
Invariant subspaces of elliptic systems

Dmitri Vassiliev

21 April 2021



Joint work with Matteo Capoferri (Cardiff).

Invariant subspaces of elliptic systems I: pseudodifferential
projections, arXiv:2103.14325.

Invariant subspaces of elliptic systems II: spectral theory,
arXiv:2103.14334.



Playing field

Let M be a closed connected manifold of dimension d ≥ 2. Local
coordinates x = (x1, . . . , xd).

Will work with m-columns of complex-valued half-densities.

Inner product

〈v ,w〉 :=

∫
M
v∗w dx ,

where dx := dx1 . . . dxd .

By Ψs we denote the space of classical pseudodifferential operators
of order s. For an operator P ∈ Ψs we denote its matrix-valued
principal and subprincipal symbols by Pprin and Psub respectively.
These are invariantly defined matrix-functions on T ∗M \ {0}.



Definition 1 We say that P ∈ Ψ0 is an orthogonal
pseudodifferential projection if

P2 = P mod Ψ−∞,

P∗ = P mod Ψ−∞.

Definition 2 We call a set of m orthogonal pseudodifferential
projections {Pj} an orthonormal pseudodifferential basis if their
principal symbols are rank 1 matrix-functions and

PjPk = 0 mod Ψ−∞ ∀j 6= k ,∑
j

Pj = Id mod Ψ−∞,

where Id ∈ Ψ0 is the identity operator.



Question 1 Does there exist a nontrivial operator P satisfying
Definition 1?

Question 2 Assuming that the answer to Question 1 is positive,
can we choose the Pj ’s so that they satisfy Definition 2?

Need to solve an infinite sequence of heavily overdetermined
systems of algebraic equations for the homogeneous components of
the symbols of the Pj ’s, and it is not a priori clear that these
systems have solutions.

Great care is needed in performing this analysis because our
operators have matrix-valued symbols which in general do not
commute.



Let A ∈ Ψs , s ∈ R, s > 0, be an elliptic self-adjoint linear
pseudodifferential operator, where ellipticity means that

detAprin(x , ξ) 6= 0, ∀(x , ξ) ∈ T ∗M \ {0}.

Important assumption The matrix-function Aprin(x , ξ) is
assumed to have simple eigenvalues.



We denote by m+ (resp. m−) the number of positive
(resp. negative) eigenvalues of Aprin(x , ξ). We denote by h(j)(x , ξ)
the eigenvalues of Aprin(x , ξ) enumerated in increasing order, with
positive index j = 1, 2, . . . ,m+ for positive h(j)(x , ξ) and negative
index j = −1,−2, . . . ,−m− for negative h(j)(x , ξ).

Of course, m+ + m− = m.

By P(j)(x , ξ) we denote the eigenprojection of Aprin(x , ξ)
corresponding to the eigenvalue h(j)(x , ξ). The matrix-functions
P(j)(x , ξ) are rank 1.



Question 3 Assuming that the answer to Question 2 is positive,
can we choose the Pj ’s so that they commute with the operator A

[A,Pj ] = 0 mod Ψ−∞

and
(Pj)prin = P(j)?

Question 4 Can we exploit the pseudodifferential projections Pj

to advance the current understanding of spectral asymptotics for
elliptic systems?

Question 5 Can we exploit the pseudodifferential projections Pj

to advance the current understanding of propagation of
singularities for hyperbolic systems?



Existing literature on pseudodifferential projections

Integration of (A− λ Id)−1 over a careful chosen contour in the
complex plane.

Birman and Solomyak 1982.

Bolte and Glaser 2005. Semiclassical setting + additional
assumption on the separation of the eigenvalues of Aprin(x , ξ).

Problem: difficult to carry out explicit calculations beyond the
principal symbol.

Example: abstract formula for the second Weyl coefficient of a
system 1984 (Ivrii), actual formula 2013 (Vassiliev and co-authors).



Existing literature on microlocal diagonalisation

Construct an almost-unitary operator U such that U∗AU is a
diagonal matrix operator, modulo Ψ−∞.

Numerous publications, starting from Taylor 1975 and Cordes 1983.

Problem: the almost-unitary operator U is not defined uniquely,
not even at the level of the principal symbol, but only up to gauge
transformations. These gauge transformations generate curvature.

