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Outline:

- Classical homogenization for waves ( = low frequencies)

- Higher frequencies + higher contrasts (‘degeneracies’)
−→ ‘resonant’ homogenization

- Effects: (frequency/wavenumber) band gaps, dispersion, ‘negative’
materials, etc.

- ‘Partial’ degeneracies and resonances (more of effects; general theory)

- Photonic Crystal Fibers as an example of partial degeneracies
−→ Band gaps in PCFs. (Cooper, Kamotski, V.S., 2012).
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Classical Periodic Homogenisation for waves (= low
frequencies) (‘anti-plane’ elastodynamics/ TM
electrodynamics, for simplicity)

ρε(x)utt − div (aε(x)∇uε)) = f (x , t)

f (x , t) ≡ 0, t ≤ 0; u(x , t) ≡ 0, t ≤ 0.

aε(x) = a(x/ε), ρε = ρ(x/ε)

a ‘stiffness’, ρ ‘density’

a(y), ρ(y) Q-periodic in y

Asymptotic expansion

uε(x , t) ∼
u0(x , x/ε, t) + εu1(x , x/ε, t) + . . . u0(x , y , t), u1(x , y , t) Q-periodic in y
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Classical Periodic Homogenisation

ε−2 : u0 = u(x , t) ( ≡ ‘long wavelengths’ ≡ ‘low frequencies’)

ε−1 : u1 =
∑
j

Nj(y)
∂u0

∂xj
(x , t)

N solutions of “cell problem” divy
(
a(y)(e j +∇yNj)

)
= 0

ε0 : ρhomu0
tt − div

(
Ahom∇u0)

)
= f (x), homogenized eqn

ρhom = 〈ρ(y)〉y homogenised (averaged) density

Ahom = 〈a(y) (I +∇yN)〉y homogenised stiffness tensor

0 < νI ≤ Ahom, ρhom ≤ ν−1I (uniform positivity inherited)

The Homogenisation Theorem

C > 0 independent of ε such that ‖uε − (u0 + εu1)‖H1 ≤ Cε1/2
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High-contrast (= ‘micro-resonant’) homogenization and
‘non-classical’ two-scale limits (Zhikov 2000, 2004)

Aεu = −div (aε(x)∇uε)

aε(x) =

{
ε2 on Ωε

0 (‘soft’ phase)
1 on Ωε

1 (‘stiff’ phase)

Contrast δ ∼ ε2 is a critical scaling giving rise to ‘non-classical’ effects
(Khruslov 1980s; Arbogast, Douglas, Hornung 1990; Panasenko 1991;
Allaire 1992; Sandrakov 1999; Brianne 2002; Bourget, Mikelic, Piatnitski
2003; Bouchitte & Felbaq 2004, ...): elliptic, spectral, parabolic,
hyperbolic, nonlinear, non-periodic/ random, ... .

WHY?
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Two-scale formal asymptotic expansion:

div (aε(x)∇uε) + ρω2uε = 0 (timeharmonicwaves)
⇐⇒ Aεuε = λuε, λ = ρω2 (spectral problem).
Seek uε(x) ∼ u0(x , x/ε) + εu1(x , x/ε) + ... uj(x , y) Q − periodic in y .

THEN:
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Two-scale limit problem (Zhikov 2000, 2004)

Then u0(x , y) =
u0(x) in Q1 (still low frequency)

w(x,y) in Q0 (‘resonance’ frequency)

(u0,w), w(x , y) := u0(x) + v(x , y),
solves the two-scale limit spectral problem:

−divx(ahom∇xu(x)) = λu(x) + λ < v > (x) in Ω

−divy (a(0)∇yv(x , y)) = λ(u(x) + v(x , y)) in Q0

v(x , y) = 0 on ∂Q0

Decouple it ↓
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Two-scale limit spectral problem
Decouple by choosing v(x , y) = λu(x)b(y)

