ABOUT TRAPPED MODES IN OPEN WAVEGUIDES

Christophe Hazard

POEMS (Propagation d'Ondes: Etude Mathématique et Simulation)

CNRS / ENSTA / INRIA, Paris

MATHMONDES

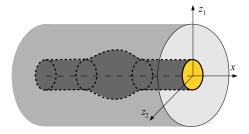
Reading, July 2012

About trapped modes in open waveguides

Introduction

CONTEXT:

time-harmonic waves in locally perturbed uniform open waveguides (for instance, a defect in an optical fiber, or in an immersed pipe ...).



ISSUE :

Are there trapped modes, i.e., localized oscillations of the system which do not radiate towards infinity?

About trapped modes in open waveguides

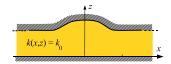
æ

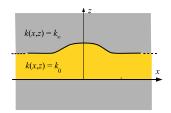
-

Surprisingly...

Trapped modes...

... may occur in closed waveguides (*),





4 日本

æ

(*) See, e.g., Linton and McIver (2007).

About trapped modes in open waveguides

Our 3-dimensional acoustic waveguide

Defined by a wavenumber function

$$k = k(x, z)$$
 where

$$\begin{cases}
x = \text{longitudinal direction,} \\
z := (z_1, z_2) = \text{transverse directions,}
\end{cases}$$

such that

$$0 < \inf_{(x,z) \in \mathbb{R}^3} k(x,z) \quad \text{and} \quad$$

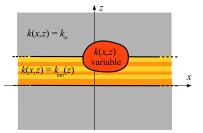
$$\sup_{(x,z)\in\mathbb{R}^3}k(x,z)<\infty,$$

and k is a localized perturbation of a uniform waveguide:

 $k-k_{\rm uni}$ is compactly supported,

where $k_{\text{uni}} = k_{\text{uni}}(z)$ and

$$k_{\text{uni}}(z) = k_{\infty} > 0$$
 if $|z| > d > 0$.



4 日本

æ.

Main result

Theorem (absence of trapped modes)

With the above assumptions on k = k(x, z), the only solution $u \in H^2(\mathbb{R}^3)$ to the Helmholtz equation

$$-\Delta u - k^2 \, u = 0 \quad \text{in } \mathbb{R}^3,$$

is $u \equiv 0$.

Basic ideas for the proof:

- Modal decomposition of *u* resulting from a generalized Fourier transform in the transverse direction (instead of a usual Fourier transform in the longitudinal direction).
- Argument of analyticity with respect to the generalized Fourier variable.

(4) (5) (4) (5) (4)

1 900

Related works

Rough media

- Chandler-Wilde and Zhang (1998)
- Chandler-Wilde and Monk (2005)
- Lechleiter and Ritterbusch (2010)
- . . .

No guided wave

Perturbed stratified media	
• Weder (1991)	} Analyticity argument
• Bonnet-Ben Dhia, Chorfi, Dakia, H. (2009)	
• Bonnet-Ben Dhia, Goursaud, H. (2011)	2D step-index

э.

Outline

2 Proof of the absence of trapped modes

About trapped modes in open waveguides

■ のへで

< ∃ >

2 Proof of the absence of trapped modes

< 67 ► About trapped modes in open waveguides

€ 9Q@

Modal analysis

Modes of a uniform waveguide

Separation of variables: $u(x,z) = \Phi(z) e^{px}$ for $p \in \mathbb{C}$ solution to

$$-\Delta_{x,z}u - k_{\mathrm{uni}}^2 u = 0 \quad \text{in } \mathbb{R}^3,$$

 $\implies \text{Eigenvalue problem} \quad \begin{cases} \text{Find } \lambda = p^2 \in \mathbb{C} \text{ and } \Phi \text{ bounded such that} \\ -\Delta_z \Phi - k_{\text{uni}}^2 \Phi = \lambda \Phi \text{ in } \mathbb{R}^2. \end{cases}$

Assuming $k_{\infty} < k_{\sup} := \sup_{z \in \mathbb{R}^2} k_{\text{uni}}(z)$, there are two kinds of solutions:

• Finite set of isolated $\lambda \in (-k_{sup}^2, -k_{\infty}^2)$ associated with evanescent Φ (as $|z| \to +\infty$).