Source of problem: a normalised eigenvector of an Hermitian
matrix is not uniquely defined, one can multiply it by e iφ, φ ∈ R.



Theorem 1 Given a family of m orthonormal rank 1 projections

P(j) ∈ C∞(T ∗M \ {0}; Mat(m;C))

positively homogeneous in momentum of degree zero, there exists
an orthonormal pseudodifferential basis {Pj} ⊂ Ψ0 as per
Definition 2 with (Pj)prin = P(j).

Proof Explicit algorithm leading to the determination of the full
symbols of the pseudodifferential projections Pj ’s. Algorithm is
global and does not use local coordinates.

Remark The full symbols of the pseudodifferential projections
Pj ’s are not uniquely defined. Remaining degrees of freedom are
described by explicit formulae.

Remark One can turn approximate projections into exact
projections, i.e. drop the modulo Ψ−∞.



Theorem 2 There exist m pseudodifferential operators Pj ∈ Ψ0

satisfying Definition 2 and conditions

[A,Pj ] = 0 mod Ψ−∞,

(Pj)prin = P(j),

and these are uniquely determined, modulo Ψ−∞, by the
operator A.

Proof Application of the algorithm from Theorem 1.

Remark We cannot drop the modulo Ψ−∞ in the commutation
condition [A,Pj ] = 0.



Theorem 3 The explicit formula for the subprincipal symbol of
the pseudodifferential projection Pj reads

(Pj)sub =
i

2
{P(j),P(j)} − i P(j){P(j),P(j)}P(j)

+
∑
l 6=j

P(j)(Asub − iQ(j))P(l) + P(l)(Asub + iQ(j))P(j)

h(j) − h(l)
,

where

Q(j) :=
1

2

(
{Aprin,P

(j)} − {P(j),Aprin}
)
.

Here curly brackets denote the matrix-valued Poisson bracket

{B,C} :=
d∑

α=1

(BxαCξα − BξαCxα).



Remark The trace of the matrix (Pj)sub(x , ξ) has the geometric
meaning of scalar curvature generated by gauge transformations of
the jth eigenvector of Aprin(x , ξ).

Remark Safarov mistakenly assumed (DSc thesis, 1989) that

tr(Pj)sub = 0.

Remark In 1989 Safarov and I did not think in terms of invariant
subspaces and pseudodifferential projections. We also had no idea
about gauge transformations and curvature that they generate.
Took decades to get a clear understanding and fix mistakes:
Nicoll’s PhD thesis 1998, Chervova’s PhD thesis 2012, Downes’
PhD thesis 2014 and Fang’s PhD thesis 2017. The idea of thinking
in terms of invariant subspaces and pseudodifferential projections
emerged in 2020, after Capoferri submitted his PhD thesis.



Definition 3 We say that a symmetric pseudodifferential operator
B is nonnegative (resp. nonpositive) modulo Ψ−∞ and write

B ≥ 0 mod Ψ−∞ (resp. B ≤ 0 mod Ψ−∞)

if there exists a symmetric operator C ∈ Ψ−∞ such that
B + C ≥ 0 (resp. B + C ≤ 0).



Theorem 4 We have

P∗j APj ≥ 0 mod Ψ−∞ for j = 1, . . . ,m+,

P∗j APj ≤ 0 mod Ψ−∞ for j = −1, . . . ,−m−.

Remark The operators P∗j APj in Theorem 4 are not elliptic,

det(P∗j APj)prin(x , ξ) = 0 ∀(x , ξ) ∈ T ∗M \ {0},

therefore, proving that they are sign semidefinite modulo Ψ−∞ is a
delicate matter. The fact that their principal symbols are sign
semidefinite does not, on its own, imply that the operators are sign
semidefinite — it does not even imply that they are semibounded.

Remark We have A =
∑

j P
∗
j APj mod Ψ−∞, i.e. we decomposed

our operator A into a sum of m sign semidefinite operators.



Theorem 5 The operator |A| is pseudodifferential and

|A| =
m+∑
j=1

APj −
m−∑
j=1

AP−j mod Ψ−∞.

Furthermore, the explicit formula for the subprincipal symbol of the
operator |A| reads

|A|sub =
∑
j ,k

h(j) + h(k)

|h(j)|+ |h(k)|
P(j)AsubP

(k)

+
i

2

∑
j ,k

1

|h(j)|+ |h(k)|
P(j)({Aprin,Aprin}−{|A|prin, |A|prin})P(k).