−divy (a(0)∇yb(y)) − λu = 1 in Q0

b(y) = 0 on ∂Q0

−divx(ahom∇u(x)) = β(λ)u(x), in Ω,

where β(λ) = λ+ λ2
∞∑
j=1

〈φj〉2y
λj − λ

,

(λj , φj) Dirichlet eigenvalues/functions of inclusion Q0 ( =
“micro-resonances”: β < 0 “negative denstity/magnetism”’ etc)
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Rigorous analysis: Two-scale Convergence

Definition

1. Let uε(x) be a bounded sequence in L2(Ω). We say (uε) weakly

two-scale converges to u0(x , y) ∈ L2(Ω× Q), denoted by uε
2⇀ u0, if for

all φ ∈ C∞0 (Ω), ψ ∈ C∞# (Q)∫
Ω
uε(x)φ(x)ψ

(x
ε

)
dx −→

∫
Ω

∫
Q
u0(x , y)φ(x)ψ(y) dxdy

as ε→ 0.
2. We say (uε) strongly two-scale converges to u0 ∈ L2(Ω× Q), denoted

by uε
2→ u0, if for all vε

2⇀ v0(x , y),∫
Ω
uε(x)vε(x)dx −→

∫
Ω

∫
Q
u0(x , y)v0(x , y) dxdy

as ε→ 0. (implies convergence of norms upon sufficient regularity)
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Rigorous analysis (Zhikov 2000, 2004):

1. Two-scale resolvent convergence:

α > 0, Aεuε + αuε = f ε ∈ L2(Ω); uε ∈ H1
0 (Ω).

If fε 2⇀ f0(x , y) then uε 2⇀ u0(x , y). (If f ε 2→ f0(x , y) then uε 2→ u0(x , y).)
Here u0 solves “two-scale limit problem”A0u0 + αu0 = f0.

2. Spectral band gaps: (Let Ω = Rd .)

A0 self-adjoint in H ⊂ L2(R× Q0),with a band-gap spectrum σ(A0).
σ(Aε)→ σ(A0) in the sense of Hausdorff. (Hence a Band-gap effect:
For small enough ε waves of certain frequencies do not propagate,
in any direction). The proof is based on a “two-scale spectral compactness”.

Limit band gaps ={λ : β(λ) < 0}. Interpretation : β(λ) =
µ(ω) < 0↔ negative magnetism/density (Bouchitte & Felbacq, 2004).

β(λ) > 0 - propagation with (high) dispersion (λ→ λj−),
due to “coupled resonances”’ (V.S. & P. Kuchment, 2007).
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‘Frequency’ vs “directional” gaps and ‘partial’ degeneracies

Cherednichenko, V.S., Zhikov (2006): spatial nonlocality for
homogenised limit with highly anisotropic fibers.

aε(x) =


∼ 1 in Q1(matrix)
∼ ε2 in Q0 “across” fibers
∼ 1 in Q0 “along” fibers

V.S. (2009): a “directional localization” (via formal asymptotic
expansions): for certain frequencies waves can propagate in some
directions (e.g. along the fibers above) but cannot in others (e.g.
orthogonal to the fibers).

Notice, in the above fibres, aε(x) = a(1)(x/ε) + ε2a(0)(x/ε),where

a(1) =

 0 0 0
0 0 0
0 0 1

 , i .e. is partially degenerate.
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Photonic crystal fibers: A partially degenerate problem
(Cooper, I. Kamotski, V.S. 2012); cf scalar prototype
problem I.Kamotski V.S. 2006; M. Cherdantsev 2009
(‘full’ contrast)
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Photonic crystal fibers: Problem Formulation

∇× E = iωµH,
∇× H = −iωεE
ε = ε0χ0(x/ε) + ε1χ1(x/ε)
ε0 > ε1, µ constant
E=exp(ikx3)E (x1, x2),
H=exp(ikx3)H(x1, x2)

In each phase E3 and H3 satisfy the following equations

∆E3 + aεE3 = 0, ∆H3 + aεH3 = 0

where aε = ω2µε(x/ε) - k2. E3 and H3 coupled across interface Γε:

ω
[ ε
aε
∇E3 · n

]
= −k

[
1

aε
∇H3 · n⊥

]
, k

[
1

aε
∇E3 · n⊥

]
= ω

[ µ
aε
∇H3 · n

]
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H=exp(ikx3)H(x1, x2)

In each phase E3 and H3 satisfy the following equations

∆E3 + aεE3 = 0, ∆H3 + aεH3 = 0

where aε = ω2µε(x/ε) - k2. E3 and H3 coupled across interface Γε:

ω
[ ε
aε
∇E3 · n

]
= −k

[
1

aε
∇H3 · n⊥

]
, k

[
1

aε
∇E3 · n⊥

]
= ω

[ µ
aε
∇H3 · n

]
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Photonic crystal fibers: A partially degenerate problem
Consider the problem in its weak form:

∂1

(ωε
aε

E3,1

)
+ ∂2

(ωε
aε

E3,2

)
+ ∂1

(
k

aε
H3,2

)
− ∂2

(
k

aε
H3,1

)
= −ωεE3

∂1

(
k

aε
E3,2

)
− ∂2

(
k

aε
E3,1

)
− ∂1

(ωµ
aε

H3,1

)
− ∂2

(ωµ
aε

H3,2

)
= ωµH3.

For u = (E3,H3), find u such that∫
R2

ω

aε
(
ε∇u1 · ∇φ1 + µ∇u2 · ∇φ2

)
+

k

aε
({
φ1, u2

}
+
{
u1, φ2

})
dx

=

∫
R2

ωρ(x/ε)u · φ ∀φ ∈ C∞0 (R2)

{u, v} := u,1v,2 − v,1u,2 (Poisson bracket); ρ(y) =

(
ε(y) 0

0 µ

)
Form positive if k2 < ω2µε1. Consider a ‘near critical’ k :
k2 = ω2µ(ε1 − ε2), ω2µ = λ
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Photonic crystal fibers: a partially degenerate problem

An ‘emergent’ high contrast:∫
R2

Aε(x)∇u · ∇φ dx = λ

∫
R2

ρ(x/ε)u · φdx ∀φ ∈ C∞0 (R2)

Here Aε(x) = A(x/ε) where A(y) = a(1)(y) + ε2a(0)(y) + O(ε4).

a(1) ≥ 0 BUT a(1)(y) + a(0)(y) > νI , ν > 0

a(1)(y)∇u · ∇u = χ1(y)
(
|u1,1 + u2,2|2 + |u1,2 − u2,1|2

)
(partially)

DEGENERATES for u s.t. RHS zero. i.e. satisfies Cauchy-Riemann type
equations in matrix phase.

Moral: This appears a particular case of homogenization for partially
degenerating PDE systems ↓
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General ‘Partial’ Degeneracies (I. Kamotski and V.S. 2012)
Consider a ‘resolvent’ problem:
Ω ∈ Rd , α > 0,
- div (aε(x)∇uε) + αρεuε = f ε ∈
L2(Ω),
uε ∈

(
H1

0 (Ω)
)n
, n ≥ 1.

A general degeneracy

aε(x) = a(1)
(
x
ε

)
+ ε2 a(0)

(
x
ε

)
,

a(l) ∈
(
L∞# (Q)

)n×d×n×d
, a(1) ≥ 0, a(1) + a(0) > 0,

Weak formulation:

∫
Ω

[
a(1)

(x
ε

)
∇u ·∇φ(x) + ε2 a(0)

(x
ε

)
∇u ·∇φ(x) + αρε(x) u ·φ(x)

]
dx

=

∫
Ω
f ε(x) · φ(x) dx , ∀φ ∈

(
H1

0 (Ω)
)d
.

A priori estimates:

‖uε‖2 ≤ C‖f ε‖2, ‖ε∇uε‖2 ≤ C‖f ε‖2,
∥∥∥(a(1)(x/ε)

)1/2∇uε
∥∥∥

2
≤ C‖f ε‖2.
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Weak two-scale limits. Key assumption on the degeneracy
Introduce

V :=

{
v ∈

(
H1

#(Q)
)n ∣∣∣∣ a(1)(y)∇yv = 0

}
.