 \implies Guided modes $\Phi(z) e^{\pm \sqrt{\lambda}x}$.

• Continuous set $\lambda \in [-k_{\infty}^2, +\infty)$ associated with oscillating Φ (as $|z| \rightarrow +\infty$

 $\implies \text{Radiation modes} \begin{cases} \text{propagative as } x \to \pm \infty \text{ if } \lambda < 0, \\ \text{exponentially} \nearrow \text{ or } \searrow \text{ if } \lambda > 0. \end{cases}$

About trapped modes in open waveguides

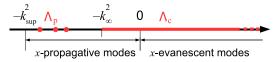
◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ • の Q ()

Spectral interpretation

The unbounded operator \underline{A} defined in $L^2(\mathbb{R}^2)$ by

$$A\varphi := -\Delta_z \varphi - k_{\mathrm{uni}}^2 \varphi \quad \forall \varphi \in \mathrm{D}(A) := H^2(\mathbb{R}^2)$$

is selfadjoint. Its spectrum Λ is composed of two parts:



- A finite point spectrum Λ_p = {eigenvalues} ⊂ (-k²_{sup}, -k²_∞).
 ⇒ Associated Φ ∈ L²(ℝ²) : eigenfunctions.
- A continuous spectrum Λ_c = [-k_∞², +∞).
 ⇒ Associated Φ ∉ L²(ℝ²) : generalized eigenfunctions.

A natural question

Can we find a family of eigenfunctions and generalized eigenfunctions such that

- any $\varphi \in L^2(\mathbb{R}^2)$ can be represented by a discrete + continuous superposition, and
- A becomes diagonal in this "basis"?

(B) (B)

æ

A natural question

Can we find a family of eigenfunctions and generalized eigenfunctions such that

- any $\varphi \in L^2(\mathbb{R}^2)$ can be represented by a discrete + continuous superposition, and
- A becomes diagonal in this "basis"?

YES !

- easy for the eigenfunctions, but ...
- more involved for the generalized eigenfunctions $(\Longrightarrow$ scattering theory).

æ

A B K A B K

Modal analysis Proof of the absence of trapped modes

A generalized spectral basis

- A family of eigenfunctions (guided modes): For $\lambda \in \Lambda_{\mathbf{p}}$, choose an orthonormal basis $\{\Phi_{\lambda,\kappa}; \kappa = 1, \ldots, m_{\lambda}\}$ of the associated eigenspace $(m_{\lambda} = \text{multiplicity of the eigenvalue } \lambda)$.
- A family of generalized eigenfunctions (radiation modes): For $\lambda \in \Lambda_{c} = [-k_{\infty}^{2}, +\infty)$ and $\kappa \in S^{1}$ (= unit circle),

of direction K

incident plane wave outgoing scattered wave

A key property of generalized eigenfunctions: analyticity

For all fixed $\kappa \in S^1$ and $z \in \mathbb{R}^2$, the function $\lambda \mapsto \Phi_{\lambda,\kappa}(z)$ extends to a meromorphic function of λ in the complex half plane $\operatorname{Re} \lambda > -k_{\infty}^2$.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● の Q @

The generalized Fourier transform

The operator of decomposition on the family $\{\Phi_{\lambda,\kappa}\}$:

$$(\mathcal{F}\varphi)(\lambda,\kappa) := \int_{\mathbb{R}^2} \varphi(z) \,\overline{\Phi_{\lambda,\kappa}(z)} \,\mathrm{d}z \quad \forall \lambda \in \Lambda, \ \forall \kappa \in \left\{ \begin{array}{cc} 1, \dots, m_{\lambda} & \text{if } \lambda \in \Lambda_{\mathbf{p}} \\ S^1 & \text{if } \lambda \in \Lambda_{\mathbf{c}} \end{array} \right.$$

