High frequency scattering by nonconvex polygons

Steve Langdon

University of Reading

Mathmondes 2012 Reading July 10th 2012 Joint work with:

- Simon Chandler-Wilde (Reading)
- Dave Hewett (Reading)
- Ashley Twigger (Reading)

Other collaborators

- Timo Betcke, Valery Smyshlyaev (UCL)
- Markus Melenk (Vienna)
- Marko Lindner (Hamburg)
- Ivan Graham, Euan Spence, Tatiana Kim (Bath)

This work is supported by EPSRC grant EP/F067798/1.

High frequency scattering

High frequency scattering

 $\Delta u + k^2 u = 0$, in exterior domain.

High frequency scattering

 $\Delta u + k^2 u = 0$, in exterior domain.

Difficult when k is large!

- Solutions oscillate in space with wavelength $\lambda = 2\pi/k$.
- Conventional (piecewise polynomial) boundary elements lead to full matrices of dimension at least $N = \mathcal{O}(k^{d-1})$, as $k \to \infty$.
- Domain finite elements lead to sparse matrices but require even larger *N*.

Improved schemes for high frequencies

- Main idea is to incorporate knowledge of the high frequency asymptotic behaviour into the approximation space.
- High frequency asymptotics have a long history, e.g. Keller et al., Fock, Buslaev, Babich, Ludwig, Grimshaw, Ursell, etc. (1960s); Melrose and Taylor (1980s).
- First combined with numerical scheme by Uncles (1976), in the acoustics literature.
- Similar ideas utilised by: Chandler-Wilde (1988), James (1990), Wang (1991) and Aberegg and Peterson (1995).
- First numerical analysis by Abboud, Nédélec and Zhou (1994), demonstrating O(k^{2/3}) degrees of freedom for smooth convex 3D scatterers.
- Since Bruno, Sei and Caponi (2000), many (close to) O(1) schemes developed, for simple geometries; main challenges are proving O(1) cost, and extending to more complicated scatterers.

Idea: Can we reduce required number of degrees of freedom by including appropriate oscillatory functions in the approximation space?

Idea: Can we reduce required number of degrees of freedom by including appropriate oscillatory functions in the approximation space?

Try representing

$$u(x) \approx \sum_{m=1}^{M} V_m(x) \mathrm{e}^{ik\phi_m(x)}$$

for some prescribed "phase functions" $\phi_m(x)$, and approximate the amplitudes $V_m(x)$ by piecewise polynomials

Idea: Can we reduce required number of degrees of freedom by including appropriate oscillatory functions in the approximation space?

Try representing

$$u(x) \approx \sum_{m=1}^{M} V_m(x) \mathrm{e}^{ik\phi_m(x)}$$

for some prescribed "phase functions" $\phi_m(x)$, and approximate the amplitudes $V_m(x)$ by piecewise polynomials

Expectation: If $\phi_m(x)$ are chosen appropriately, $V_m(x)$ will be slowly oscillating, and less expensive to approximate than u

Idea: Can we reduce required number of degrees of freedom by including appropriate oscillatory functions in the approximation space?

Try representing

$$u(x) \approx \sum_{m=1}^{M} V_m(x) \mathrm{e}^{ik\phi_m(x)}$$

for some prescribed "phase functions" $\phi_m(x)$, and approximate the amplitudes $V_m(x)$ by piecewise polynomials

Expectation: If $\phi_m(x)$ are chosen appropriately, $V_m(x)$ will be slowly oscillating, and less expensive to approximate than u

Question: How to choose ϕ_m ?

