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High frequency scattering

∆u + k2u = 0, in exterior domain.

Difficult when k is large!
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Difficulties at high frequencies

Solutions oscillate in space with wavelength λ = 2π/k .

Conventional (piecewise polynomial) boundary elements lead
to full matrices of dimension at least N = O(kd−1), as
k →∞.

Domain finite elements lead to sparse matrices but require
even larger N.
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Improved schemes for high frequencies

Main idea is to incorporate knowledge of the high frequency
asymptotic behaviour into the approximation space.

High frequency asymptotics have a long history, e.g. Keller et
al., Fock, Buslaev, Babich, Ludwig, Grimshaw, Ursell, etc.
(1960s); Melrose and Taylor (1980s).

First combined with numerical scheme by Uncles (1976), in
the acoustics literature.

Similar ideas utilised by: Chandler-Wilde (1988), James
(1990), Wang (1991) and Aberegg and Peterson (1995).

First numerical analysis by Abboud, Nédélec and Zhou (1994),
demonstrating O(k2/3) degrees of freedom for smooth convex
3D scatterers.

Since Bruno, Sei and Caponi (2000), many (close to) O(1)
schemes developed, for simple geometries; main challenges are
proving O(1) cost, and extending to more complicated
scatterers.
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Hybrid methods

Idea: Can we reduce required number of degrees of freedom by
including appropriate oscillatory functions in the approximation
space?

Try representing

u(x) ≈
M∑

m=1

Vm(x)eikφm(x)

for some prescribed “phase functions” φm(x), and approximate the
amplitudes Vm(x) by piecewise polynomials

Expectation: If φm(x) are chosen appropriately, Vm(x) will be
slowly oscillating, and less expensive to approximate than u

Question: How to choose φm?
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General strategy - use asymptotics

Use high frequency asymptotics (GO, GTD) to inform choice of
phase functions φm(x)

BEM for rough surface scattering, Bruno et al. (2000, 2002).
FEM e.g. Giladi and Keller (2001).
BEM for half-plane with impedance boundary conditions,
Chandler-Wilde et al. (2004), Langdon and Chandler-Wilde
(2006).
BEM for smooth obstacles e.g. Bruno et al. (2004),
Dominguez et al. (2007), Huybrechs and Vandewalle (2007),
Ganesh and Hawkins (2011).
BEM for non-smooth obstacles e.g. Chandler-Wilde and
Langdon (2007), Langdon et al. (2010), Chandler-Wilde et al.
(2012), Hewett et al. (2012), Chandler-Wilde et al. (2012).

Advantage of BEM

Only need asymptotic behaviour on the boundary.
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Sound soft scattering - BIE formulation
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To make use of high frequency asymptotics, we require a direct
boundary integral equation formulation.
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To make use of high frequency asymptotics, we require a direct
boundary integral equation formulation.
Using Green’s representation theorem we reformulate the
Helmholtz scattering problem as a BIE:

Av = f , where v :=
∂u

∂n
, A : V 7→ V ′,

and V is some Hilbert space.
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Galerkin method

To solve Av = f numerically:

choose a finite-dimensional approximation space VN ⊂ V ;

select an approximation to v from VN using the Galerkin
method: find vN ∈ VN such that

〈AvN ,wN〉 = 〈f ,wN〉 , ∀wN ∈ VN .
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Algorithmic and mathematical challenges

This leads to two significant questions:

Q1

Can we design k-dependent approximation spaces VN , of
dimension N, which keep

inf
wN∈VN

‖v − wN‖ ≤ εTOL,

with N growing slowly or not at all as k →∞?
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Algorithmic and mathematical challenges

This leads to two significant questions:

Q2

Does the Galerkin method achieve anything close to the best
approximation? Can we show quasi-optimality, that

‖v − vN‖ ≤ C inf
wN∈VN

‖v − wN‖,

and understand how C depends on k?
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High frequency asymptotics - convex polygons