defines (by density) a unitary transformation from $L^2(\mathbb{R}^2)$ to the spectral space

$$\widehat{\mathcal{H}} := \widehat{\mathcal{H}}_{\mathrm{p}} \oplus \widehat{\mathcal{H}}_{\mathrm{c}} \quad \text{where} \quad \widehat{\mathcal{H}}_{\mathrm{p}} := \oplus_{\lambda \in \Lambda_{\mathbf{p}}} \mathbb{C}^{m_{\lambda}} \text{ and } \widehat{\mathcal{H}}_{\mathrm{c}} := L^2(\Lambda_{\mathbf{c}} \times S^1).$$

It diagonalizes A in the sense that $A = \mathcal{F}^{-1} \lambda \mathcal{F}$.

æ

2 Proof of the absence of trapped modes

《曰》 《問》 《臣》 《臣》

■ のへで

Getting rid of the defect!

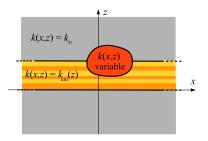
If $u \in H^2(\mathbb{R}^3)$ satisfies

(H)
$$-\Delta u - k^2 u = 0$$
 in \mathbb{R}^3 ,

then

(LS)
$$-\Delta u - k_{\text{uni}}^2 u = f(u)$$
 in \mathbb{R}^3 ,

where $f(u) := (k^2 - k_{\text{uni}}^2)u$ is compactly supported.



Proof of the absence of trapped modes

- 1) Prove: (LS) $\implies u = 0$ outside the support of f(u).
- 2) Conclude by the unique continuation principle for (H).

□ ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ● の Q @

Main theorem

Let $f \in L^2(\mathbb{R}^3)$ compactly supported. If $u \in H^2(\mathbb{R}^3)$ satisfies

$$-\Delta u - k_{\text{uni}}^2 u = f \quad \text{in } \mathbb{R}^3,$$

then u = 0 outside the support of f.

Proof: 3 steps ...

▲ ≣ ▶ < ≣ ▶ < ≣ • < </p>

Step 1: Using \mathcal{F}

Let $f \in L^2(\mathbb{R}^3)$ compactly supported and $u \in H^2(\mathbb{R}^3)$ solution to

$$-\Delta u - k_{\text{uni}}^2 u = f \quad \text{in } \mathbb{R}^3.$$

In other words,

$$-\frac{\partial^2 u}{\partial x^2} + Au = f \quad \text{in } \mathbb{R}.$$

Setting $\widehat{u}_{\lambda,\kappa}(x) := (\mathcal{F}u(x,\cdot))(\lambda,\kappa)$ and $\widehat{f}_{\lambda,\kappa}(x) := (\mathcal{F}f(x,\cdot))(\lambda,\kappa)$ (which makes sense since $u, f \in L^2(\mathbb{R}^3)$), we have

$$-\frac{\partial^2 \widehat{u}_{\lambda,\kappa}}{\partial x^2} + \lambda \, \widehat{u}_{\lambda,\kappa} = \widehat{f}_{\lambda,\kappa} \quad \text{in } \mathbb{R}, \text{ for a.e. } \lambda \text{ and } \kappa.$$

About trapped modes in open waveguides

Modal analysis Proof of the absence of trapped modes

Step 1: Using \mathcal{F} (contd)

Any solution to
$$-\frac{\partial^2 \widehat{u}_{\lambda,\kappa}}{\partial x^2} + \lambda \,\widehat{u}_{\lambda,\kappa} = \widehat{f}_{\lambda,\kappa}$$
 reads as

$$\widehat{u}_{\lambda,\kappa} = \widehat{u}_{\lambda,\kappa}^{\text{gen}} + \widehat{u}_{\lambda,\kappa}^{\text{part}}$$

where

$$\widehat{u}_{\lambda,\kappa}^{\mathrm{gen}}(x) = \widehat{\alpha}_{\lambda,\kappa}^{+} \,\mathrm{e}^{-\sqrt{\lambda}\,x} + \widehat{\alpha}_{\lambda,\kappa}^{-} \,\mathrm{e}^{+\sqrt{\lambda}\,x},$$