General strategy - use asymptotics

Use high frequency asymptotics (GO, GTD) to inform choice of phase functions $\phi_m(x)$

- BEM for rough surface scattering, Bruno et al. (2000, 2002).
- FEM e.g. Giladi and Keller (2001).
- BEM for half-plane with impedance boundary conditions, Chandler-Wilde et al. (2004), Langdon and Chandler-Wilde (2006).
- BEM for smooth obstacles e.g. Bruno et al. (2004), Dominguez et al. (2007), Huybrechs and Vandewalle (2007), Ganesh and Hawkins (2011).
- BEM for non-smooth obstacles e.g. Chandler-Wilde and Langdon (2007), Langdon et al. (2010), Chandler-Wilde et al. (2012), Hewett et al. (2012), Chandler-Wilde et al. (2012).

General strategy - use asymptotics

Use high frequency asymptotics (GO, GTD) to inform choice of phase functions $\phi_m(x)$

- BEM for rough surface scattering, Bruno et al. (2000, 2002).
- FEM e.g. Giladi and Keller (2001).
- BEM for half-plane with impedance boundary conditions, Chandler-Wilde et al. (2004), Langdon and Chandler-Wilde (2006).
- BEM for smooth obstacles e.g. Bruno et al. (2004), Dominguez et al. (2007), Huybrechs and Vandewalle (2007), Ganesh and Hawkins (2011).
- BEM for non-smooth obstacles e.g. Chandler-Wilde and Langdon (2007), Langdon et al. (2010), Chandler-Wilde et al. (2012), Hewett et al. (2012), Chandler-Wilde et al. (2012).

Advantage of BEM

Only need asymptotic behaviour on the **boundary**.

Sound soft scattering - BIE formulation

Sound soft scattering - BIE formulation

To make use of high frequency asymptotics, we require a **direct** boundary integral equation formulation.

Sound soft scattering - BIE formulation

To make use of high frequency asymptotics, we require a **direct** boundary integral equation formulation.

Using Green's representation theorem we reformulate the Helmholtz scattering problem as a BIE:

$$Av = f$$
, where $v := \frac{\partial u}{\partial n}$, $A : V \mapsto V'$,

and V is some Hilbert space.

To solve Av = f numerically:

- choose a finite-dimensional approximation space $V_N \subset V$;
- select an approximation to v from V_N using the Galerkin method: find $v_N \in V_N$ such that

$$\langle Av_N, w_N \rangle = \langle f, w_N \rangle, \quad \forall w_N \in V_N.$$

This leads to two significant questions:

Q1

Can we design k-dependent approximation spaces V_N , of dimension N, which keep

$$\inf_{w_N\in V_N}\|v-w_N\|\leq \epsilon_{TOL},$$

with N growing slowly or not at all as $k \to \infty$?

This leads to two significant questions:

Q2

Does the Galerkin method achieve anything close to the best approximation? Can we show **quasi-optimality**, that

$$\|v-v_N\|\leq C\inf_{w_N\in V_N}\|v-w_N\|,$$

and understand how C depends on k?

High frequency asymptotics - convex polygons

According to GTD, for a **convex** polygon, the leading-order asymptotic behaviour on a "lit" side is

$$rac{\partial u}{\partial n} \sim 2 rac{\partial u^i}{\partial n} + A \mathrm{e}^{iks} + B \mathrm{e}^{-iks}, \qquad k o \infty$$

where s is arc length along the side.

High frequency asymptotics - convex polygons

On an "unlit" side it is just

$$\frac{\partial u}{\partial n} \sim A \mathrm{e}^{iks} + B \mathrm{e}^{-iks}, \qquad k \to \infty.$$

Let Ω be a convex polygon. Then on any side Γ_j

$$rac{\partial u}{\partial n}(x) = \Psi(x) + \mathrm{e}^{iks}v_j^+(s) + \mathrm{e}^{-iks}v_j^-(L_j - s), \qquad x \in \Gamma_j,$$

where

- $\Psi := 2 \frac{\partial u^i}{\partial n}$ if Γ_j is lit and $\Psi := 0$ otherwise;
- The functions $v_i^{\pm}(s)$ are analytic in $\operatorname{Re}[s] > 0$, with:

$$|v_j^+(s)| \leq C egin{cases} k^{3/2} \log^{1/2}(2+k) |ks|^{\pi/\Omega_j-1}, & 0 < |s| \leq 1/k, \ k^{3/2} \log^{1/2}(2+k) |ks|^{-1/2}, & |s| > 1/k, \end{cases}$$

where Ω_j is the exterior angle at the vertex P_j .

