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Two-term spectral asymptotics in linear elasticity
Matteo Capoferri, Leonid Friedlander, Michael Levitin, Dmitri Vassiliev

Motivated in part by the erroneous results in "Geometric invariants of spectrum of the Navier-Lamé
operator" by Gengian Liu published in the Journal of Geometric Analysis 31 (2021), 10164--10193, we
establish the two-term spectral asymptotics for boundary value problems of linear elasticity on a smooth
compact Riemannian manifold of arbitrary dimension. We also present some illustrative examples and

give a historical overview of the subject.
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From Wikipedia, the free encyclopedia

La forza del destino (ltalian pronunciation: [la fortsa del de stino]; The Power of Fate,["] often =
La forza del destino
translated The Force of Destiny) is an Italian opera by Giuseppe Verdi. The libretto was written

Opera by Giuseppe Verdi

by Francesco Maria Piave based on a Spanish drama, Don Alvaro o la fuerza del sino (1835),
by Angel de Saavedra, 3rd Duke of Rivas, with a scene adapted from Friedrich Schiller's
Wallensteins Lager (Wallenstein's Camp). It was first performed in the Bolshoi Kamenny Theatre
of Saint Petersburg, Russia, on 29 November 1862 O.S. (N.S. 10 November).

La forza del destino is frequently performed, and there have been a number of complete
recordings. In addition, the overture (to the revised version of the opera) is part of the standard
repertoire for orchestras, often played as the opening piece at concerts.

Performance history [edit

Revisions |[edit]

After its premiere in Russia, La forza underwent some revisions and made its debut abroad with
performances in Rome in 1863 under the title Don Alvaro. Performances followed in Madrid

(with the Duke of Rivas, the play's author, in travelled

and the opera
to New York, Vienna (1865), Buenos Aires (1866), and London (1867).1o"ation needed]

Following these productions, Verdi made further, more extensive revisions to the opera with LitrettistiprancescolMarialpive;
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Playing field

Let (M, g) be a closed Riemannian d-manifold.

Consider a diffeomorphism ¢ : M — M. This is the unknown
quantity of elasticity theory.

Second Riemannian metric h := ¢*g, the pullback of g.

A pair of metrics, g and h, allows us to write down an action
(variational functional).



Strain tensor

Linear algebra: a pair of non-degenerate symmetric bilinear forms
g,h:V xV = Rin a real finite-dimensional vector space V
defines an invertible linear operator L : V — V via the formula

h(u,v) = g(Lu,v), Yu,v e V.
Convenient to subtract the identity operator,
S=L-1d
Definition of strain tensor:
$%5(x) = [g™(x)] [mya()] — 57
Describes, pointwise, linear map in the fibres of the tangent bundle

v = 5% Vo,



Scalar invariants of the strain tensor

Obvious choice: tr(Sk), k =1,2,...,d.
More convenient choice:

eifp) =trS=A+X+...+ \g,

[(tr 5)2 - tr(Sz)] =M+ A3+ ...+ Ag_1 A,

N =

e(p) ==

ed(go) =detS =M)A., Ag.

Elementary symmetric polynomials. The \; are eigenvalues of S.



Action (potential energy of elastic deformation)

Aﬂﬁ(el(@)v 62(90)7 sy ed(@)) \/ﬁ an

where L is some prescribed smooth real-valued function of d real
variables and dx := dx! dx? ... dx9.



Describing diffeomorphism in terms of a vector field

First approach Use integral curves of a vector field. Impossible:
J.Milnor 1983.

Second approach Use geodesics.
Connect a point P € M with the point ¢(P) € M by a geodesic

v :[0,1] = M, so that v(0) = P and (1) = ¢(P). Parameterise
the geodesic in such a way that 7(t) is a solution of the equation

. A s
P+ { } 3" =0,
1%

where the dot stands for differentiation in t.

Define the vector field of displacements as

u:M>P—40)e TM.



Linear elasticity

P Linearise the strain tensor with respect to the vector field of
displacements u.

» Choose action quadratic in u.