According to GTD, for a convex polygon, the leading-order
asymptotic behaviour on a “lit” side is

∂u

∂n
∼ 2

∂ui

∂n
+ Aeiks + Be−iks , k →∞

where s is arc length along the side.
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High frequency asymptotics - convex polygons

On an “unlit” side it is just

∂u

∂n
∼ Aeiks + Be−iks , k →∞.
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Regularity results - convex polygons

Theorem (Hewett, Langdon and Melenk (2012))

Let Ω be a convex polygon. Then on any side Γj

∂u

∂n
(x) = Ψ(x) + eiksv+

j (s) + e−iksv−j (Lj − s), x ∈ Γj ,

where

Ψ := 2∂ui

∂n if Γj is lit and Ψ := 0 otherwise;

The functions v±j (s) are analytic in Re[s] > 0, with:

|v+
j (s)| ≤ C

{
k3/2 log1/2(2 + k)|ks|π/Ωj−1, 0 < |s| ≤ 1/k ,

k3/2 log1/2(2 + k)|ks|−1/2, |s| > 1/k ,

where Ωj is the exterior angle at the vertex Pj .
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hp approximation space VN

Approximate v±j by piecewise polynomials on overlapping
geometric meshes, graded towards the corner singularities

Here σ is a grading parameter - typically σ ≈ 0.15.

For simplicity, we assume the same number of layers n on each
mesh, and the same degree p of polynomial approximation on each
element.
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Best approximation error - convex polygons

Theorem (Hewett, Langdon and Melenk (2012))

If c , k0 > 0 and n ≥ cp, k ≥ k0, then, for some C , τ > 0,

inf
wN∈VN

∥∥∥∥∂u

∂n
− wN

∥∥∥∥
L2(Γ)

≤ Ck1/2+α log1/2(2 + k)e−pτ ,

where α = 1−min(1− π/Ωm) ∈ (1/2, 1).

Total number of degrees of freedom N = O (n(p + 1))

We can achieve any required accuracy with N growing like log2 k
as k →∞, rather than like k , as for a standard BEM.
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Accuracy of the Galerkin method - convex polygons

Using the “star-combined formulation” (Spence, Chandler-Wilde,
Graham and Smyshlyaev (2011)), i.e.

A := (x · n)

(
1

2
I +D′

)
+ x · ∇ΓS − i(k |x |+ i/2)S,

we can show that the Galerkin solution vN satisfies, for all k ≥ k0,∥∥∥∥∂u

∂n
− vN

∥∥∥∥
L2(Γ)

≤ Ck1+α log1/2(2 + k)e−pτ .

So N increasing like log2 k maintains accuracy!

First formulation and algorithm that provably achieves any
required accuracy, uniformly in the wavenumber k , with
sub-algebraic growth in N (N ∼ log2 k).
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Numerical results - equilateral triangle
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Numerical results, fixed N = 300, triangle

k N
L/λ (1/k)‖∂u/∂n − v300‖L2(Γ) COND cpt(s)

5 20.00 1.96×10−1 3.50×102 621
10 10.00 1.48×10−1 2.77×101 612
20 5.00 1.12×10−1 3.51×101 600
40 2.50 8.50×10−2 4.60×101 691
80 1.25 6.44×10−2 6.12×101 665

160 0.63 4.88×10−2 8.27×101 648
320 0.31 3.70×10−2 1.12×102 746
640 0.16 2.80×10−2 1.53×102 746

1280 0.08 2.16×10−2 2.08×102 764
2560 0.04 1.65×10−2 2.83×102 826
5120 0.02 1.26×10−2 3.85×102 823
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Non-convex polygons

The leading-order asymptotic behaviour on Γ is more complicated:

Partial illumination Re-reflections
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Restrict attention to a particular class of nonconvex polygons

Assume that:

1 Each exterior angle is either a right angle or greater than π.
2 At each right angle, the obstacle lies within the dashed lines:

Ω

Examples:

NC
NC

C

C

C

NC

NC
C

C

NC

NC
C

On a “convex” (C) side, ∂u/∂n behaves as in convex case

Question: What happens on a “nonconvex” (NC) side?
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Geometry near a typical nonconvex side Γj

Pj−1

x

r

s

Γj−1

Ω

PjPj+1

Γj

α

ui

Expect diffraction from Pj−1 and Pj+1, and reflection from Γj−1
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Regularity results on a nonconvex side

x
r

s
Ω

α

ui

For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr
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Regularity results on a nonconvex side

x
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Ω

α
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For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Leading order behaviour

Ψ(x) :=

{
2∂ud

∂n (x), π
2 ≤ α ≤

3π
2 ,

0, otherwise,

where ud is the known solution of a canonical diffraction problem.
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Regularity results on a nonconvex side

x
r

s
Ω

α

ui

For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Theorem

The functions v±j have the same properties as those for the convex
sides, in particular are analytic in the right hand complex plane.
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Regularity results on a nonconvex side

x
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Ω

α
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For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Theorem

The function ṽj is analytic in a complex k-independent
neighbourhood Dε of the side Γj with

|ṽj(s)| ≤ Ck log1/2(2 + k), s ∈ Dε, k ≥ k1.
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Regularity results on a nonconvex side

x
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For x ∈ Γj the following representation holds

∂u

∂n
(x) = Ψ(x) + v+

j (Lj + s)e iks + v−j (Lj − s)e−iks + ṽj(s)e ikr

Approximation space:

Replace v−j by a piecewise polynomial supported on a
geometric mesh.

Replace v+
j and ṽj by polynomials supported on the whole

side.
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Overlapping meshes

Approximate by piecewise polynomials on overlapping geometric
meshes, graded towards the corner singularities
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Best approximation error - nonconvex polygons

Theorem (Chandler-Wilde, Hewett, Langdon and Twigger (2012))

If c , k0 > 0 and n ≥ cp, k ≥ k0, then, for some C , τ > 0,

inf
wN∈VN

∥∥∥∥∂u

∂n
− wN

∥∥∥∥
L2(Γ)

≤ Ck1/2+α log1/2(2 + k)e−pτ ,

where α = 1−min(1− π/Ωm) ∈ (1/2, 1).

Total number of degrees of freedom N = O (n(p + 1)).

Again, we can achieve any required accuracy with N growing like
log2 k as k →∞, rather than like k , as for a standard BEM.
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Boundary/domain/FFP estimates - nonconvex polygons

For star-like polygons, using VN in a Galerkin method with the
star-combined formulation we have, for all k ≥ k0,

∥∥∥∥∂u

∂n
− vN

∥∥∥∥
L2(Γ)

≤ Ck1+α log1/2(2 + k)e−pτ ,

‖u − uN‖L∞(D)

‖u‖L∞(D)

≤ Ck log(2 + k)e−pτ ,

‖F − FN‖L∞(S1) ≤ Ck1+α log1/2(2 + k)e−pτ .

So N ∼ p2 growing like log2 k provably maintains accuracy!
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Numerical results - nonconvex polygon

Partial illumination Re-reflections
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Total field on circle in domain - partial illumination
example

k = 10 k = 160
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Total field on circle in domain - re-reflections example

k = 10 k = 160
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Relative max. error on circle in domain

Partial illumination Re-reflections
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FFP - partial illumination example

k = 10 k = 160
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FFP - re-reflections example

k = 10 k = 160
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Maximum absolute error in FFP

Partial illumination Re-reflections
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For a more detailed review

Chandler-Wilde, Graham, Langdon and Spence,
Numerical-Asymptotic Boundary Integral Methods in
High-Frequency Acoustic Scattering, Acta Numerica 21 (2012),
pp. 89–305.
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