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Introduction

Side branch resonators are commonly used for engine exhaust noise
control : (i) low-frequency applications with a single plane wave
mode (automotive) (ii) medium-frequency applications and highly
multimodal context (aeronautics).

Pinc

Pref Ptr

Figure: Side branch resonator (cavity Ω) with two openings Γ.

Numerical predictions : (i) 1D approximations (with length
corrections) ; (ii) FEM, BEM -> computationally demanding (this
includes mesh preparation etc...) especially in a highly multimodal
context, lack of physical interpretation.
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Impedance matrix

In the frequency domain, the acoustic pressure must obey the
Helmholtz equation

∆p + k2p = 0, k = ω/c ,

and q = ∂np = 0 everywhere except on Γ. The Green’s function for
the rigid-wall cavity is given by the infinite series

GΩ(r, r
′) =

∞
∑

n=0

φn(r)φn(r
′)

λn − λ

where λ = ω2. Eigenfunctions φn are properly normalized so that
application of the Green’s theorem in the cavity yields

p(r) =

∫

Γ
GΩ(r, r

′) q(r′)dΓ(r′)
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Impedance matrix

We need to precompute a finite set of eigenfunctions and estimate
the truncation error...
Consider the eigenvector Φn, the FE discretization of nth
eigenmode φn :

A(λn)Φn = 0 where A(λ) = K − λM

After reduction to the interfacial nodes, we obtain the impedance
matrix

Z(λ) = ITΓ A−1(λ) IΓ

with

A−1(λ) =
∞
∑

n=0

ΦnΦ
T
n

λn − λ
= ΦD(λ)ΦT

Finally,

p̃ = Z(λ) F̃ q = GΩ q
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Truncation

Keeping the first N eigenmodes gives

Z(λ) = (Φ̃D(λ) Φ̃T)|N + R(λ).

The correction term R remains weakly dependent on the frequency,
so we can take the first order Taylor expansion

R(λ) ≈ R(λ) + (λ− λ)
∂R

∂λ
+ . . .

The residual matrices are computed via

R = ITΓ A−1 IΓ − (Φ̃D(λ) Φ̃T)|N
∂λR = ITΓ A−1MA−1IΓ − (Φ̃ ∂λD Φ̃T)|N
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Scattering matrix

The theory starts by introducing the hard-walled duct Green’s
function

G (r, r′) =
∞
∑

l=0

ψl(x , y)ψ
∗
l (x

′, y ′)

2iβl
e
iβl |z−z ′|

The transverse eigenmodes ψl are solution of the boundary value
problem

(∂2xx + ∂2yy)ψl + k2ψl = β2l ψl

with ∂nψl = 0 on the boundary line ∂S . These modes are
normalized as

∫

S
|ψl |2 dS = 1

in particular ψ0 = 1/
√
Ad where Ad is the cross section area of the

main duct. For circular ducts :

ψl = Nm,nJm(αm,nr)e
imθ, βl =

√

k2 − α2
m,n
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Scattering matrix

The finite element discretization of the integral equation

p(r) =

∫

Γ
G (r, r′) q(r′)dΓ(r′) + pI (r)

gives (ri is the FE node location)

p̃i =
Ñ
∑

j=1

Gijqj + pIi with Gij =

∫

Γ
G (ri , r

′) φ̃j (r
′)dΓ(r′)

The acoustic velocity is deduced from

q = (GΩ − G)−1 pI

Note :
i. The computation is not trivial as ∂z′G is discontinuous at z′ = zi .

ii. The matrix GΩ − G is of small size.
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Simplified models : one opening

Starting with one opening only, the impedance matrix relation can
be averaged to give

p̄ = Z̄ (λ)q̄ where Z̄(λ) =
1

Ñ

Ñ
∑

i=1

Ñ
∑

j=1

(Z(λ) F̃)ij

By the same token,

p̄ =
1

W
q̄ + p̄I , where W =

2ikAd

A

and A denotes the area of the interface. An incident plane wave
pI = e

ikz produces a transmitted pressure field

p = T e
ikz with T = 1 +

1

WZ̄(λ) − 1
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Helmholtz resonators

Figure: Classical (left) ; with extended neck (right).
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Helmholtz resonator, classical
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Helmholtz resonator, with extended neck
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Simplified models : two openings

We consider a symmetric resonator connected to the main duct via
two openings located at z = z1 and z = z2.

(

p̄1
p̄2

)

=

(

Z̄11 Z̄12

Z̄12 Z̄11

)(

q̄1
q̄2

)

Moreover,
(

p̄1
p̄2

)

=
1

W

(

1 e
ikL

e
ikL 1

)(

q̄1
q̄2

)

+

(

p̄I1
p̄I2

)

where L = |z2 − z1|. This gives

T = 1 +
2WZ̄11 − 2WZ̄12 cos(kL) + (e2ikL − 1)

(WZ̄11 − 1)2 − (WZ̄12 − eikL)2

Thus, no acoustic energy is transmitted if

Z̄ 2
12 − Z̄ 2

11 − A sin(kL)

kAd
Z̄12 = 0
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Herschel-Quincke resonator
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Herschel-Quincke resonator
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Fan noise

Perforate sheet

The fan noise is one of the dominant components at take-off
and landing for aircraft with modern high bypass ratio
turbofan engines : broadband noise + Blade Passing
Frequency (BPF) tones
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Fan noise

Actual configuration...
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Validation on a small size configuration
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Optimal configuration (36 HQ tubes)
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What does the liner do ?
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Surface wave modes at 1530 Hz :



21/22

Influence of the number of tubes on the first BPF

(iso-surface)

Number of tubes

Modes

M
o
d
al

p
ow

er
(d
B
)

72
67
55
45
40
37
36
30
0 (Liner)
0 (Incident)

(7,1)
(4,2)

(8,1)
(2,3)

(-5,2)
(-9,1)

(-3,3)

30

50

70

90



22/22

Conclusions and prospects

The proposed Green’s function based method allows to reduce the
computational effort as only the acoustic velocity at the interface
needs to be calculated.
A very high number of propagative modes (few hundreds) can be
handled easily on a single PC.
Gives access to physical interpretation in the low-frequency regime.

In prospect : - could be used for designing taylor-made resonators
using optimization procedures. - viscosity effects should be included