(subspace of “microscopic oscillations”), and

W:=

{
ψ ∈

(
L2

#(Q)
)n×d ∣∣∣ divy

( (
a(1)(y)

)1/2
ψ(y)

)
= 0 in

(
H−1

# (Q)
)n}

(“microscopic fluxes”)

Then, up to a subsequence, uε
2
⇀ u0(x , y) ∈ L2(Ω;V )

ε∇uε 2
⇀ ∇yu0(x , y)

ξε(x) :=
(
a(1)(x/ε)

)1/2∇uε 2
⇀ ξ0(x , y) ∈ L2(Ω;W ).

Key assumption

There exists a constant C > 0 such that for all v ∈
(
H1

#(Q)
)n

‖PV⊥v ‖(H1
#(Q))

n ≤ C
∥∥a(1)(y)∇yv

∥∥
L2

Valery Smyshlyaev (University College London, UK)Homogenization of ‘micro-resonances’ and localization of waves.July 13, 2012 17 / 23



Weak two-scale limits. Key assumption on the degeneracy
Introduce

V :=

{
v ∈

(
H1

#(Q)
)n ∣∣∣∣ a(1)(y)∇yv = 0

}
.

(subspace of “microscopic oscillations”), and

W:=

{
ψ ∈

(
L2

#(Q)
)n×d ∣∣∣ divy

( (
a(1)(y)

)1/2
ψ(y)

)
= 0 in

(
H−1

# (Q)
)n}

(“microscopic fluxes”)

Then, up to a subsequence, uε
2
⇀ u0(x , y) ∈ L2(Ω;V )

ε∇uε 2
⇀ ∇yu0(x , y)

ξε(x) :=
(
a(1)(x/ε)

)1/2∇uε 2
⇀ ξ0(x , y) ∈ L2(Ω;W ).

Key assumption

There exists a constant C > 0 such that for all v ∈
(
H1

#(Q)
)n

‖PV⊥v ‖(H1
#(Q))

n ≤ C
∥∥a(1)(y)∇yv

∥∥
L2

Valery Smyshlyaev (University College London, UK)Homogenization of ‘micro-resonances’ and localization of waves.July 13, 2012 17 / 23



The two-scale Limit Operator
Let Ω be bounded Lipschitz, or Ω = Rd . Introduce U ⊂ L2(Ω;V ):

U :=

{
u(x , y) ∈ L2 (Ω;V )

∣∣∣∣∣∃ ξ(x , y) ∈ L2(Ω;W ) s.t., ∀Ψ(x , y) ∈ C∞(Ω; W ),∫
Ω

∫
Q
ξ(x , y) ·Ψ(x , y)dxdy = −

∫
Ω

∫
Q
u(x , y) · ∇x ·

((
a(1)(y)

)1/2
Ψ(x , y)

)
dxdy .

}
. (1)

Define T : U → L2 by Tu = ξ.

Strong two-scale resolvent convergence: Let f ε 2→ f0(x , y).
Then uε 2→ u0(x , y) solving:

Find u0 ∈ U such that ∀φ ∈ U∫
Ω

∫
Q

{
Tu0(x , y) · Tφ0(x , y) + a(0)(y)∇yu0(x , y) · ∇yφ0(x , y) +

+ αρ(y)u0(x , y) · φ0(x , y)

}
dy dx =

∫
Ω

∫
Q

f0(x , y) · φ0(x , y) dy dx .
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Back to Photonic Crystals

Vθ :=

{
v ∈

(
H1
θ (Q)

)n ∣∣∣∣ a(1)(y)∇yv = 0

}
.

v ∈ Vθ iff v is θ-quasi-periodic, and
v1,1 + v2,2 = 0, v1,2 − v2,1 = 0 in Q1.