and

$$\widehat{u}^{\mathrm{part}}_{\lambda,\kappa}(x) = \int_{\mathbb{R}} \gamma_{\lambda}(x-x') \,\widehat{f}_{\lambda,\kappa}(x') \,\mathrm{d}x',$$

where $\gamma_{\lambda}(x) := \frac{e^{-\sqrt{\lambda}|x|}}{2\sqrt{\lambda}}$ is a Green's function of $-\frac{\partial^2}{\partial x^2} + \lambda$ (choose $\sqrt{\lambda}$ such that $\sqrt{\lambda} \in \mathbb{R}^+$ if $\lambda \in \mathbb{R}^+$).

◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● ○ ● ●

Step 1: Using \mathcal{F} (contd)

Outside the x-support of f,

$$\widehat{u}^{\text{part}}_{\lambda,\kappa}(x) = \widehat{\beta}^{\pm}_{\lambda,\kappa} e^{-\sqrt{\lambda}|x|} \quad \text{as } x \to \pm \infty,$$

where

$$\widehat{\beta}_{\lambda,\kappa}^{\pm} := \int_{x \text{-supp } f} \frac{\mathrm{e}^{\pm \sqrt{\lambda} \, x'}}{2\sqrt{\lambda}} \, \widehat{f}_{\lambda,\kappa}(x') \, \mathrm{d} x'.$$

 \mathbf{So}

$$\widehat{u}_{\lambda,\kappa}(x) = \begin{cases} \widehat{\alpha}_{\lambda,\kappa}^{+} e^{-\sqrt{\lambda}x} + \left(\widehat{\alpha}_{\lambda,\kappa}^{-} + \widehat{\beta}_{\lambda,\kappa}^{-}\right) e^{+\sqrt{\lambda}x} & \text{as } x \to -\infty, \\ \left(\widehat{\alpha}_{\lambda,\kappa}^{+} + \widehat{\beta}_{\lambda,\kappa}^{+}\right) e^{-\sqrt{\lambda}x} + \widehat{\alpha}_{\lambda,\kappa}^{-} e^{+\sqrt{\lambda}x} & \text{as } x \to +\infty. \end{cases}$$

About trapped modes in open waveguides

注▶ ▲注▶ 注 のへで

Step 2: Solutions with finite energy

Recall that \mathcal{F} is unitary, hence

$$u \in L^2(\mathbb{R}^3) \Longrightarrow \widehat{u}_{\lambda,\kappa} \in L^2(\mathbb{R})$$
 for a.e. λ and κ .

Among the possible $\widehat{u}_{\lambda,\kappa} = \widehat{u}_{\lambda,\kappa}^{\text{gen}} + \widehat{u}_{\lambda,\kappa}^{\text{part}}$, which ones belong to $L^2(\mathbb{R})$?

- Propagative modes: $\lambda < 0$. As $x \to \pm \infty$, $\hat{u}_{\lambda,\kappa} =$ linear combination of oscillating exp. functions $\implies \begin{cases} \hat{\alpha}^+_{\lambda,\kappa} = \hat{\alpha}^-_{\lambda,\kappa} + \hat{\beta}^-_{\lambda,\kappa} = 0, \\ \hat{\alpha}^+_{\lambda,\kappa} + \hat{\beta}^+_{\lambda,\kappa} = \hat{\alpha}^-_{\lambda,\kappa} = 0, \\ \implies \hat{\alpha}^\pm_{\lambda,\kappa} = \hat{\beta}^\pm_{\lambda,\kappa} = 0. \end{cases}$
- Evanescent modes: λ > 0. As x → ±∞, only decreasing exp. functions are allowed ⇒ α⁺_{λ,κ} = α⁻_{λ,κ} = 0.

