion

So far we have considered potentials motivated somewhat by high-energy physics phe-

nomenology, but the focus has been on their dynamical properties. We have presented

alternatives to the standard cosmological constant model and shown that certain scalar

field quintessence models have the potential to alleviate some of the fine-tuning of initial

conditions problems. This is achieved with either scaling solutions or tracking solutions,

before leading to a phase of scalar-dominated accelerated expansion (see Sections 5.4 and

5.5). However, currently there is no real way of ruling out any of the classes of physically

acceptable models.

Taking a different approach one may look to see if string theory has any say on the validity

of different cosmological models. As introduced in Section 4, scalar fields appear naturally

in string theory, so it seems fitting that one should include models phenomenologically

motivated from that research area. Our focus shall be on the use of a dynamical systems

approach on scalar field quintessence models, as covered in the previous section, but relating

to a topical example at the forefront of string theory research.

In string theory, it has long been known that the construction of a meta-stable de-

Sitter (dS) vacuum, corresponding to a universe with a positive cosmological constant, has

been notoriously difficult to achieve (see [77] for a recent interpretation). We noted this

in Section 4.1 and again at the end of our discussion on flux compactifications in Section

4.3. Recent work has further postulated that a meta-stable dS solution is forbidden in any

consistent theory of quantum gravity [5]. Moreover, it places restrictions on the allowed

scalar potentials in cosmology: a criterion in the form |∇V | ≥ c · V , where V is a scalar

potential and c is a positive constant, known as the swampland criterion. (We shall make

this more rigorous in section Section 6.1). Our intentions will not be on investigating the

credibility of the claim — there have already been a number of serious objections on its

validity from a string theory and cosmological perspective [78]-[80] — but instead to use the

criterion as an example to test our dynamical systems approach to scalar field quintessence.

We will however, show where this criterion originates from.

In this section we will begin by formally introducing the aforementioned swampland

criterion. We will then go through two motivating examples: the compactification of 11-
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dimensional supergravity and 10-dimensional heterotic string theory. The concepts and

mathematical techniques along with the referenced material in Section 4 will prove as a

useful prerequisite for these key examples. Once the criterion has been motivated and

understood, we will go on to discuss the cosmological implications following the work in

[6]. We will look at the scalar field models considered previously section and see which

ones satisfy the criterion. More importantly, we will explore what bounds we can put on

the value of the criterion constant c based on the physical constraints for our cosmological

models.

6.1 The Swampland Criterion

In a recent set of papers by Obied et al. [5] and Agrawal et al. [6] it has been proposed that

meta-stable de-Sitter solutions cannot arise in any consistent theory of quantum gravity.

Despite attempts made in recent years at the construction of such a solution, there have

been a number of issues raised at their validity. Instead the authors consider the possibility

that the scalar potential of any low energy limit of a consistent theory of quantum gravity

must satisfy the following bounds,

|∇V | ≥ c · V , (6.1)

where c is a positive constant assumed to be of order O(1) in Planck units. We understand

the norm of the gradient to be defined as |∇V | =
√
gij(φ)∂φiV ∂φj , where gij(φ) is the field

space metric in the kinetic terms (see [6] for more details). The inequality (6.1) is known

as the swampland criterion; one of two proposed criteria in [6]. If we restrict ourselves to

positive scalar potentials V ≥ 0, these being the phenomenologically important ones, we

can write (6.1) as
|∇V (φ)|
V (φ)

≥ c . (6.2)

This criterion is in conflict with the cosmological constant model (as |∇V | = 0 and V 6= 0),

but certain quintessence models where V is not at a minimum can satisfy the bounds.

The recent swampland criterion [5] along with a follow up paper on its cosmological

implications [6] has already received the attention of many authors, to list a few: in fields

of string theory [81]-[83], cosmology and inflation [84]-[87] and the overlap between the two

[88]-[89]. It also received the attention from authors presenting evidence in conflict with

the swampland criteria. In particular, Kachru and Trivedi recently released a paper on the
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effective field theories of the low energy limits of string theories, their results being in stark

contrast to the conjectures [80].

It is the cosmological implications that shall be our focus. In particular we wish to

see how the late-time quintessence models studied in the previous section fair in relation

to the criterion. Though a lower bound on c cannot be determined through cosmological

observations, an upper bound may be acquired. If the criterion (6.1) turns out to be well

founded, then these upper bounds may be important for cosmology and theories of quantum

gravity.

6.2 M-Theory

The first example we shall consider to motivate the Swampland Criterion (6.2) is the com-

pactification of the low-energy limit of M-Theory, which is 11-dimensional supergravity [40].

The bosonic part of the 11-dimensional supergravity action is

S =
1

2κ2

∫
d11x

√
−g(11)

[
R11 −

1

2
|G4|2

]
, (6.3)

where κ11 is the gravitational coupling constant (Newton’s constant), g(11) is the metric

determinant, R11 is the Ricci scalar and G4 is the G-flux (or four-form field strength).

Following the method in [5], we will compactify down to d dimensions on an arbitrary

manifold of volume

V11−d = e(11−d)ρ̂ , (6.4)

which we later shall set to unity. The metric ansatz we shall consider is of the form

ds2 = dx2
d + e2ρ̂(x)dy2

11−d = gµν(x)dxµν + e2ρ̂(x)γab(y)dxadxb , (6.5)

where we have split up the metric corresponding to the d-dimensional space gµν and the

metric corresponding to the compact space γab. The overall modulus that we shall be

considering, ρ̂, is what determines the details of the compactification. We wish to follow the

same procedure as in the Kaluza-Klein (Appendix A.1) and Flux compactification (Section

4.3)) examples, and end up with an effective potential to stabilise the modulus field. We

will schematically describe how this is done, with calculations where appropriate, starting

with the curvature term.

First we have the term from the metric determinant. Compactifaction with a metric of

the form (6.5) means that g(11) transforms as,√
−g(11) →

√
−ge2ρ̂(11−d) =

√
−geρ̂(11−d) , (6.6)
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where g denotes the d-dimensional metric. The ricci scalar transforms like

R11 → Rd + e−2ρ̂R̃11−d , (6.7)

where Rd is the reduced Ricci scalar in d dimensions and R̃11−d is the average curvature of

the compact dimension when the volume of the internal manifold (6.4) is set to 1. The last

term contributing to the effective potential is from the Weyl rescaling, which we find in the

same way as before. After compactification, the curvature part of the action is in the string

frame, which we wish to rewrite in the Einstein frame:∫
ddx
√
−ge(11−d)ρ̂

[
Rd + e−2ρ̂R̃11−d

]
→
∫
ddx
√
−g̃
[
R̃d + ...