Action reads

;/ ()\(Vau ) + 1 (Vaus + V) Vou ) Jdetg dx,
M

where X\ and p are Lamé coefficients.
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ABSTRACT

We work on a 4-manifold equipped with Lorentzian metric g and quantity
of our mathematical model. The diffeomorphism defines a second Lorentzian mebic b the pn.llbzrk of g. Motvated by elasticity theory,
we introduce a Lagranglan expressed algebraically (without differentiations) via our pair of metrics. Analysis of the resulting nonlinear field
equations produces three main results. First, we show that for Ricci-flat manifolds, our the
Lorenz gauge with exact current. Second, for Minkowski space, we construct explicit massless solutions of our nonlinear field equations; these
come intwo distinct types, right-handed and left-handed. Third, for xplicit

field equations; these contain a positive parameter that has the geometric meaning of quantum mechanical mass and a real parameter that
may be interpreted as electric charge. In constructing explicit solutions of nonlinear field equations, we resort to group-theoretic ideas: we
identify special four-dimensional subgroups of the Poincaré group and seek diffeomorphisms compatible with their action in a suitable
sense.

Published under license by AIP Publishing. https://doi org/10.1063/1.5140425
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Spectral problem for linear elasticity:
_ VaVP2u® + Ric%:uP) — a B — Ao
p(VgVPu® 4+ Ric®gu (A4 p)VEVgu” = Au.
Possible boundary conditions.

» Dirichlet.

» Free boundary. This is not the Neumann boundary condition.



Historical overview 1

1885 Lord Rayleigh discovers Rayleigh wave. Wave runs along
free boundary and exponentially decays towards interior. Let

Ro(w) :i= w® —8w? +8(3 —2a) w + 16 (o — 1),

where
7

CTAT 21
The cubic equation Ry(w) = 0 has three roots w;, j = 1,2,3, over
C, where wy is the distinguished real root in the interval (0,1). Put

YR = /W1 .
The subscript R in g stands for “Rayleigh”. The quantity
CR == /KR

has the physical meaning of velocity of Rayleigh's surface wave.



Historical overview 2

1912 Peter Debye writes down one-term asymptotic formula for
the eigenvalue counting function

N(A)=a V°|d(M)/\d/2 +o (/\d/z) as A — 400,

where

S 1 (d -1 1 )
C@mdrr (19 \pd2 T (A 2u)d2)”

1915 Hermann Weyl provides rigorous proof.



Historical overview 3

Search for two-term asymptotic formula
N(A) = a Volg(M) A¥/2+b Volyg_1 (M) A@-D/2 46 (/\(dfl)ﬂ) as A — +00
Second Weyl coefficient b should depend on boundary conditions.

1950 E. W. Montroll publishes incorrect formulae for second Weyl
coefficient. Same incorrect formulae as Genquian Liu in 2021.

1960 Lars Onsager and coauthors publish correct formulae for
second Weyl coefficient for d = 3.

1997 Safarov and Vassiliev book (only results, without details).
» Onsager's results for d = 3 checked and confirmed.

» Formulae for second Weyl coefficient for d = 2 written down.



Algorithm for the calculation of second Weyl coefficient

» Fix point x’ € OM, freeze coefficients in operator and
boundary conditions and perform Fourier transform dx’ — &’
along OM. Gives spectral problem for a system of ODEs with
constant coefficients on semi-axis [0, +00). This 1-dimensional
spectral problem depends on (x’,&') € T*OM as a parameter.

» Need to calculate the spectral shift function shift(x’, &', A)
(regularised trace of spectral projection).

» Use ideas from scattering theory:

/ !/
shift(x, ¢, A) = LOOEN Ly ey,
27
where ¢(x’, &', \) is scattering phase (phase shift) and
N(x', &', ) is the eigenvalue counting function of the
1-dimensional spectral problem.

1
b= T /T*&M shift(x’, &', 1) dx’ d¢’.



Spectral shift function for Dirichlet boundary conditions

shiftpi (¢, A) =

0 for A < pl|€||?,

. A 1 A1 d—1
_ﬂarctan<\/<1 ~ Mrou Hgf||2) (ﬁ e 1)>4

for pll€/)|2 < A< (A+ 2u) | €'|I2,

Sl

for A > (A +2u)(|€||?,



Spectral shift function for free boundary conditions
shifteo (€, N) =

0 for A < 3|12,

1 for pglI€'lI> < A < ull€'[I?,

2
A1
Gep—2?
(s er) e )
\/ x2u 2 ) e T2

1 arctan
™

+4t for €| < A< (A +20) €)%,

Sl

for A> (A +2u)I¢']%.



Main result (for v and g see one of previous slides)

bDir =

7972 arctan <\/(1 —ar-?)(r-2 — 1)) dr

2 4(d — 1)
2d+177%|‘ (g) s

|
é\n—l

d—1

+a?2 +d-1 |,

bfree =
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Table 2: The coefficient bfee for odd dimensions.
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