Let θ : R→ R,

θ(z) :=

{
0 if z ≤ 0,

1 if z > 0

be the Heaviside function.

Theorem 6 The operator θ(A) is pseudodifferential and

θ(A) =
m+∑
j=1

Pj mod Ψ−∞.

Remark Theorems 6 and 3 give us an explicit formula
for [θ(A)]sub .



Spectral results

Let m+ ≥ 2 and let

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → +∞

be the positive eigenvalues of A enumerated in increasing order
with account of multiplicity.

Task: partition the positive eigenvalues λk of the operator A into
m+ separate series corresponding to the m+ different positive
eigenvalues h(j)(x , ξ) of the matrix-function Aprin(x , ξ).

eigenvalues of operator A
?←→ eigenvalues of matrix-function Aprin(x , ξ)

Naive approach: look at eigenvalues of P∗j APj , j = 1, . . . ,m+.
Doesn’t work because the operators P∗j APj are not elliptic.



Let us introduce the operators

Aj := A− 2
∑

l=1,...,m+

l 6=j

P∗l APl , j = 1, . . . ,m+.

Each operator Aj is elliptic and is ‘simpler’ than our original
operator A in that the principal symbol of Aj has only one positive
eigenvalue, namely, h(j)(x , ξ).

Let
0 < λ

(j)
1 ≤ λ

(j)
2 ≤ · · · ≤ λ

(j)
k ≤ · · · → +∞

be the positive eigenvalues of Aj enumerated in increasing order
with account of multiplicity.



Theorem 7 For each j = 1, . . . ,m+ we have

dist
(
λ
(j)
k , σ+(A)

)
= O(k−∞) as k → +∞.

Theorem 8 We have

dist
(
λk ,

⋃m+

j=1 σ
+(Aj)

)
= O(k−∞) as k → +∞.

Theorems 7 and 8 do not quite achieve the sought after partition
of the spectrum of A in that they do not establish a one-to-one
correspondence between the positive eigenvalues of the operator A
and the positive eigenvalues of the operators Aj , j = 1, . . . ,m+.
These theorems establish asymptotic closeness of the spectra but
do not provide sufficient information on the closeness of individual
eigenvalues enumerated in our particular way.



Let us combine the sequences {λ(j)k }k∈N , j = 1, . . . ,m+, into one
sequence and denote it by

0 < µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · → +∞.

Here we combine them with account of multiplicities.

Theorem 9 For any α > 0 there exists an rα ∈ Z such that

λk = µk+rα + O(k−α) as k → +∞.

Remark We are unable to replace α by ∞ in Theorem 9.



Propagation of singularities for hyperbolic systems

Let A ∈ Ψ1 and let U(t) := e−itA be the propagator.

It is known that the propagator can be written, modulo an infinitely
smoothing operator, as the sum of precisely m oscillatory integrals

U(t) =
∑
j

U(j)(t) mod C∞(R; Ψ−∞)

where each U(j)(t) is a Fourier integral operator whose Schwartz
kernel is a Lagrangian distribution associated with the Lagrangian
submanifold of T ∗R× T ∗M × T ∗M generated by the Hamiltonian
flow of the jth eigenvalue of the principal symbol of A.

Theorem 10 We have

U(j)(t) = Pj U(t) = U(t)Pj mod C∞(R; Ψ−∞).



Let A ∈ Ψ2 be a nonnegative operator and let U(t) := e−it
√
A be

the propagator.

In this case we also have

U(t) =
∑
j

U(j)(t) mod C∞(R; Ψ−∞)

where each U(j)(t) is a Fourier integral operator whose Schwartz
kernel is a Lagrangian distribution associated with the Lagrangian
submanifold of T ∗R× T ∗M × T ∗M generated by the Hamiltonian
flow of the jth eigenvalue of the principal symbol of A.

Theorem 11 We have

U(j)(t) = Pj U(t) = U(t)Pj mod C∞(R; Ψ−∞).



Applications

I Massless Dirac operator on a Riemannian 3-manifold.

I Elasticity operator on a Riemannian 2-manifold.

I The Dirichlet-to-Neumann map DN for elasticity. Here the
elastic body is assumed to occupy a domain Ω ⊂ R3 and the
operator DN acts on ∂Ω.