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ ○ ○ ○

Step 2: Solutions with finite energy (contd)

To sum up:

The only solutions with finite energy write as

$$\widehat{u}_{\lambda,\kappa}(x) = \widehat{u}_{\lambda,\kappa}^{\text{part}}(x) = \int_{\mathbb{R}} \gamma_{\lambda}(x-x') \,\widehat{f}_{\lambda,\kappa}(x') \,\mathrm{d}x'$$

with the condition

 $\widehat{u}_{\lambda,\kappa}(x) = 0$ for $\lambda < 0$, $\kappa \in S^1$ and x outside the x-support of f.

(i.e., the modal components of u associated with propagative modes vanish).

A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Modal analysis Proof of the absence of trapped modes

Step 3: Analyticity of the modal components

$$\widehat{u}_{\lambda,\kappa}(x) = \int_{\mathbb{R}} \frac{e^{-\sqrt{\lambda} |x-x'|}}{2\sqrt{\lambda}} \, \widehat{f}_{\lambda,\kappa}(x') \, \mathrm{d}x' \\ = \int_{\mathbb{R}} \frac{e^{-\sqrt{\lambda} |x-x'|}}{2\sqrt{\lambda}} \, \int_{\mathbb{R}^2} f(x',z) \, \overline{\Phi_{\lambda,\kappa}(z)} \, \mathrm{d}z \, \mathrm{d}x'$$

Noticing that

- For all fixed $\kappa \in S^1$ and $z \in \mathbb{R}^2$, the function $\lambda \mapsto \overline{\Phi_{\lambda,\kappa}(z)}$ extends to a meromorphic function of λ in the complex half plane $\operatorname{Re} \lambda > -k_{\infty}^2$,
- $\lambda \mapsto \sqrt{\lambda}$ is analytic outside the branch cut,
- f is compactly supported,

we deduce that

for all fixed $\kappa \in S^1$ and $x \in \mathbb{R}$, the function $\lambda \mapsto \widehat{u}_{\lambda,\kappa}(x)$ extends to a meromorphic function of λ in the complex half plane $\operatorname{Re} \lambda > -k_{\infty}^2$ outside the branch cut of $\sqrt{\lambda}$.

Step 3: Analyticity of the modal components (contd)

We already know that the modal components of u associated with propagative modes vanish:

 $\widehat{u}_{\lambda,\kappa}(x) = 0$ for $\lambda < 0$, $\kappa \in S^1$ and x outside the x-support of f.

The analyticity of $\lambda \mapsto \hat{u}_{\lambda,\kappa}(x)$ then shows that this holds for $\lambda \in \Lambda_c$, i.e., the modal components of u associated with evanescent modes also vanish.

Finally:

u(x,z) = 0 for all x outside the x-support of f and all $z \in \mathbb{R}^2$.

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Note that our method does not apply for closed waveguides because the transverse spectrum is discrete.

The idea to remember:

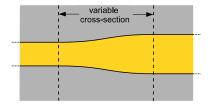
Energy deals with propagative modes, whereas analyticity takes care of evanescent modes.

Here, analyticity means that propagative and evanescent components of a radiating wave are connected in a subtle but strong way in an open waveguide (whereas they are independent in a closed waveguide).

э.

Conclusion (contd)

The same result holds for the junction of two semi-infinite uniform open waveguides:



Theorem (absence of trapped modes)

The only solution $u \in H^2(\mathbb{R}^3)$ to the Helmholtz equation

$$-\Delta u - k^2 \, u = 0 \quad \text{in } \mathbb{R}^3,$$

is $u \equiv 0$.

Proof: sames ideas as for the defect, but... far more intricate!

(4) E (4) (4) E (4)

E 990

Conclusion (contd)

What about scattering in open waveguides?

Case of 2D step-index waveguides:

- Bonnet-Ben Dhia, Chorfi, Dakia, H. (2009) = defect
- Bonnet-Ben Dhia, Goursaud, H. (2011) = junction

Use of $\mathcal{F} \Longrightarrow$ Modal radiation condition + well-posedness.

More general waveguides?

Main difficulty: extension of the generalized Fourier transform to slowly decreasing functions (not in $L^2(\mathbb{R}^2)$).

(B)

э.

Thank you for your (trapped?) attention !

About trapped modes in open waveguides

포 > 표