hp approximation space V_N

Approximate v_j^{\pm} by piecewise polynomials on overlapping geometric meshes, graded towards the corner singularities

For
$$v_j^+(s)$$
:
 $0 \bigvee_{\sigma^{n-1}L_j}^{\sigma^2 L_j} \sigma^2 L_j \qquad L_j$

For
$$v_j^-(L_j - s)$$
:

$$\begin{matrix} & & & \\ 0 & & (1 - \sigma)L_j & (1 - \sigma^2)L_j \neq L_j \\ & & (1 - \sigma^{n-1})L_j \end{matrix}$$

Here σ is a grading parameter - typically $\sigma \approx 0.15$.

For simplicity, we assume the same number of layers n on each mesh, and the same degree p of polynomial approximation on each element.

If $c, k_0 > 0$ and $n \ge cp$, $k \ge k_0$, then, for some $C, \tau > 0$,

$$\inf_{w_N \in V_N} \left\| \frac{\partial u}{\partial n} - w_N \right\|_{L^2(\Gamma)} \le Ck^{1/2+\alpha} \log^{1/2} (2+k) e^{-p\tau},$$

where $\alpha = 1 - \min(1 - \pi/\Omega_m) \in (1/2, 1).$

If $c, k_0 > 0$ and $n \ge cp$, $k \ge k_0$, then, for some $C, \tau > 0$,

$$\inf_{w_N\in V_N} \left\|\frac{\partial u}{\partial n} - w_N\right\|_{L^2(\Gamma)} \leq Ck^{1/2+\alpha}\log^{1/2}(2+k)e^{-p\tau},$$

where $\alpha = 1 - \min(1 - \pi/\Omega_m) \in (1/2, 1)$.

Total number of degrees of freedom N = O(n(p+1))

If $c, k_0 > 0$ and $n \ge cp$, $k \ge k_0$, then, for some $C, \tau > 0$,

$$\inf_{w_N \in V_N} \left\| \frac{\partial u}{\partial n} - w_N \right\|_{L^2(\Gamma)} \le C k^{1/2+\alpha} \log^{1/2} (2+k) \mathrm{e}^{-p\tau},$$

where $\alpha = 1 - \min(1 - \pi/\Omega_m) \in (1/2, 1)$.

Total number of degrees of freedom N = O(n(p+1))

We can achieve any required accuracy with N growing like $\log^2 k$ as $k \to \infty$, rather than like k, as for a standard BEM.

Accuracy of the Galerkin method - convex polygons

Using the "star-combined formulation" (Spence, Chandler-Wilde, Graham and Smyshlyaev (2011)), i.e.

$$A := (x \cdot n) \left(\frac{1}{2}\mathcal{I} + \mathcal{D}'\right) + x \cdot \nabla_{\Gamma} S - \mathrm{i}(k|x| + \mathrm{i}/2)S,$$

we can show that the Galerkin solution v_N satisfies, for all $k \ge k_0$,

$$\left\|\frac{\partial u}{\partial n}-v_N\right\|_{L^2(\Gamma)}\leq Ck^{1+\alpha}\log^{1/2}(2+k)\mathrm{e}^{-p\tau}.$$

So N increasing like $\log^2 k$ maintains accuracy!