]
, (6.8)

where we’ve set V11−d to 1. The conformal transformation for the metric given in (A.9)

means the determinant and Ricci scalar transform like

√
−g →

√
−g̃edω , Rd → e−2ωR̃d + ... , (6.9)

where we are only interested in the factors contributing to the effective potential from the

Ricci scalar transformation. To satisfy (6.8), ω must satisfy

dω + (11− d)ρ̂− 2ω = 0 . (6.10)

Substituting in ω = (d−11)ρ̂
d−2

, the curvature part of the action is given by∫
ddx
√
−g̃e

d(d−11)ρ̂
d−2 e(11−d)ρ̂

[
e
−2(d−11)ρ̂

d−2 R̃d + e−2ρ̂R̃11−d

]
. (6.11)

The terms contributing to the effective potential can then be read off as

e
d(d−11)ρ̂
d−2 · e(11−d)ρ̂ · e−2ρ̂R̃11−d = e−18 ρ̂

d−2 R̃11−d , (6.12)

the first term from the Weyl rescaling, the second from the metric determinant and the

third from Ricci scalar.

Above we have considered the R11 part of the action (6.3). Next we consider the G-flux

term. The weyl rescaling and metric determinant factors will be the same. The only new

term will be from G-flux |G4|2, which is defined by the general formula [40],

|Gn|2 =
1

n!
gM1N1gM2N2 ...gMnNnGM1M2...MnGN1N2...Nn , (6.13)

where gMN denotes the inverse metric and GMN is related to the flux. For our |G4|2 we

will have four inverse metric factors, each with a ρ̂ dependence of e−2ρ̂. Therefore the total

pre-factor for the G-flux term in our action will be proportional to

e
d(d−11)ρ̂
d−2 · e(11−d)ρ̂ · e−8ρ̂ ∝ e−6 d+1

d−2
ρ̂ . (6.14)
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In our calculations so far we have neglected any kinetic terms (∇ρ̂)2. If they are included,

one can then rewrite the action in a canonically normalised form, with a kinetic term

−1
2
(∇ρ̂)2. The associated rescaling of the field is given by

ρ̂→

√
d− 2

9(11− d)
ρ̂ , (6.15)

which has been done in [5]. Under this rescaling, the effective potential given by the contri-

bution of (6.12) and (6.14) can be written as

V = VR e−λ1ρ̂ + VG e−λ2ρ̂ , (6.16)

where λ1 = 6√
(d−2)(11−d)

, λ2 = 2(d+1)√
(d−2)(11−d)

, VR is proportional to the average Ricci scalar

curvature, and VG is proportional to the average of the G-flux term in the action, which is

always positive.

Now we have our effective potential (6.16), we can apply the criterion (6.2). First consider

the case where the internal manifold has negative curvature VR > 0. The lower bound on

|∇V |
V

is the smaller of the exponents in (6.16), λ1, whilst the upper bound is λ2. This has

been demonstrated clearly in Appendix B.4, along with more general bounds for a double

exponential potential with arbitrary exponents. In the case of positive curvature VR < 0,

also shown in Appendix B.4, the lower bound is instead λ2 and there is no upper bound. One

can therefore summarise that the compactification of 11-dimensional supergravity implies

that the effective scalar potential must satisfy the bound,

|∇V |
V
≥ 6√

(d− 2)(11− d)
. (6.17)

In four dimensions the lower bound is approximately≈ 1.6. As noted by [5], this inequality is

in fact a consequence of the supergravity action (6.3) satisfying the strong energy condition

(SEC). In string theory, however, the SEC is often violated so we wish to also consider

examples which do not satisfy it.

6.3 O(16)×O(16) Heterotic String Theory

The next example we will consider, onec again following the work in [5], is the compactifi-

cation of the non-supersymmetric O(16)× O(16) heterotic string in ten dimensions, which

has a positive cosmological constant [90]. Because of the positive cosmological constant in
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ten dimensions, this theory does not satisfy the SEC. The effective action at weak coupling

is given by

S =

∫
d10x

√
−g(10)

[ 1

2κ2
e−2φ(R10 + 4(∂φ)2)− Λ

]
, (6.18)

where φ is the dilaton, Λ is the 10-dimensional cosmological constant and the other standard

action terms we are familiar with from (6.3).

Let us once again run through the details of the compactification to d dimensions on

an abitrary manifold with volume e(10−d)ρ̂, most of which should now be familiar. The

terms contributing to the effective potential will come from the Ricci scalar R10 and the

cosmological constant Λ. After compactification, those terms appear in the action as

S =

∫
ddx
√
−ge(10−d)ρ̂

[ 1

2κ2
e−2φ(Rd + e−2ρ̂R̃10−d + ...)− Λ] , (6.19)

with ... indicating kinetic terms in φ, and R̃10−d being the Ricci scalar averaged over the

internal manifold. After applying a Weyl rescaling,

gµν → e2
(d−10)ρ̂+2φ

d−2 g̃µν , (6.20)

the terms contributing to the effective potential can simply be read off. For the averaged

Ricci scalar R̃10−d, the modulus field and dilaton field contributions are

∝ ed
(d−10)ρ̂+2φ

d−2 · e(10−d)ρ̂ · e−2φ · e−2ρ̂ ∝ e−
4
d−2

(4ρ̂−φ) . (6.21)

The modulus and dilaton contributions for the cosmological constant term are

∝ ed
(d−10)ρ̂+2φ

d−2 · e(10−d)ρ̂ ∝ e−
2
d−2

[(10−d)ρ̂−dφ̂] . (6.22)

Lastly we wish to define a canonical field τ̂ ≡ 2√
d−2

(
φ− 10−d

2
ρ̂
)

and rescale the modulus

field ρ̂→ ρ̂√
10−d , giving us the final effective potential

V = VR e
− 2√

10−d ρ̂ + 2√
d−2

τ̂
+ VΛe

√
10−dρ̂ + d√

d−2
τ̂
. (6.23)

The term VR is again proportional to the average of the Ricci scalar curvature and VΛ is

proportional to the cosmological constant, which is always positive. Applying the criterion

|∇V |
V

(6.2) is slightly more involved than the previous case because the potential is a function

of two fields (ρ̂, τ̂). In this case, we interpret ∇V =
√
gij∂ΦiV ∂ΦjV , where gij(Φ) is the field

space metric [81]. The lower bound obtained in [5] for a negatively curved internal manifold

VR > 0, is given by
|∇V |
V
≥ 4

√
2√

(10− d)(d− 2)
(6.24)
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for 3 ≤ d ≤ 9. In four dimensions the lower bound is ≈ 1.6.

In this example and the previous one, we have shown that for at least some string model

compactifications there is a lower bound c of order ∼ O(1). This, along with multiple

other examples considered in [5] leading to similar bounds, is the reason for the proposed

swampland criterion (6.2).

Before we move on to discussing its cosmological implications, let us quickly make a

note of some of serious objections raised for the two examples studied here. In Section 4

we studied the Kaluza-Klein dimensional reduction and the flux compactification of six-

dimensional Einstein-Maxwell theory. Our motivation for going from the former to the

latter was the problem of moduli stabilisation. In the Einstein-Maxwell example, without

the inclusion of fluxes, the effective potential was unstable and there was the problematic

possibility of decompactification of the compact space. The two effective potentials in the

M-Theory (6.16) and heterotic string (6.23) examples also face a similar problem. This has

been noted by Akarmi et al. in a recent paper [78]. They also raise concerns about the

conflicts with cosmological observations, which we will now explore.

