Bloch wave excitation and the Wiener-Hopf technique

Nikos Tymis Ian Thompson
Department of Mathematical Sciences
Loughborough University

Bloch waves

- A plane wave incident from outside can excite Bloch waves in a crystalline structure that supports them.
- Joannopoulos et al. describe the process, but no calculations are given.

'The amplitudes of the refracted and reflected waves . . . require a more detailed solution of the Maxwell equations.'
'Photonic Crystals Molding the Flow of Light' Joannopoulos et al. (2008)

The wave equation

- Consider the acoustic wave equation, with speed of sound c :

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) U(\mathbf{r}, t)=0
$$

Other physical contexts (electromagnetism, water waves, elasticity) are similar; the algebra for the electromagnetic case is a lot worse.

- Look for time-harmonic solutions:

$$
\begin{aligned}
U(\mathbf{r}, t) & =u_{1}(\mathbf{r}) \cos (\omega t)-u_{2}(\mathbf{r}) \sin (\omega t) \\
& =\operatorname{Re}\left[u(\mathbf{r}) \mathrm{e}^{-\mathrm{i} \omega t}\right]
\end{aligned}
$$

where u is a complex valued function of position.

- Now we just have to solve the Helmholtz equation for u :

$$
\left(\nabla^{2}+k^{2}\right) u(\mathbf{r})=0, \quad k=\omega / c
$$

Single scattering

- Consider scattering by $u^{i}(r)$ one circular cylinder (no variation in z).
$\xrightarrow{\xrightarrow{u^{i}(r)}}$

- By separation of variables, the incident and scattered waves can be expanded in the form

$$
u^{\mathrm{i}}(\mathbf{r})=\sum_{n=-\infty}^{\infty} I_{n} \mathcal{J}_{n}(\mathbf{r}) \quad \text { and } \quad u^{\mathrm{s}}(\mathbf{r})=\sum_{n=-\infty}^{\infty} A_{n} \mathcal{H}_{n}(\mathbf{r})
$$

where

$$
\mathcal{J}_{n}(\mathbf{r})=J_{n}(k r) \mathrm{e}^{\mathrm{i} n \theta} \quad \text { and } \quad \mathcal{H}_{n}(\mathbf{r})=\left[\mathrm{J}_{n}(k r)+\mathrm{i} \mathrm{Y}_{n}(k r)\right] \mathrm{e}^{\mathrm{i} n \theta} .
$$

- I_{n} is known; A_{n} is related to I_{n} by the boundary conditions.
- At low to moderate frequencies, $A_{n} \rightarrow 0$ rapidly as $|n| \rightarrow \infty$.
- We are not treating scatterers as points!

Multiple scattering

- The same idea works for multiple bodies, but now there is a set of unknowns associated with each scatterer.

$$
u^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} k\left(x \cos \psi_{0}+y \sin \psi_{0}\right), \hat{\psi}_{0}}
$$

- We consider an array that is infinite in x and semi-infinite in y, so

$$
u^{\mathrm{s}}(\mathbf{r})=\sum_{j=-\infty}^{\infty} \sum_{p=0}^{\infty} \sum_{n=-\infty}^{\infty} A_{n}^{j p} \mathcal{H}_{n}\left(k \mathbf{r}_{j p}\right)
$$

- Also $u\left(\mathbf{r}+j \mathbf{s}_{1}\right)=\mathrm{e}^{\mathrm{i} k j s_{1} \cos \psi_{0}} u(\mathbf{r})$, so $A_{n}^{j p}=\mathrm{e}^{\mathrm{i} k j s_{1} \cos \psi_{0}} A_{n}^{0 p}$; we need 'only' determine $A_{n}^{0 p}$.

Array scanning

- Introduce the z-transform by writing

$$
A_{n}^{0 p}=\frac{1}{2 \pi \mathrm{i}} \int_{\Omega} A_{n}^{+}(z) z^{-p-1} \mathrm{~d} z
$$

where Ω is the unit circle (possibly with indentations).

- Dependence on row number (p) now appears in the exponent only.

- Since $A_{n}^{0 p}=0$ for $p<0$, there must be no singularities inside Ω.
- Poles with $|z|>1$: contribution to $A_{n}^{0 p} \rightarrow 0$ as $p \rightarrow \infty$.
- Poles on $|z|=1$: Bloch waves $-A_{n}^{0 p} \nrightarrow 0$ as $p \rightarrow \infty$.

Array scanning (ctd.)

- After z-transformation, we have

$$
u^{\mathrm{s}}(\mathbf{r})=\frac{1}{2 \pi \mathrm{i}} \int_{\Omega}\left[\sum_{n=-\infty}^{\infty} A_{n}^{+}(z) \sum_{j=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} \frac{\mathrm{e}^{\mathrm{i} k j s_{1} \cos \psi_{0}}}{z^{p+1}} \mathcal{H}_{n}\left(k \mathbf{r}_{j p}\right)\right] \mathrm{d} z
$$

- 'looks' quasiperiodic in transform space,
- the slowly convergent series contain no unknowns.
- There is one unknown function $A_{n}^{+}(z)$ for every mode included in the local expansions about the scatterers.
- Applying the boundary conditions on the cylinder surfaces leads to a matrix Wiener-Hopf equation for these.

