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Playing field

Let (M, g) be a closed Riemannian d-manifold.

Consider a diffeomorphism ϕ : M → M. This is the unknown
quantity of elasticity theory.

Second Riemannian metric h := ϕ∗g , the pullback of g .

A pair of metrics, g and h, allows us to write down an action
(variational functional).



Strain tensor

Linear algebra: a pair of non-degenerate symmetric bilinear forms
g , h : V × V → R in a real finite-dimensional vector space V
defines an invertible linear operator L : V → V via the formula

h(u, v) = g(Lu, v), ∀u, v ∈ V .

Convenient to subtract the identity operator,

S := L− Id

Definition of strain tensor:

Sαβ(x) := [gαγ(x)] [hγβ(x)]− δαβ .

Describes, pointwise, linear map in the fibres of the tangent bundle

vα 7→ Sαβ v
β.



Scalar invariants of the strain tensor

Obvious choice: tr(Sk), k = 1, 2, . . . , d .

More convenient choice:

e1(ϕ) := tr S = λ1 + λ2 + . . .+ λd ,

e2(ϕ) :=
1

2

[
(tr S)2 − tr(S2)

]
= λ1λ2 + λ1λ3 + . . .+ λd−1λd ,

...

ed(ϕ) := det S = λ1λ2 . . . λd .

Elementary symmetric polynomials. The λj are eigenvalues of S .



Action (potential energy of elastic deformation)

∫
M
L
(
e1(ϕ), e2(ϕ), . . . , ed(ϕ)

)√
det g dx ,

where L is some prescribed smooth real-valued function of d real
variables and dx := dx1 dx2 . . . dxd .



Describing diffeomorphism in terms of a vector field

First approach Use integral curves of a vector field. Impossible:
J.Milnor 1983.

Second approach Use geodesics.

Connect a point P ∈ M with the point ϕ(P) ∈ M by a geodesic
γ : [0, 1]→ M, so that γ(0) = P and γ(1) = ϕ(P). Parameterise
the geodesic in such a way that γ(t) is a solution of the equation

γ̈λ +

{
λ

µν

}
γ̇µγ̇ν = 0,

where the dot stands for differentiation in t.

Define the vector field of displacements as

u : M 3 P 7→ γ̇(0) ∈ TM.



Linear elasticity

I Linearise the strain tensor with respect to the vector field of
displacements u.

I Choose action quadratic in u.

Action reads

1

2

∫
M

(
λ (∇αuα)2 + µ (∇αuβ +∇βuα)∇αuβ

) √
det g dx ,

where λ and µ are Lamé coefficients.





Spectral problem for linear elasticity:

− µ
(
∇β∇βuα + Ricαβu

β
)
− (λ+ µ)∇α∇βuβ = Λuα.

Possible boundary conditions.

I Dirichlet.

I Free boundary. This is not the Neumann boundary condition.



Historical overview 1

1885 Lord Rayleigh discovers Rayleigh wave. Wave runs along
free boundary and exponentially decays towards interior. Let

Rα(w) := w3 − 8w2 + 8 (3− 2α)w + 16 (α− 1) ,

where
α :=

µ

λ+ 2µ
.

The cubic equation Rα(w) = 0 has three roots wj , j = 1, 2, 3, over
C, where w1 is the distinguished real root in the interval (0, 1). Put

γR :=
√
w1 .

The subscript R in γR stands for “Rayleigh”. The quantity

cR :=
√
µγR

has the physical meaning of velocity of Rayleigh’s surface wave.



Historical overview 2

1912 Peter Debye writes down one-term asymptotic formula for
the eigenvalue counting function

N (Λ) = a Vold(M) Λd/2 + o
(

Λd/2
)

as Λ→ +∞,

where

a =
1

(4π)d/2Γ
(
1 + d

2

) (d − 1

µd/2
+

1

(λ+ 2µ)d/2

)
.

1915 Hermann Weyl provides rigorous proof.



Historical overview 3

Search for two-term asymptotic formula

N (Λ) = a Vold(M) Λd/2+b Vold−1(∂M) Λ(d−1)/2+o
(

Λ(d−1)/2
)

as Λ→ +∞.

Second Weyl coefficient b should depend on boundary conditions.

1950 E. W. Montroll publishes incorrect formulae for second Weyl
coefficient. Same incorrect formulae as Genquian Liu in 2021.

1960 Lars Onsager and coauthors publish correct formulae for
second Weyl coefficient for d = 3.

1997 Safarov and Vassiliev book (only results, without details).

I Onsager’s results for d = 3 checked and confirmed.

I Formulae for second Weyl coefficient for d = 2 written down.



Algorithm for the calculation of second Weyl coefficient
I Fix point x ′ ∈ ∂M, freeze coefficients in operator and

boundary conditions and perform Fourier transform ∂x ′ 7→ iξ′

along ∂M. Gives spectral problem for a system of ODEs with
constant coefficients on semi-axis [0,+∞). This 1-dimensional
spectral problem depends on (x ′, ξ′) ∈ T ∗∂M as a parameter.

I Need to calculate the spectral shift function shift(x ′, ξ′,Λ)
(regularised trace of spectral projection).

I Use ideas from scattering theory:

shift(x ′, ξ′,Λ) :=
ϕ(x ′, ξ′,Λ)

2π
+ N(x ′, ξ′,Λ) ,

where ϕ(x ′, ξ′,Λ) is scattering phase (phase shift) and
N(x ′, ξ′,Λ) is the eigenvalue counting function of the
1-dimensional spectral problem.

I

b =
1

(2π)d−1

∫
T∗∂M

shift(x ′, ξ′, 1) dx ′ dξ′ .



Spectral shift function for Dirichlet boundary conditions

shiftDir(ξ
′,Λ) =



0 for Λ ≤ µ‖ξ′‖2,

− 1
πarctan

(√(
1− Λ

λ+2µ
1
‖ξ′‖2

)(
Λ
µ

1
‖ξ′‖2 − 1

))
− d−1

4

for µ‖ξ′‖2 < Λ < (λ+ 2µ)‖ξ′‖2,

−d
4 for Λ > (λ+ 2µ)‖ξ′‖2,



Spectral shift function for free boundary conditions

shiftfree(ξ′,Λ) =



0 for Λ < µγ2
R‖ξ′‖2,

1 for µγ2
R‖ξ′‖2 < Λ < µ‖ξ′‖2,

1
πarctan

 (
Λ
µ

1
‖ξ′‖2−2

)2

4

√(
1− Λ

λ+2µ
1
‖ξ′‖2

)(
Λ
µ

1
‖ξ′‖2−1

)
+ d−1

4 for µ‖ξ′‖2 < Λ < (λ+ 2µ)‖ξ′‖2,

d
4 for Λ > (λ+ 2µ)‖ξ′‖2.



Main result (for α and γR see one of previous slides)

bDir =

− µ
1−d

2

2d+1π
d−1

2 Γ
(
d+1

2

)
 4(d − 1)

π

1∫
√
α

τd−2 arctan

(√
(1− ατ−2) (τ−2 − 1)

)
dτ

+ α
d−1

2 + d − 1

 ,

bfree =

µ
1−d

2

2d+1π
d−1

2 Γ
(
d+1

2

)
 4(d − 1)

π

1∫
√
α

τd−2 arctan

( (
τ−2 − 2

)2

4
√

(1− ατ−2) (τ−2 − 1)

)
dτ

+ α
d−1

2 + d − 5 + 4 γ1−d
R

 .