Accuracy of the Galerkin method - convex polygons

Using the "star-combined formulation" (Spence, Chandler-Wilde, Graham and Smyshlyaev (2011)), i.e.

$$A := (x \cdot n) \left(\frac{1}{2}\mathcal{I} + \mathcal{D}'\right) + x \cdot \nabla_{\Gamma} S - \mathrm{i}(k|x| + \mathrm{i}/2)S,$$

we can show that the Galerkin solution v_N satisfies, for all $k \ge k_0$,

$$\left\|\frac{\partial u}{\partial n}-v_N\right\|_{L^2(\Gamma)}\leq Ck^{1+\alpha}\log^{1/2}(2+k)\mathrm{e}^{-p\tau}.$$

So N increasing like $\log^2 k$ maintains accuracy!

First formulation and algorithm that provably achieves any required accuracy, uniformly in the wavenumber k, with sub-algebraic growth in N ($N \sim \log^2 k$).

Numerical results - equilateral triangle

k	$\frac{N}{L/\lambda}$	$(1/k) \ \partial u/\partial n - v_{300}\ _{L^2(\Gamma)}$	COND	cpt(s)
5	20.00	$1.96 imes 10^{-1}$	3.50×10^{2}	621
10	10.00	1.48×10^{-1}	2.77×10^{1}	612
20	5.00	1.12×10^{-1}	3.51×10^{1}	600
40	2.50	8.50×10^{-2}	4.60×10^{1}	691
80	1.25	6.44×10^{-2}	6.12×10^{1}	665
160	0.63	4.88×10^{-2}	8.27×10^{1}	648
320	0.31	3.70×10^{-2}	1.12×10^{2}	746
640	0.16	2.80×10^{-2}	1.53×10^{2}	746
1280	0.08	2.16×10^{-2}	2.08×10^{2}	764
2560	0.04	1.65×10^{-2}	2.83×10^{2}	826
5120	0.02	1.26×10^{-2}	3.85×10^{2}	823

Non-convex polygons

The leading-order asymptotic behaviour on Γ is more complicated:

Partial illumination

Re-reflections

Restrict attention to a particular class of nonconvex polygons

Assume that:

- **(**) Each exterior angle is either a right angle or greater than π .
- 2 At each right angle, the obstacle lies within the dashed lines:

On a "convex" (C) side, $\partial u/\partial n$ behaves as in convex case

Restrict attention to a particular class of nonconvex polygons

Assume that:

- **(**) Each exterior angle is either a right angle or greater than π .
- 2 At each right angle, the obstacle lies within the dashed lines:

On a "convex" (C) side, $\partial u/\partial n$ behaves as in convex case Question: What happens on a "nonconvex" (NC) side?

Geometry near a typical nonconvex side Γ_i

Expect diffraction from P_{j-1} and P_{j+1} , and reflection from Γ_{j-1}

For $x \in \Gamma_j$ the following representation holds $\frac{\partial u}{\partial n}(x) = \Psi(x) + v_j^+(L_j + s)e^{iks} + v_j^-(L_j - s)e^{-iks} + \tilde{v}_j(s)e^{ikr}$

For $x \in \Gamma_j$ the following representation holds

$$\frac{\partial u}{\partial n}(x) = \Psi(x) + v_j^+ (L_j + s)e^{iks} + v_j^- (L_j - s)e^{-iks} + \tilde{v}_j(s)e^{ikr}$$

Leading order behaviour

$$\Psi(x) := \begin{cases} 2\frac{\partial u^d}{\partial n}(x), & \frac{\pi}{2} \le \alpha \le \frac{3\pi}{2}, \\ 0, & \text{otherwise}, \end{cases}$$

where u^d is the known solution of a canonical diffraction problem.

For $x \in \Gamma_j$ the following representation holds $\frac{\partial u}{\partial n}(x) = \Psi(x) + v_j^+(L_j + s)e^{iks} + v_j^-(L_j - s)e^{-iks} + \tilde{v}_j(s)e^{ikr}$

Theorem

The functions v_j^{\pm} have the same properties as those for the convex sides, in particular are analytic in the right hand complex plane.