Another view - grating modes

- Look for solutions with the same quasi-periodicity as the incident field:

$$
u(\mathbf{r})=\mathrm{e}^{\mathrm{i} k x \cos \psi_{j}} \phi(y) \quad \Rightarrow \quad \phi(y)=\mathrm{e}^{ \pm \mathrm{i} k y \sin \psi_{j}}
$$

where $\cos \psi_{j}=\cos \psi_{0}+2 j \pi /\left(k s_{1}\right)$.

- The field between rows can be expanded using a spectral basis.

$$
u(x, y)=\sum_{j=-\infty}^{\infty} \underbrace{\mathcal{A}_{j}^{+} \mathrm{e}^{\mathrm{i} k\left(x \cos \psi_{j}+y \sin \psi_{j}\right)}}_{\text {upwards propagating }}+\underbrace{\mathcal{A}_{j}^{-} \mathrm{e}^{\mathrm{i} k\left(x \cos \psi_{j}-y \sin \psi_{j}\right)}}_{\text {downwards propagating }}
$$

- A good approximation is obtained by truncating the series at $|j|=Q$, say, provided that $\cos \psi_{Q}>1$.
- This simple structure (plane \& evanescent modes) rules out branch points in the Wiener-Hopf equation.

Wiener-Hopf equation

- Writing the transformed equations in matrix form yields (eventually)

$$
K(z) \mathbf{A}^{+}(z)=\mathbf{T}^{+}(z)+\mathbf{T}^{-}(z)
$$

All functions are rational, $\mathbf{T}^{+}(z)$ is known and $\mathbf{T}^{-}(z) \rightarrow 0$ as $z \rightarrow \infty$.

- Poles in Ω^{-}(outside the contour) can be located using the LHS; $\mathbf{T}^{-}(z)$ is known up to a set of constants.
- At points $z_{q} \in \Omega^{+}$at which $\operatorname{det} K(z)=0$, only certain right-hand sides are permitted. In fact, if

$$
K^{*}\left(z_{q}\right) \mathbf{E}_{q}=0 \quad \text { with } \quad\left|\mathbf{E}_{\mathbf{q}}\right| \neq 0
$$

then

$$
\mathbf{E}_{q}^{*}\left(\mathbf{T}^{+}\left(z_{q}\right)+\mathbf{T}^{-}\left(z_{q}\right)\right)=0
$$

- It can be shown that the number of points z_{q} is equal to the number of unknown constants in the vector $\mathbf{T}^{-}(z)$.

Residues

- There are poles at points $z_{q} \in \Omega^{-}$(outside Ω) where $\operatorname{det} K(z)=0$.
- Write $\mathbf{A}^{+}(z)=\frac{\mathbf{B}}{z-z_{q}}+\hat{\mathbf{A}}^{+}(z)$, where $\hat{\mathbf{A}}^{+}$is regular at $z=z_{q}$.
- Use in Wiener-Hopf equation:

$$
K(z)\left[\mathbf{B}+\left(z-z_{q}\right) \hat{\mathbf{A}}^{+}(z)\right]=\left(z-z_{q}\right)\left[\mathbf{T}^{+}(z)+\mathbf{T}^{-}(z)\right] ;
$$

hence $K\left(z_{q}\right) \mathbf{B}=\mathbf{0} \quad(*)$.

- Also,

$$
K(z) \hat{\mathbf{A}}^{+}(z)=\mathbf{T}^{+}(z)+\mathbf{T}^{-}(z)+\frac{K(z)}{z-z_{q}} \mathbf{B}
$$

so

$$
\mathbf{E}_{q}^{*}\left(\mathbf{T}^{+}\left(z_{q}\right)+\mathbf{T}^{-}\left(z_{q}\right)+\lim _{z \rightarrow z_{q}} \frac{K(z)}{z-z_{q}} \mathbf{B}\right)=0
$$

- B is determined by $(*)$ and (\dagger).

Amplitude of reflection

ψ_{0}

$$
a=0.001, \mathbf{s}_{1}=[2,0], \mathbf{s}_{2}=[0,2]
$$

1.0	0.3

ψ_{0}
$a=0.001, \mathbf{s}_{1}=[1,0], \mathbf{s}_{2}=[0,3]$
(Dirichlet boundary conditions.)

A new result

$\mathbf{s}_{1}=[1,0], \mathbf{s}_{2}=[0,1]$, Neumann boundary conditions. $k=1.4, a=0.25 ; k=2.0, a=0.25 ; k=2.0, a=0.45$

References

- Bloch waves and related
- Joannopoulos et al. 'Photonic Crystals: molding the flow of light' (second edition). Princeton 2008.
- Multipole expansions
- Martin 'Multiple Scattering'. CUP (2006).
- Linear systems of complex functions
- Thompson \& Linton 'On the excitation of a closely spaced array by a line source'. IMA Journal of Applied Mathematics 72(4): 476-497, August 2007.
- Bloch wave excitation
- Tymis \& Thompson 'Low frequency scattering by a semi-infinite lattice of cylinders'. QJMAM 64(2): 171-195, May 2011.
- More general work to follow.