6.4 Cosmological Implications of the String Swampland Criterion

Firstly, we mention again that any de Sitter solutions are firmly ruled out by the crite-

rion 6.2. This applies to the de Sitter solution found for the double exponential potential

corresponding to the critical point (vii) in Table 4. At that point, the potential was at a

minimum and therefore |∇V | = 0. Any scalar field quintessence model which satisfies the

criterion must have no extrema for all values of φ, with the exception being at φ = 0.28 A

potential sitting in a stable minimum at φ = 0 corresponds to a Minkowski universe, so this

is equally unfavourable from a cosmological perspective.

The inverse power-law potential studied in Section 5.5 is also ruled out, along with the

direct power-law potential. The class of functions which are not in direct conflict with the

criterion are, of course, exponential functions. This includes more complicated exponential

potentials than we have considered, such as exp(αexp(βφ)) [49]. We shall focus on the two

simplest examples: the single and the double exponential potential.

Interestingly, as noted by Karthauser and Saffin [91], the scalar potentials found in the

28As a reminder, we are not considering potentials with V < 0. In this case, the criterion is trivially

satisfied and we are dealing with an anti-de Sitter solution.
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low energy effective actions of many models relating to unified gravity, gauigino condensation

and instanton corrections are often exponential in nature. This may suggest a link between

both inflationary physics and quintessence, and the dimensional reduction of string theories

and M-theory. Moreover, Ng et al. in [49] suggest the use of a general exponential potential

to dynamically stabilise the moduli in string theory, and Barreiro et al. use an exponential

potential to stabilise the dilaton in superstring cosmology [92].

6.4.1 Single exponential potential and the swampland criterion

Here we shall follow the approach taken in [6] and consider the single exponential potential

of Section 5.3, given by

V (φ) = V0e−λφ , (6.25)

where V0 is a positive constant and λ a constant parameter. There is also an implicit factor

of 1/Mp in the exponential, where Mp is the Planck mass. Applying the swampland criterion

(6.2),
|∇V |
V

= λ ≥ c ∼ O(1), (6.26)

we see that that λ is bounded from below by c, which we want to be of order one. The first

thing we can take from our analysis in Section 5.3 is that for accelerated expansion λ must

be less than
√

2. Hence we already have an upper bound on the value of c which is of order

one.

If we want to use the single exponential case as a physically acceptable model, however,

there are number of additional observational constraints which must be satisfied. Firstly,

let us assess those proposed by Agrawala et al. in [6]:

1. Ωφ(z = 0) ≈ 0.7

2. Ωφ(z > 1)� 1

3. wφ(z < 1)� −1/3

4. wφ(z ≈ 0.3 to 0.4) < −0.95

The first constraint is the density of dark energy today, as confirmed by the CMB data (see

Section 3.2 on dark energy and observation). The second constraint requires that the scalar

field have a negligible relative energy density at early times. This condition allows for LSS

formation in the early universe. However, we have seen a number of regimes where the scalar
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field equation of state mirrors the matter equation of state, which relinquishes the need for

Ωφ ≈ 0. We have also seen that at early times the behaviour of the single-fluid exponential

model is not to be trusted as contributions from radiation are not considered. For this

reason, we shall treat this constraint with care.29 The final two constraints are on the scalar

field equation of state in recent times, based on observation from type IA supernovae [93].

It is constraint number 4 which is the most critical for tightening the bounds on c, being

the most restrictive. Let us briefly describe where it comes from.

The observational bounds on wφ(z) from type IA supernovae can be calculated by using

the relation

wφ(z) = w0 +
waz

1 + z
, (6.27)

where wa and w0 are observable quantities to be measured. In Figure 21 of [93] these

measurements have been plotted. The results show that observations are in line with a

non-dynamical explanation for dark energy, with wa ≈ 0 and w0 ≈ −1. This is also in

agreement with the value of wφ from the CMB. However, taking a 2σ range of acceptable

values for the quantities wa and w0 (from Figure 21 of [93]), one can calculate constraints

for wφ(z) for recent redshifts. This is exactly what has been done in [6], Fig 1(a).

Using the single exponential autonomous equations (5.26)-(5.27) along with the equa-

tions for wφ (5.17) and Ωφ (5.16), we can represent the constraints 1-4 visually within the

phase space. In Figure 14 we have drawn that phase portrait. The bound on the relative

energy density of the scalar field for z = 0 is given by the green line. Hence any suitable

orbit must be intercepting the green line today. The second constraint, Ωφ(z > 1) � 1,

can be interpreted as a trajectory having to originate from the dark blue shaded contour

(Ωφ < 0.1). The last two observational constraints are represented by the pink and red lines.

Any physically acceptable orbit must be inside the red lines for a redshift around z ≈ 0.35,

i.e. the recent past.

Let us begin by considering the least constrained trajectories in the phase space, λ <
√

2.

In Figure 15a we have plotted the results for λ = 1.4. The heteroclinic orbit (blue arrow) is

of particular importance, as this is usually the optimum trajectory, or the one that is least in

conflict with the constraints. This is because orbits which follow (close to) the heteroclinic

orbit originate from a region of matter domination, and take the most central path towards

29A possible replacement of constraint 2 could be that weff ≈ w for a sufficiently long period in the

distant past.
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Figure 14: Phase portrait for the single exponential potential (5.26)-(5.27). The contour

plot shows Ωφ in the range [0, 1] . The dashed blue line represents the region for accelerated

expansion. The circular green line is Ωφ = 0.7 (constraint 1). The outer pink lines are

wφ = −1/3 (constraint 3). The inner red lines are wφ = −0.95 (constraint 4).

the late-time attractor point C. Trajectories that intercept the green line (representing Ωφ

today) to the left of the heteroclinic orbit always originate from the past attractor A−, whilst

trajectories that intercept on the right of the heteroclinic orbit originate from A+. Both of

these would be in conflict with constraint 2. However, we already mentioned that the past

attractors A± are non-physical so our analysis should be treated with care. Ignoring these

other trajectories for now, we see that the heteroclinic orbit for λ = 1.4 does not reside in

between the red lines at recent times. It is therefore in conflict with constraint 4. This is

also evident from Figure 15b, where N ≈ 5.2 roughly corresponds to today. The horizontal

red dashed line is the constraint on w(z ≈ 0.35). Using the formula for the redshift in terms

of N (5.28), we can calculate that z = 0.35 corresponds to N ≈ 4.9. Examining the blue

curve wφ in Figure 15, we see that at this value of N the scalar field equation of state does

not satisfy constraint 4 (being closer to wφ(z ≈ 0.35) ≈ −0.75).

