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Bloch waves

A plane wave incident
from outside can excite
Bloch waves in a
crystalline structure that
supports them.

Joannopoulos et al.
describe the process, but
no calculations are given.

‘The amplitudes of the

refracted and reflected

waves . . . require a more

detailed solution of the

Maxwell equations.’
‘Photonic Crystals Molding the Flow of Light’
Joannopoulos et al. (2008)
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The wave equation

Consider the acoustic wave equation, with speed of sound c :

(

∇2 −
1

c2
∂2

∂t2

)

U(r, t) = 0.

Other physical contexts (electromagnetism, water waves, elasticity)
are similar; the algebra for the electromagnetic case is a lot worse.

Look for time-harmonic solutions:

U(r, t) = u1(r) cos(ωt)− u2(r) sin(ωt)

= Re
[
u(r)e−iωt

]

where u is a complex valued function of position.

Now we just have to solve the Helmholtz equation for u:

(∇2 + k2)u(r) = 0, k = ω/c .
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Single scattering

Consider scattering by
one circular cylinder (no
variation in z).

ui(r)

r

r

x

y

θ

By separation of variables, the incident and scattered waves can be
expanded in the form

ui(r) =

∞∑

n=−∞

InJn(r) and us(r) =

∞∑

n=−∞

AnHn(r)

where

Jn(r) = Jn(kr)e
inθ and Hn(r) =

[

Jn(kr) + iYn(kr)
]

e
inθ.

In is known; An is related to In by the boundary conditions.

At low to moderate frequencies, An → 0 rapidly as |n| → ∞.

We are not treating scatterers as points!
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Multiple scattering

The same idea works for multiple bodies, but now there is a set of
unknowns associated with each scatterer.

ui = e
ik(x cosψ0+y sinψ0) ψ0

O
s1

s2

r

R21

r21

x
y

We consider an array that is infinite in x and semi-infinite in y , so

us(r) =

∞∑

j=−∞

∞∑

p=0

∞∑

n=−∞

Ajp
n Hn(krjp).

Also u(r+ js1) = e
ikjs1 cosψ0u(r), so A

jp
n = e

ikjs1 cosψ0A
0p
n ; we need

‘only’ determine A
0p
n .
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Array scanning

Introduce the z-transform by writing

A0p
n =

1

2πi

∫

Ω
A+
n (z)z

−p−1
dz ,

where Ω is the unit circle (possibly with
indentations).

Dependence on row number (p) now
appears in the exponent only.

Re[z ]

Im[z ]

Ω

Since A
0p
n = 0 for p < 0, there must be no singularities inside Ω.

Poles with |z | > 1: contribution to A
0p
n → 0 as p → ∞.

Poles on |z | = 1: Bloch waves — A
0p
n 6→ 0 as p → ∞.
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Array scanning (ctd.)

After z-transformation, we have

us(r) =
1

2πi

∫

Ω





∞∑

n=−∞

A+
n (z)

∞∑

j=−∞

∞∑

p=−∞

e
ikjs1 cosψ0

zp+1
Hn(krjp)



 dz .

◮ ‘looks’ quasiperiodic in transform space,
◮ the slowly convergent series contain no unknowns.

There is one unknown function A+
n (z) for every mode included in the

local expansions about the scatterers.

Applying the boundary conditions on the cylinder surfaces leads to a
matrix Wiener–Hopf equation for these.
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Another view — grating modes

Look for solutions with the same quasi-periodicity as the incident field:

u(r) = e
ikx cosψjφ(y) ⇒ φ(y) = e

±iky sinψj ,

where cosψj = cosψ0 + 2jπ/(ks1).

The field between rows can be expanded using a spectral basis.

s1

u(x , y) =

∞∑

j=−∞

A+
j e

ik(x cosψj+y sinψj )

︸ ︷︷ ︸

+A−
j e

ik(x cosψj−y sinψj )

︸ ︷︷ ︸

,

upwards propagating downwards propagating

A good approximation is obtained by truncating the series at |j | = Q, say,
provided that cosψQ > 1.

This simple structure (plane & evanescent modes) rules out branch points in
the Wiener–Hopf equation.
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Wiener–Hopf equation

Writing the transformed equations in matrix form yields (eventually)

K (z)A+(z) = T+(z) + T−(z).

All functions are rational, T+(z) is known and T−(z) → 0 as z → ∞.

Poles in Ω− (outside the contour) can be located using the LHS;
T−(z) is known up to a set of constants.

At points zq ∈ Ω+ at which detK (z) = 0, only certain right-hand
sides are permitted. In fact, if

K ∗(zq)Eq = 0 with |Eq| 6= 0,

then
E∗
q

(
T+(zq) + T−(zq)

)
= 0.

It can be shown that the number of points zq is equal to the number
of unknown constants in the vector T−(z).
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Residues

There are poles at points zq ∈ Ω− (outside Ω) where detK (z) = 0.

Write A+(z) =
B

z − zq
+ Â+(z), where Â+ is regular at z = zq.

Use in Wiener–Hopf equation:

K (z)
[
B+ (z − zq)Â

+(z)
]
= (z − zq)

[
T+(z) + T−(z)

]
;

hence K (zq)B = 0 (∗).

Also,

K (z)Â+(z) = T+(z) + T−(z) +
K (z)

z − zq
B,

so

E∗
q

(

T+(zq) + T−(zq) + lim
z→zq

K (z)

z − zq
B

)

= 0. (†).

B is determined by (∗) and (†).
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Amplitude of reflection
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a = 0.001, s1 = [2, 0], s2 = [0, 2] a = 0.001, s1 = [1, 0], s2 = [0, 3]

(Dirichlet boundary conditions.)
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A new result
s1 = [1, 0], s2 = [0, 1], Neumann boundary conditions.
k = 1.4, a = 0.25; k = 2.0, a = 0.25; k = 2.0, a = 0.45
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