Spectral theory of differential operators: what's it all about and what is its use Part I

Dmitri Vassiliev
University College London

November 2022

Basic example of a problem in my subject area

Acoustic resonator. Suppose we are studying the vibrations of air

$$
\frac{1}{c^{2}} \frac{\partial^{2} p}{\partial t^{2}}-\frac{\partial^{2} p}{\partial x_{1}^{2}}-\frac{\partial^{2} p}{\partial x_{2}^{2}}-\frac{\partial^{2} p}{\partial x_{3}^{2}}=0
$$

in a bounded domain $\Omega \subset \mathbb{R}^{3}$ subject to boundary conditions

$$
\left.\frac{\partial p}{\partial n}\right|_{\partial \Omega}=0
$$

Here p is the pressure and c is the speed of sound.
Seek solutions in the form $p\left(x_{1}, x_{2}, x_{3}, t\right)=p\left(x_{1}, x_{2}, x_{3}\right) e^{-i \omega t}$, where ω is the unknown natural frequency.

This leads to an eigenvalue problem:

$$
-\Delta p=\lambda p \quad \text { in } \quad \Omega, \quad \partial p /\left.\partial n\right|_{\partial \Omega}=0
$$

where Δ is the Laplacian and $\lambda:=\frac{\omega^{2}}{c^{2}}$ is the spectral parameter.
Finding eigenvalues $0=\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$ is difficult, so one introduces the counting function

$$
N(\lambda):=\sum_{0 \leq \lambda_{k}<\lambda} 1
$$

("number of eigenvalues below a given λ ") and studies the asymptotic behaviour of $N(\lambda)$ as $\lambda \rightarrow+\infty$.

Rayleigh-Jeans law (1905)

$$
N(\lambda)=\frac{V}{6 \pi^{2}} \lambda^{3 / 2}+o\left(\lambda^{3 / 2}\right) \quad \text { as } \quad \lambda \rightarrow+\infty
$$

where V is the volume of the resonator.

Rayleigh's "proof" of the Rayleigh-Jeans law

Suppose Ω is a cube with side length a. Then the eigenvalues and eigenfunctions can be calculated explicitly:

$$
\begin{gathered}
\psi_{\mathbf{k}}=\cos \left(\frac{\pi k_{1} x_{1}}{a}\right) \cos \left(\frac{\pi k_{2} x_{2}}{a}\right) \cos \left(\frac{\pi k_{3} x_{3}}{a}\right) \\
\lambda_{\mathbf{k}}=\frac{\pi^{2}}{a^{2}}\|\mathbf{k}\|^{2}=\frac{\pi^{2}}{a^{2}}\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)
\end{gathered}
$$

where $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}\right)$ and k_{1}, k_{2}, k_{3} are nonnegative integers. $N(\lambda)$ is the number of integer lattice points in the nonnegative octant of a ball of radius $\frac{a}{\pi} \sqrt{\lambda}$, so

$$
N(\lambda) \approx \frac{1}{8}\left(\frac{4}{3} \pi\left(\frac{a}{\pi} \sqrt{\lambda}\right)^{3}\right)=\frac{a^{3}}{6 \pi^{2}} \lambda^{3 / 2}=\frac{V}{6 \pi^{2}} \lambda^{3 / 2}
$$

Jeans' contribution to the Rayleigh-Jeans law

"It seems to me that Lord Rayleigh has introduced an unnecessary factor 8 by counting negative as well as positive values of his integers".

1910: Lorentz visits Göttingen at Hilbert's invitation and delivers a series of lectures "Old and new problems in physics". Lorentz states the Rayleigh-Jeans law as a mathematical conjecture. Hermann Weyl is in the audience.

1912: Weyl publishes a rigorous proof of Rayleigh-Jeans law. Almost incomprehensible.

Comprehensible proof: in R.Courant and D.Hilbert, Methods of Mathematical Physics (1924).

Courant's method

Approximate domain Ω by a collection of small cubes, setting Dirichlet or Neumann boundary conditions on boundaries of cubes. Setting extra Dirichlet conditions raises the eigenvalues whereas setting extra Neumann conditions lowers the eigenvalues.

Remains only to

- choose size of cubes correctly (in relation to λ) and
- estimate contribution of bits of domain near the boundary (we throw them out).

Weyl's Conjecture (1913)

One can do better and prove two-term asymptotic formulae for the counting function. Say, for the case of the Laplacian in 3D with Neumann boundary conditions Weyl's Conjecture reads

$$
N(\lambda)=\frac{V}{6 \pi^{2}} \lambda^{3 / 2}+\frac{S}{16 \pi} \lambda+o(\lambda) \quad \text { as } \quad \lambda \rightarrow+\infty
$$

where S is the surface area of ∂M.

For Dirichlet boundary conditions change sign in second term.
Similar conjecture in arbitrary dimension d.

Search for a general method

Winner: Boris Levitan's wave equation method.
Instead of studying the spectral problem

$$
-\Delta u=\lambda u
$$

study the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-\Delta u=0
$$

Then perform inverse Fourier transform, from the variable t (time) to the variable $\sqrt{\lambda}$ (frequency).

Fourier Tauberian theorems allow us to perform the inverse Fourier transform using incomplete information, with control of error terms. Similar to Tauberian theorems in analytic number theory.

Timeline leading up to Ivrii's proof of the Weyl conjecture

1952 B.M.Levitan

1968 L.Hörmander

1975 J.J.Duistermaat and V.W.Guillemin

1980 V.Ivrii

Theorem (Victor Ivrii) Weyl's conjecture holds if periodic billiard trajectories have measure zero.

Condition on periodic billiard trajectories is required to exclude situations with too many symmetries. Already noticed by Duistermaat and Guillemin.

Conjecture (Victor Ivrii) In the Euclidean case periodic billiard trajectories have measure zero.

Vadim Kaloshin

 closely related and also open.
MENU

Another challenging question is Ivrii's conjecture. There is a hope to disprove it and as the result show that error term in the Weyl law is not always the one you expect.