For $x \in \Gamma_j$ the following representation holds

$$\frac{\partial u}{\partial n}(x) = \Psi(x) + v_j^+(L_j + s)e^{iks} + v_j^-(L_j - s)e^{-iks} + \tilde{v}_j(s)e^{ikr}$$

Theorem

The function \tilde{v}_j is analytic in a complex k-independent neighbourhood D_{ϵ} of the side Γ_j with

$$| ilde{v}_j(s)| \leq Ck \log^{1/2}(2+k), \quad s \in D_\epsilon, \quad k \geq k_1.$$

For $x \in \Gamma_j$ the following representation holds

$$rac{\partial u}{\partial n}(x) = \Psi(x) + v_j^+(L_j + s)e^{iks} + v_j^-(L_j - s)e^{-iks} + \widetilde{v}_j(s)e^{ikr}$$

Approximation space:

- Replace v_j⁻ by a piecewise polynomial supported on a geometric mesh.
- Replace v_j⁺ and ṽ_j by polynomials supported on the whole side.

Approximate by piecewise polynomials on overlapping geometric meshes, graded towards the corner singularities

Theorem (Chandler-Wilde, Hewett, Langdon and Twigger (2012))

If $c, k_0 > 0$ and $n \ge cp$, $k \ge k_0$, then, for some $C, \tau > 0$,

$$\inf_{w_N \in V_N} \left\| \frac{\partial u}{\partial n} - w_N \right\|_{L^2(\Gamma)} \leq C k^{1/2+\alpha} \log^{1/2} (2+k) \mathrm{e}^{-\rho\tau},$$

where
$$\alpha = 1 - \min(1 - \pi/\Omega_m) \in (1/2, 1)$$
.

Total number of degrees of freedom N = O(n(p+1)).

Again, we can achieve any required accuracy with N growing like $\log^2 k$ as $k \to \infty$, rather than like k, as for a standard BEM.

For star-like polygons, using V_N in a Galerkin method with the star-combined formulation we have, for all $k \ge k_0$,

$$\begin{split} \left\| \frac{\partial u}{\partial n} - v_N \right\|_{L^2(\Gamma)} &\leq Ck^{1+\alpha} \log^{1/2} (2+k) \mathrm{e}^{-p\tau}, \\ \frac{\|u - u_N\|_{L^{\infty}(D)}}{\|u\|_{L^{\infty}(D)}} &\leq Ck \log(2+k) \mathrm{e}^{-p\tau}, \\ \|F - F_N\|_{L^{\infty}(\mathbb{S}^1)} &\leq Ck^{1+\alpha} \log^{1/2} (2+k) \mathrm{e}^{-p\tau}. \end{split}$$

For star-like polygons, using V_N in a Galerkin method with the star-combined formulation we have, for all $k \ge k_0$,

$$\begin{split} \left\| \frac{\partial u}{\partial n} - v_N \right\|_{L^2(\Gamma)} &\leq Ck^{1+\alpha} \log^{1/2} (2+k) \mathrm{e}^{-p\tau}, \\ \frac{\|u - u_N\|_{L^\infty(D)}}{\|u\|_{L^\infty(D)}} &\leq Ck \log(2+k) \mathrm{e}^{-p\tau}, \\ \|F - F_N\|_{L^\infty(\mathbb{S}^1)} &\leq Ck^{1+\alpha} \log^{1/2} (2+k) \mathrm{e}^{-p\tau}. \end{split}$$

So $N \sim p^2$ growing like $\log^2 k$ provably maintains accuracy!

Numerical results - nonconvex polygon

Partial illumination

Re-reflections

Total field on circle in domain - partial illumination example

Total field on circle in domain - re-reflections example

Relative max. error on circle in domain

FFP - partial illumination example

FFP - re-reflections example

Maximum absolute error in FFP

For a more detailed review

Chandler-Wilde, Graham, Langdon and Spence, Numerical-Asymptotic Boundary Integral Methods in High-Frequency Acoustic Scattering, Acta Numerica 21 (2012), pp. 89–305.