Theorem 1 (Key assumption holds)

There exists a constant c > 0 such that for any u ∈ H1
θ (Q)

‖PV⊥
θ
u‖H1(Q) ≤ c

(
‖u1,1 + u2,2‖L2(Q0) + ‖u1,2 − u2,1‖L2(Q0)

)
.

Second Result

The generalised flux ξ =: Tu is zero. i.e. Tu = 0 ∀u ∈ U. (Two-scale limit
solution u0 determined by miscroscopic behaviour only)
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Limit Spectral problem:

Find u ∈ Vθ such that∫
Q
a(0)(y)∇yu(y) · ∇y (φ(y)) dy = λ

∫
Q
ρ(y)u(y) · φ(y) dy ∀φ ∈ Vθ.

Theorem 2 (Spectral compactness: not trivial)

Let λε ∈ σ(Aε) (Bloch spectrum). Let uε be associated normalized
Bloch’s waves: Aεuε = λεuε,
uε(x) = e iθ

ε·x/εv ε(x/ε), ‖v ε(y)‖L2(Q) = 1, θε ∈ (−π, π]d .
Let λ→ λ0 and θε → θ0. Then λ0 ∈ σ0(A0, θ0) (spectrum of the Limit
operator), and uε → u0(y), eigenfunction of A0(θ). Hence the spectra
converge.

Implication: If the limit problem displays a band-gap, the original problem
must also have a gap for small enough ε.

Valery Smyshlyaev (University College London, UK)Homogenization of ‘micro-resonances’ and localization of waves.July 13, 2012 20 / 23



Limit Spectral problem:

Find u ∈ Vθ such that∫
Q
a(0)(y)∇yu(y) · ∇y (φ(y)) dy = λ

∫
Q
ρ(y)u(y) · φ(y) dy ∀φ ∈ Vθ.

Theorem 2 (Spectral compactness: not trivial)

Let λε ∈ σ(Aε) (Bloch spectrum). Let uε be associated normalized
Bloch’s waves: Aεuε = λεuε,
uε(x) = e iθ

ε·x/εv ε(x/ε), ‖v ε(y)‖L2(Q) = 1, θε ∈ (−π, π]d .
Let λ→ λ0 and θε → θ0. Then λ0 ∈ σ0(A0, θ0) (spectrum of the Limit
operator), and uε → u0(y), eigenfunction of A0(θ). Hence the spectra
converge.

Implication: If the limit problem displays a band-gap, the original problem
must also have a gap for small enough ε.

Valery Smyshlyaev (University College London, UK)Homogenization of ‘micro-resonances’ and localization of waves.July 13, 2012 20 / 23



Example: Band gaps in ‘ARROW’ fibres

An extreme problem: Q0 a circle of small radius δ

Theorem:
There exist constants c1, c2 > 0 independent
of δ, such that, for all quasimomenta θ0,

λ2(θ0) ≤ − c1

δ2 ln δ
, λ3(θ0) ≥ c2δ

−2.

This implies that, for small enough δ, there
is a wide spectral gap in the limit spectrum,
and therefore also for small enough ε for the
original problem by the spectral
compactness.

+ Higher gaps: λ ∼ λDj (Qδ
0) ∼ δ−2 (re ‘micro-resonances’)
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The band gaps in a Photonic Crystal Fiber:
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Summary:
- Homogenization for a critical high contrast scaling δ ∼ ε2 gives rise to
numerous “non-classical” effects described by two-scale limit problems due
to “micro-resonances”.

- ‘Partial’ degeneracies often happen in physical problems, and give rise
to more of such effects (e.g. Band Gaps in Photonic Crystal Fibers).
These however have to be analysed in a new way.

- A general two-scale homogenization theory can be constructed for
such partial degeneracies, under a generically held decomposition
condition. Resulting limit (homogenized) operator is generically two-scale
(and ‘non-local’).

- Associated two-scale operator and spectral convergence and compactness
are held generally or for particular physical examples.

- In principle, some of this applies also to nonlinear (cf Cherednichenko &
Cherdantsev 2011), discrete-to-continuous, as well as non-periodic
problems.
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