We will now consider the value λ = 0.6, the proposed upper bound for λ in [6], which has

been plotted in Figure 16. From the phase portrait in Figure 16a it becomes immediately
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(a) Phase portrait for the single exponential potential (5.26)-(5.27) and a value of

λ = 1.4. The contour plot shows Ωφ, which ranges between 0 and 1 . The coloured

lines, green, pink and red are the observational constraints 1, 3 and 4 respectively. The

critical points A± and C are defined in Table 2, whilst the blue arrow represents the

heteroclinic orbit O → C.
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(b) Evolution of the cosmological parameters for the heteroclinic orbit in the Subfigure

above and constraint 4 (red dashed line). Today we are at N ≈ 5.2, when the density

parameter is roughly Ωφ ≈ 0.7.

Figure 15: Single exponential potential for λ = 1.4.
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obvious why this value of λ = 0.6 has been chosen. One can see that the heteroclinic orbit

from the saddle point O to the late-time attractor C passes almost exactly through the

point where the green and red lines intercept. In figure 16b we see the evolution of the

cosmological parameters with N . Applying the same calculation as before with the a value

of N ≈ 5 today, one finds that a redshift of z = 0.35 corresponds to N ≈ 4.7. This appears

to coincide with where the red dashed line (constraint 4) and the blue curve wφ intercept.

It can therefore be concluded that for the single exponential potential model, the largest

value of λ with a heteroclinic orbit O → C that satisfies all of the constraints 1-4 is around

λ = 0.6. Any smaller value of λ will result in trajectories being even further within the two

red lines of Figure 16 and so will automatically satisfy the constraints.

In Section 5.3, we discussed the issue of fine-tuning, noting that for the single exponential

potential, one must have strict initial conditions in order to produce phenomenologically

favourable behaviour. With the added constraint on wφ (that it must be less than −0.95

at small redshifts), this problem of fine-tuning is exacerbated. Effectively, only trajectories

passing extremely close to the origin O will follow an orbit which is not in conflict with the

constraints listed previously (1-4). If we ignore condition 2, that at early times Ωφ ≈ 0, we

are still faced with a problem where the initial condition of y must be almost zero. In Figures

21-23 of Appendix C we have plotted the solutions for the single exponential potential with

λ = 0.6 and w = 0 for varying initial conditions close to the x-axis. We see that even

with a y-coordinate close to zero, as we move further towards the past attractor A−, the

orbit becomes less viable and more in conflict with the constraints. This demonstrates the

problem of fine-tuning. These problems are nothing new however. We already discovered

that a single-exponential potential model displays interesting characteristics, but was not a

realistic cosmological model.

Even in this simplistic model, we have seen how the use of a dynamical systems approach

has been invaluable in assessing the cosmological constraints placed on the criterion constant

c. Lastly we note that these values of c are distinctly below the lower bounds calculated in

the M-Theory and heterotic stirng examples. This point has been raised in [78].
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(a) Phase portrait for the single exponential potential (5.26)-(5.27) and a value of

λ = 0.6. The contour plot shows Ωφ, which ranges between 0 and 1 . The coloured

lines, green, pink and red are the observational constraints 1, 3 and 4 respectively.

The critical points A± and C are defined in Table 2. The heteroclinic orbit O → C

(blue arrow) now stays between the red bounds (constraint 4) until just before it

intercepts the green curve (constraint 1).
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(b) Evolution of the cosmological parameters for the heteroclinic orbit in the Sub-

figure above and constraint 4 (red dashed line). Today we are at N ≈ 5.0, when the

density parameter is roughly Ωφ ≈ 0.7.

Figure 16: Single exponential potential for λ = 0.6.
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6.4.2 Double exponential potential and the swampland criterion

To use a more realistic model, although unrealistic in the sense that we are ignoring radia-

tion, let us consider the swampland criterion for the double exponential potential,

V (φ) = V1e−αφ/Mp + V2e−βφ/Mp , (6.28)

where Mp is the Planck mass. This time when applying the swampland criterion (6.2) on

the potential above it does not give us a constant. Instead the value of |∇V |
V

is given by a

function which depends on the field φ. In Appendix B.4 we derived the lower bound for such

a function, which is given by the smaller of α or β (assuming they share the same sign).

Constraints from Big Bang nucleosynthesis tell us that the scalar field density parameter

must satisfy Ωφ(MeV) < 0.045 in the early universe [94]. Assuming α is the larger of the two

exponents, this translates to a value of α > 9.4 [95]. Consulting Tables 4 and 5 of Section 5,

it is clear that in order to have a late-time attractor corresponding to accelerating expansion

the other exponent must be bounded by β <
√

2. In [6] it is argued that the upper bound

on β is the same as the upper bound on λ in the single exponential case, c ≈ 0.6. To see

this let us consider what the potential V (φ) is actually doing at early and late times. We

know that it is the scaling behaviour and the larger of the exponents, α in this case, which

will be important at early times. At late times it is the accelerating solution and the β

exponent which will be important. It is therefore reasonable to assume that the late-time

behaviour of the double exponential potential can be approximated by just the smaller of the

exponents (the larger the difference between α and β, the better the approximation). With

these assumptions one can more or less give an approximate upper bound of β < 0.6 (shown

in Section 6.4.1), though without consulting a more detailed numerical analysis of a model

with at least two barotropic fluids (matter and radiation) this should not be concluded for

all models.

It is argued by Agrawal et al. [6] that these cosmological findings are in support of the

swampland criterion, with a rolling quintessence field filling the place of the cosmological

constant that is in conflict with (6.1). An alternative viewpoint is taken by Akrami et al.

[78], who instead point out the inconsistencies between the lower bounds produced from

the string compactification models (c > 1.6) for the two examples we considered here and

the upper bounds from cosmological observation (c < 0.6). The same authors also study

the cosmologies of scalar fields arising in string theory with a vast of range of potentials
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[96]. There they explore the possibility that the scalar field φ plays a role in both late-time

quintessence and early-time inflation, known as quintessential inflation (also see [97]).

An issue which we briefly touched on was the stability of these string compactification

models. More generally in string theory, potentials which are exponential in nature tend to

suffer from these moduli stabilisation problems. Not because they have no (local) minima

but because the kinetic energy of the rolling field causes it to overshoot and escape that min-

ima. In the context of superstring cosmology, it is found that the presence of a background

density, such as radiation in the early universe, can help to slow down the dilaton field as it

rolls down its potential [92]. These effects can be linked to the previously discussed scaling

behaviour. When the field is then sitting in its minimum it will be characterised only by

its potential energy V (φ), allowing for a negative equation of state wφ. In [92] a dynamical

systems approach has also been taken.
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7 Summary

Through the use of a dynamical systems approach we have been able to map out the

qualitative features of different scalar field quintessence models. By studying their critical

point phenomenology as well as their corresponding phases spaces in Section 5, we have

been able to assess which models display physically realistic behaviour. This has only been

possible through the mathematical techniques developed in Section 2.

More specifically, we have seen how both types of exponential potential model can exhibit

stable scaling solutions and stable late-time accelerating solutions. For the case of the

accelerating solutions, the universe comes to be totally dominated by the potential energy

of the scalar field. These solutions do indeed correspond to an accelerating universe with

an effective equation of state weff < −1/3 for values of λ <
√

2 (for the double exponential

case there are similar requirements on α or β, shown in Table 4). These late-time attractor

solutions often represent the global asymptotic attractors of the phase space, making them

favourable for physical models.

In the scaling case, the scalar field equation of state wφ mimics the matter equation of

state w and the universe evolves as if matter dominated. These solutions are important

as they could help to explain how the Universe evolved in the presence of a scalar field

without producing noticeable effects. For the single exponential potential, these points

always represented stable solutions in the phase space and they were incompatible with

a late-time stable accelerating solution. With the double exponential potential we were

able to achieve both scaling solutions and late-time accelerating solutions, though without

considering the added presence of radiation we could not remove the strong dependence on

initial conditions.

For the inverse-power law potential we saw a new type of behaviour, the tracking regime.

All solutions originating from near the z = 1 plane, which we noted was phenomenologically

favourable, would end up converging on similar trajectories towards the late-time attractor.

This behaviour helped solve some of the fine-tuning of initial conditions problems we had

encountered previously. The study of this model was aided by the use of the Lyapunov

method covered in Section 2, along with the numerical simulations.

We then moved on to treating a topical example in string theory, considering the single

and double exponential potential models. With the consideration of observational con-

straints, which we were able to implement into our phase portraits, the cosmological conse-
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quences of the swampland criterion became clear. In essence, this was the incompatibility

of the bounds on the criterion constant c produced in the string theory compactifications

(Sections 6.2 and 6.3) and the bounds needed to satisfy observational constraints for the

exponential potential models.

The final point we would like to mention is the future prospects of the dynamical systems

theory in relation to scalar fields in cosmology. Future observation may lead to notable

deviations in wφ from the standard ΛCDM model, indicating more of a need for quintessence

models. If so, the power of the dynamical systems approach with regards to describing the

qualitative behaviour of cosmological models will surely be a great asset. Here we have

demonstrated how well these methods can capture the dynamical behaviour of different

models, and more importantly, how we can constrain models based on observation and

theory from different areas of physics.
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A String Compactifications

Here we go through the more mathematical calculations accompanying the the work on

string compactifications in Section 4.2. The calculations here should also prove useful for

the understanding of the M-Theory and Heterotic string compactifications in Section 6.

A.1 Kaluza-Klein Compactification

In this derivation we shall loosely be following the work found in the lecture notes of [98].

This shall be used as the main reference to check the validity of our calculations, with the

final result matching that found in more general literature such as [25].

Starting with the action defined in (4.1)

S =
1

κ2
D

∫
dDx
√
−GRD , (A.1)

and the metric (4.3)

ds2
0 = G

(0)
MN(x)dxMdxN = gµν(x)dxµdxν + e2Φ(x)

(
Aµ(x)dxµ + dy

)2

, (A.2)

let us compactify onto a circle of radius L.

The first step is to find the Ricci scalar by taking the trace of Ricci tensor R = gabRab.

Likewise, one obtains the Ricci tensor Rµν by tracing over the Riemann tensor, Rab = R c
acb ,

which can be calculated using only the metric (A.2) and is given by the following formula,

R d
abc = −2∂[aΓ

d
b]c + 2Γρc[aΓ

d
b]ρ , (A.3)

where the Christoffel symbols are defined in (1.1). When one plugs in our metric, the Ricci

curvature from equation (A.1) works out to be [98]

RD = Rd − 2e−Φ∇2eΦ − 1

4
e2ΦFµνF

µν , (A.4)

where Rd now denotes the curvature in d dimensions, and Fµν = ∂µAν − ∂νAµ is the two-

form representing the field strength in d dimensions. The covariant derivative squared is

defined by

(∇Φ)2 = gµν∇µΦ∇νΦ . (A.5)

We will also be able to drop the second term term of (A.4), −2e−Φ∇2eΦ, when we substitute

(A.4) back into the action as it can be discarded as a total derivative [98],

−2

∫
ddx
√
−g∇2eΦ = −2

∫
ddx ∂µ(

√
−g∇µ)eφ = 0 . (A.6)
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The other term left to treat in the action (A.1) is the metric determinant
√
−G. Using

our metric (A.2), this is given by

√
−G =

√
−ge2Φ = eΦ

√
−g , (A.7)

with g = det[gµν ]. Rewriting our action (A.1) with (A.4) and (A.7), integrating out the y

coordinate and dropping the total derivative term gives the following compactified action,

S(0) =
2πL

κ2
D

∫
ddx
√
−geΦ

[
Rd −

1

4
e2ΦFµνF

µν
]
, (A.8)

where the factor of 2πL comes from circumference of the compactified dimension.

It is convenient to rewrite the action in the standard Einstein-Hilbert form (known as

the Einsten frame), where the scalar curvature is coupled only to the metric. The solution

is to apply a conformal rescaling30, or Weyl rescaling, of the metric given by

gµν = Ω2g̃µν , (A.9)

where g̃µν is the new metric corresponding to the Einstein frame and Ω2 is the conformal

or Weyl scaling factor, which we are free to assign [40]. The metric determinant therefore

becomes
√
−g =

√
−g̃Ωd . (A.10)

A similar conformal transformation must also be made to the Ricci curvature as it is de-

pendent on the metric, which is given by

Rd = Ω−2
[
R̃d − 2(d− 1)∇̃2(ln Ω)− (d− 2)(d− 1)g̃µν(∇̃µln Ω)(∇̃ν ln Ω)

]
, (A.11)

(the derivation can be found in Appendix D [99]). All the terms on the right hand side are

with respect to the new metric, and the inverse is given by

gµν = Ω−2g̃µν . (A.12)

Now that we know how Rd and gµν transform, we can compare with the action (A.8)

to see how we should assign our conformal factor Ω. To make life we easier will also define

Ω2 = e2ω. Examining equations (A.8), (A.10) and (A.11), one sees ω must satisfy

√
−g · eΦ ·Rd →

√
−g̃edω · eΦ · R̃de

−2ω =
√
−g̃R̃d , (A.13)

30This isn’t a coordinate transformation, simply a redefinition of the fields.
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⇒ ω =
Φ

2− d
, (A.14)

where we have separated the first three terms for clarity. The ricci scalar and metric deter-

minant then become

Rd = e
−2Φ
2−d

[
R̃d −

2(d− 1)

2− d
∇̃2Φ− d− 1

d− 2
g̃µν∇̃µΦ∇̃νΦ

]
;
√
−g =

√
−g̃e

dΦ
2−d . (A.15)

The field strength terms Fµν transform under the conformal rescaling in the action like

√
−ggµρgνσFρσFρσ =

√
−g̃edωe−2ωe−2ωg̃µρg̃νσF̃µνF̃ρσ =

√
−g̃e

φ(d−4)
2−d g̃µρg̃νσF̃µνF̃ρσ , (A.16)

which we note is invariant in d = 4 dimensions.

Substituting our conformally scaled equations (A.10), (A.15) and (A.16) into the action

(A.8), and dropping the total covariant derivative term in the Ricci scalar (A.15), we arrive

at our equation for the d-dimensional action in the Einstein frame,

SE(0) =
2πL

κ2
D

∫
ddx
√
−g̃
[
R̃d −

(d− 1

d− 2

)
(∇̃Φ)2 − 1

4
e
φ(4d−10)

(d−2) F̃ 2
]
, (A.17)

where F̃ 2 = F̃µνF̃
µν . Substituting d = 4, this then matches the end result in [98]. The final

step is to rescale the field φ so the kinetic term is canonically normalised31, φ→ −
√

d−2
2(d−1)

φ,

which leaves us with

SE(0) =
2πL

κ2
D

∫
ddx
√
−g̃
[
R̃d −

1

2
(∇̃Φ)2 − 1

4
e
−φ
(
√
d−2(4d−10)√
2(d−1)(d−2)

)
F̃ 2
]
, (A.18)

which in four dimensions reduces to

SE(0) =
2πL

κ2
D

∫
d4x
√
−g̃
[
R̃4 −

(1

2

)
(∇̃Φ)2 − 1

4
e−
√

3ΦF̃ 2
]
. (A.19)

This result matches that found in more general literature, such as [25]. This is the result

given in equation (4.4).

31We have also included a minus sign so that the field strength term F 2 vanishes for large positive values

of Φ rather large negative ones.
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B Detailed Calculations

B.1 Scalar Field Friedmann Equations

Starting from the gravitational field equations (5.4) and a metric of the form (5.6), with Tµν

and T φµν defined as (3.3) and (5.5) respectively, let us derive the Friedmann (5.7) and accel-

eration (5.8) equations for a canonical scalar field φ. Consider the time-time components of

(5.4),

R00 −
1

2
g00R = κ2

(
T00 + T φ00

)
. (B.1)

The Ricci tensor (1.3) with the Christoffel symbols (1.1) then becomes

R00 = Γa00,a − Γa0a,0 + ΓabaΓ
b
00 − Γab0Γb0a

= −Γi0i,0 − Γij0Γj0i

= −δii
∂

∂t

(
ȧ

a

)
− δijδij

(
ȧ

a

)2

= −3

(
ä

a
− ȧ2

a2

)
− 3

(
ȧ2

a2

)
= −3

ä

a
.

(B.2)

Similarly, the Ricci scalar (1.4) is

R = g00R00 + gijRij

= −R00 +
1

a2
Rii

= 3
ä

a
+

1

a2

(
Γaij,a − Γaia,j + ΓabaΓ

b
ij − ΓabiΓ

b
ja

)
= 3

ä

a
+

1

a2

(
Γ0
ij,0 + Γl0lΓ

0
ij − Γ0

liΓ
l
j0 − Γl0iΓ

0
lk

)
= 3

ä

a
+

1

a2

(
δij
[
2ȧ2 + aä]

)
= 6

ä

a
+ 6

ȧ2

a2
.

(B.3)

Combining (B.2) and (B.3), we find the RHS of (B.1) to be

R00 −
1

2
g00R = 3

ä

a
= 3H2 . (B.4)

For the LHS of (B.1), let us simply expand the definitions of the energy momentum tensors,

κ2(T00 + T φ00) = κ2
(

(ρ+ p)− p+ φ̇2 − 1

2
φ̇2 + V (φ)

)
= κ2

(
ρ+

1

2
φ̇2 + V (φ)

)
.

(B.5)
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Putting together (B.4) and (B.5), we obtain our final result (5.7)

3H2 = κ2
(
ρ+

1

2
φ̇2 + V (φ)

)
. (B.6)

Consider now the spatial components of the field equations (5.4),

Rij −
1

2
gijR = κ2

(
Tij + T φij

)
, (B.7)

where the only non-trivial components are when i = j. The terms on the LHS are then

Rij −
1

2
gijR = 2ȧ2 + aä− 1

2
a2

(
6
ä

a
+ 6

ȧ2

a2

)
= −ȧ2 − 2aä .

(B.8)

On the RHS, the spatial components of the matter energy-momentum reduce easily because

the four-velocity is normalised,

Tij = (ρ+ p)uiuj + pgij = pa2 . (B.9)

The scalar field energy-momentum tensor is

T φij = ∂iφ∂jφ−
1

2
gij(∂φ)2 − gijV (φ)

= ∂iφ∂jφ−
1

2
a2
(
− ∂0φ∂0φ+

2

a2
∂iφ∂jφ

)
− a2V (φ)

= a2

(
1

2
φ̇2 − V (φ)

)
.

(B.10)

Putting together (B.8), (B.9) and (B.10), we arrive at

−ȧ2 − 2aä = κ2
(
pa2 + a2

(1

2
φ̇2 − V (φ)

))
− ȧ

2

a2
− 2

ä

a
= κ2

(
wρ+

1

2
φ̇2 − V (φ)

)
2Ḣ + 3H2 = −κ2

(
wρ+

1

2
φ̇2 − V (φ)

)
.

(B.11)

This is the acceleration equation given in equation (5.8).
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B.2 EN variables

B.2.1 Single exponential potential dynamical equations

The EN variables (5.13), written again for clarity, are

x =
κφ̇√
6H

; y =
κ
√
V√

3H
. (B.12)

Squaring and rearranging for φ̇ and V gives

φ̇2 =
6x2H2

κ2
, V =

3y2H2

κ2
, (B.13)

which can be substituted directly into the Friedmann equation (5.7) to give

3H2 = κ2ρ+ 3x2H2 + 3y2H2

1 =
κ2ρ

3H2
+ x2 + y2 .

(B.14)

Then we simply define the first term on the RHS as matter density parameter (5.15)

Ωm =
κ2ρ

3H2
. (B.15)

Equation (B.14) is the Friedmann constraint (5.14). The scalar field equation of state (5.12)

can be written down simply using (B.13), giving (5.17)

Let us derive the x′ and y′ dynamical system equations (5.20) and (5.21) from the

acceleration equation (5.8) and Klein-Gordon equation (5.9). Starting with the acceleration

equation and substituting in (B.13) and (B.15):

2Ḣ + 3H2 = −κ2
(
wρ+

1

2
φ̇2 − V (φ)

)
3

2Ḣ

3H2
+ 1 = − κ2

3H2

(wΩm3H2

κ2
+

3H2x2

κ2
− 3H2y2

κ2

)
Ḣ

H2
= −3

2

(
w(1− x2 − y2) + x2 − y2 + 1

)
Ḣ

H2
=

3

2

(
x2(w − 1) + (w + 1)(y2 − 1)

)
,

(B.16)

where in the third line we have made use of the Friedmann constraint Ωm = 1− x2 − y2.

Now let us consider the derivative of x = κφ̇/(
√

6H) with respect to N = log a,

x′ ≡ dx

dN
=

1

H

dx

dt
=

1

H

d

dt

( κφ̇√
6H

)
=

1

H

( κφ̈√
6H
− κφ̇Ḣ√

6H2

)
=

κφ̇√
6H

( φ̈

φ̇H
− Ḣ

H2

)
.

(B.17)
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The term outside the bracket is just the definition of x and the last term is the acceleration

equation we already derived (B.16). The φ̈ term can be rewritten using the Klein-Gordon

equation (5.9),

φ̈

φ̇H
= −3− V,φ

φ̇H

= −3− V,φκ

x
√

6H2

= −3− V,φ
√

6y2

2xκV

(B.18)

Substituting this into equation (B.17) leaves us with

x′ = x

[
− 3− V,φ

√
6y2

2xκV
− 3

2

(
x2(w − 1) + (w + 1)(y2 − 1)

)]

x′ = −3

2

[
2x+ (w − 1)x3 + x(w + 1)(y2 − 1) + y2

√
2√
3

V,φ
κV

]
.

(B.19)

Lastly, defining

λ = −V,φ
κV

, (B.20)

brings us to the x′ equation given in equation (5.26).

Let us do the same for the y, taking the derivative

y′ ≡ dy

dN
=

1

H

dy

dy
=

1

H

d

dt

(κV 1/2

√
3H

)
=

κ√
3H

[1

2

V̇ V −1/2

H
− ḢV 1/2

H

]
.

(B.21)

Let us examine the V̇ term. Using the chain rule,

V̇ ≡ dV

dt
=
dV

dφ

dφ

dt
= V,φ

x
√

6H

κ
, (B.22)

where in the last step we have just used the definition of x. Substituting this back into

(B.21),

y′ =
κ√
3H

[1

2

V,φ
V 1/2

x
√

6

κ
− V 1/2 Ḣ

H

]
=

√
6

2

V,φ
κV

xy − y Ḣ
H

.

(B.23)

Now let us substitute in (B.16) for the last term and the definition of λ in the first term,

y′ = −
√

6

2
λxy − y3

2

(
x2(w − 1) + (w + 1)(y2 − 1)

)
y′ = −3

2
y
[
(w − 1)x2 + (w + 1)(y2 − 1)−

√
2√
3
λx
]
.

(B.24)

This is the y′ equation of (5.21)
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B.2.2 Double exponential potential dynamical equations

Here we shall derive the three autonomous equations x′, y′ and z′ for the double exponential

potential V = V1e−καφ + V2e−κβφ using the variables defined by

x =
κφ̇√
6H

, y =

√
κ2V1e−καφ

3H2
, z =

√
κ2V2e−κβφ

3H2
, (B.25)

which can be rewritten as

φ̇2 =
6x2H2

κ2
, V =

3y2H2

κ2
+

3z2H2

κ2
. (B.26)

Firstly, using the Friedmann equation (5.7), we obtain both the Friedmann constraint and

the equation for the matter density parameter,

3H2 = κ2(ρ+ 3x2H2 + 3y2H2 + 3z2H2)

1 =
κ2ρ

3H2
+ x2 + y2 + z2 .

(B.27)

and we define Ωm = κ2ρ
3H2 as the matter critical density parameter. The above equation is

then subject to the bounds 1 ≤ x2 + y2 + z2 ≤ 0. Let us now treat the acceleration equation

(5.8),

2Ḣ + 3H2 = −κ2
(
wρ+

1

2
φ̇2 − V (φ)

)
2Ḣ

3H2
+ 1 = − κ2

3H2

(wΩm3H2

κ2
+

3H2x2

κ2
− 3H2y2

κ2
− 3H2z2

κ2

)
Ḣ

H2
= −3

2

(
w(1− x2 − y2 − z2) + x2 − y2 − z2 + 1

)
.

(B.28)

Lastly let us consider the Klein-Gordon equation (5.9),

φ̈ = −3Hφ̇− ∂V

∂φ

= −3Hφ̇−
(
− καV1e−καφ − κβV2e−κβα

= −3Hφ̇+
(3H2αy2

κ
+

3H2βz2

κ

)
.

(B.29)

Now let us consider the derivative of x with respect to N = log a,

x′ ≡ dx

dN
=

1

H

dx

dt
=

1

H

d

dt

( κφ̇√
6H

)
=

κφ̇√
6H

( φ̈

φ̇H
− Ḣ

H2

)
=

κφ̇√
6H

[
− 3 +

3Hαy2

κφ̇
+

3Hβz2

κφ̇
− Ḣ

H2

]
.

(B.30)
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Now we simply substitute in the acceleration equation (B.28) and tidy up term,

x′ = −3x+

√
3

2
αy2 +

√
3

2
βz2 +

3

2
x
(
w(1− x2 − y2 − z2) + x2 − y2 − z2 + 1

)
x′ = −3

2
x
[
(w + 1)(x2 + y2 + z2 − 1)− 2x2 + 2

]
+

√
3√
2

(αy2 + βz2) .

(B.31)

Doing the same for y and taking the derivative,

y′ ≡ dy

dN
=

1

H

dy

dt
=

1

H

d

dt

(κV 1/2
1 e−καφ/2√

3H

)
=
κV 1/2

√
3H

(
− καφ̇e−καφ/2

2H
− Ḣe−καφ/2

H2

)

= −καyφ̇
2H

− y Ḣ
H2

= −
√

6αxy

2
− y Ḣ

H2
.

(B.32)

Now we again substitute in the acceleration equation (B.28) and tidy up the remaining

terms,

y′ = y
3

2

(
w(1− x2 − y2 − z2) + x2 − y2 − z2 + 1

)
−
√

3√
2
αxy

= −3

2
y
[
(w + 1)(x2 + y2 + z2 − 1)− 2x2

]
−
√

2√
2
αxy .

(B.33)

The calculation for z′ almost identical to y′ and can be followed from the above derivation.
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B.3 Cosmological Time and Redshift

Here we shall derive the equation 5.28 and also make a naive calculation relating our pa-

rameter N to time t in a universe dominated by both matter and dark energy.

Starting with the definition,

N ≡ log a(t) , (B.34)

where log refers to the natural logarithm, let us plug in today’s values of N0 = 5 and a0 = 1

(inferred from Figure 5),

N −N0 = log a(t)− log a0 = log
a

a0

eN−N0 =
a(t)

a0

eN−5 = a(t) .

(B.35)

Next we use the relation between the scale factor and redshift, making a a function of z

instead of t,

a(z) =
1

1 + z
, (B.36)

such that

a(z) = eN−5

1

1 + z
= eN−5

z = e5−N − 1 .

(B.37)

For N = 5 we correctly obtain a redshift of z = 0, and for smaller N we obtain larger

redshifts.

Next we can use the solution for a(t) in a universe comprised of both matter and dark

energy (with zero curvature) [100],

a(t) = a0

(Ωm0

ΩΛ0

) 1
3
(

sinh
(3

2
H0Ω

1
2
Λ0t
)) 3

2
, (B.38)

where Ωm0 and ΩΛ0 denote the values of the density parameters for matter and radiation

today. Using equation (B.35) we can then relate time t and the parameter N .

t =
1

H0

2

3
√

0.7
sinh−1

[(
eN−N0

0.754

)3/2
]
, (B.39)

N = log

[
0.754

(
sinh

(3

2

√
0.7H0t

)) 3
2

]
+N0 (B.40)
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For the initial value Ni ≈ 4.5 and final value Nf ≈ 5.5 we can simply calculate ∆t = tf − ti
using equation (B.39). This calculation yields

∆t =
1

H0

(1.506− 0.534) =
1

H0

(0.972) , (B.41)

which is comparable to the age of the universe. For reference, the age of the universe using

N = N0 is calculated to be 0.961/H0. With a value of H0 = 70kms−1Mpc−1 this is simply

0.961× 1.40× 108yr = 13.4Gyr (B.42)
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B.4 Swampland Criterion Analysis of the Double Exponential Po-

tential

Given a general double exponential potential of the form

V (x) = V1eλ1x + V2eλ2x , (B.43)

let us apply the LHS of the swampland criterion |∇V |
V

(6.2). Assuming we can take the

derivative to mean ∇ = ∂x, this gives us

|∇V |
V

=
|λ1V1eλ1x + λ2V2eλ2x|
V1eλ1x + V2eλ2x

. (B.44)

To investigate the general properties of the above function, as well its range32, consider the

cases of the λ’s possessing different signs. To start with, we will also assume that V1 and

V2 are both positive; their absolute values are not relevant. The analysis is straight forward

and as follows:

λ1, λ2 > 0: When both exponents are positive the lower bound is given by the smaller

of the two (λ1 or λ2 as x → −∞). The upper bound is given by the bigger of the two (λ1

or λ2, as x → +∞). If λ1 = λ2 it is simply a straight line (single exponential case). See

Figure 17 (left).

λ1, λ2 < 0: When both the exponents are negative we have a similar case as above, just

with a flip in the y-axis. Again, the lower bound is the smaller of the exponents (λ1 or λ2

but as x → +∞), the upper bound is the bigger of the exponents (λ1 or λ2, as x → −∞),

and for λ1 = λ2 we have a constant. See Figure 17 (middle).

λ1 > 0, λ2 < 0: If one exponent is negative and the other is positive then the functions

minimum is always zero. The function asymptomatically approaches the positive exponent

as x→∞ and the negative exponent as x→ −∞, and touches zero in between (Figure 17)

(right).

Note that for the case of V1 or V2 < 0 we must only consider the range where the poten-

tial is positive, V > 0. This is because if V < 0 then the swampland criterion, in its original

form |∇V | ≥ V · c, is trivially satisfied.

32In most cases the function asymptotically approaches some constant value as x → ±∞. We shall take

that value as the appropriate bound.
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x x x

Figure 17: Shape of |∇V |
V

for: λ1, λ2 > 0 (left), λ1, λ2 < 0 (middle) and |∇V |
V

for λ1 < 0 < λ2

(right).

For the specific case of the M-theory compactification example (Section 6.2), we have

λ1 > λ2 and V2 is always positive. The case when V1 is positive is described above. Let

us examine when V1 is negative. Excluding the region where V < 0, the function (B.44)

is bounded only from below by λ2. Figure 18 includes both the potential (B.43) and the

function (B.44). Note that in the region where V > 0 our function is always positive.

x

V

x

Figure 18: The potential V (x) (left) is positive for x < 0. In this region the function |∇V |
V

(right) is bounded from below by the larger exponent λ2.
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C Extra Figures
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(a) λ = 1, w = 0 ; x[N = 0] = 0.5, y[N = 0] = 0.05.
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(b) λ = 3, w = 0 ; x[N = 0] = 0.4 y[N = 0] = 0.1.

Figure 19: (Single exponential potential Section 4.3). Evolution of cosmological parameters.

If Subfigure (a) (λ = 1) the initial conditions have been displaced slightly from the y-axis

and hence matter domination does not occur for a significant period of time before dark

energy domination. In Subfigure (b) (λ = 3) we see the scaling solution effects, where the

effective equation of state comes to weff = w no matter the initial conditions.
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(a) Orbit of multiple trajectories through phase space. Point (i) is represented by the

green ball, points (ii)± are represented by the black balls and point (vi) is represented

by the blue ball. All of the trajectories, bar one, converge on the de-Sitter solution

(vii) at late times. The yellow trajectory is confined the z = 0 plane.
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(b) Evolution of weff for some of the trajectories plotted above.

Figure 20: (Double exponential potential Section 4.4). Numerical solutions to the au-

tonomous equations (5.35)-(5.37) for α = −3, β = 1 and w = 0. Subfigure (a) shows

multiple orbits with different initial conditions, whilst Subfigure (b) shows the correspond-

ing evolution of weff for several of the orbits. All initial conditions with z 6= 0 end up at

the de Sitter late-time attractor.
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(a) Phase space for λ = 0.6 and w = 0. The blue orbit originates at the past attractor

A− and passes through a point (−0.5, 0.01) at N = 0. The orbit is then attracted

towards the Saddle O along the x-axis, before being attracted to the late-time accel-

erating attractor, point C.
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(b) Evolution of the cosmological parameters for the blue trajectory in the phase

space above.

Figure 21: (Single exponential potential Section 6.3) Solutions for the single exponential

potential along with the swampland constraints. he free parameters are set to λ = 0.6 and

w = 0, and the initial conditions for the blue orbit are (−0.5, 0.01) at N = 0. Here we

sufficiently close to the x-axis so that the solution has enters a matter domination phase

near point O. This orbit is not in conflict with the swampland constraints 1-4 (Section

6.4.1).
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(a) Phase space for λ = 0.6 and w = 0. The blue orbit originates at the past attractor

A− and passes through a point (−0.9, 0.01) at N = 0. The orbit is attracted to the

late-time attractor C without passing close to point O at the origin.
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(b) Evolution of the cosmological parameters for the blue trajectory in the phase

space above. The effective equation of state weff does not stay at

Figure 22: (Single exponential potential Section 6.3). Solutions for the single exponential

potential along with the swampland constraints. The free parameters are set to λ = 0.6

and w = 0, and the initial conditions for the blue orbit are (−0.9, 0.01) at N = 0. Despite

beginning close to the x-axis, it is far enough away from the origin O that the orbit is in

conflict with the swampland constraints 1-4 (Section 6.4.1).
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(a) Phase space for λ = 0.6 and w = 0. The initial conditions of the blue orbit,

(−0.99, 0.01) at N = 0, is now very close to the past attractor A−. The trajectory is

in major conflict with all cosmological observations.
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(b) Evolution of the cosmological parameters for the blue trajectory in the phase

space above. The effective equation of state weff quickly comes to its final value at

the critical point C (see table 2 for the exact value).

Figure 23: (Single exponential potential Section 6.3). Solutions for the single exponential

potential along with the swampland constraints. The free parameters are set to λ = 0.6

and w = 0, and the initial conditions for the blue orbit are (−0.99, 0.01) at N = 0. This

solution, with an initial condition arbitrarily close to the past attractor A−, is clearly not a

viable trajectory and is in conflict with the swampland constraints 1-4 (Section 6.4.1).
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