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Introduction

CONTEXT:
time-harmonic waves in locally perturbed uniform open waveguides (for
instance, a defect in an optical fiber, or in an immersed pipe . . . ).

ISSUE :

Are there trapped modes, i.e., localized oscillations of the system which do
not radiate towards infinity?
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Surprisingly...

Trapped modes...

... may occur in closed waveguides (*),

... but not in open waveguides!

(*) See, e.g., Linton and McIver (2007).
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Our 3-dimensional acoustic waveguide

Defined by a wavenumber function

k = k(x, z) where

{
x = longitudinal direction,
z := (z1, z2) = transverse directions,

such that
0 < inf

(x,z)∈R3
k(x, z) and sup

(x,z)∈R3

k(x, z) < ∞,

and k is a localized perturbation of
a uniform waveguide:

k − kuni is compactly supported,

where kuni = kuni(z) and

kuni(z) = k∞ > 0 if |z| > d > 0.
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Main result

Theorem (absence of trapped modes)

With the above assumptions on k = k(x, z), the only solution u ∈ H2(R3)
to the Helmholtz equation

−∆u− k2 u = 0 in R
3,

is u ≡ 0.

Basic ideas for the proof:

Modal decomposition of u resulting from a generalized Fourier
transform in the transverse direction (instead of a usual Fourier
transform in the longitudinal direction).

Argument of analyticity with respect to the generalized Fourier
variable.
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Related works

Rough media

Chandler-Wilde and Zhang (1998)

Chandler-Wilde and Monk (2005)

Lechleiter and Ritterbusch (2010)

. . .





No guided wave

Perturbed stratified media

Weder (1991)

Bonnet-Ben Dhia, Chorfi, Dakia, H. (2009)

Bonnet-Ben Dhia, Goursaud, H. (2011)

}
Analyticity argument

}
2D step-index
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Outline

1 Modal analysis

2 Proof of the absence of trapped modes
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Modes of a uniform waveguide

Separation of variables: u(x, z) = Φ(z) epx for p ∈ C solution to

−∆x,zu− k2
uni u = 0 in R

3,

=⇒ Eigenvalue problem

{
Find λ = p2 ∈ C and Φ bounded such that
−∆zΦ− k2

uni Φ = λ Φ in R
2.

Assuming k∞ < ksup := sup
z∈R2

kuni(z), there are two kinds of solutions:

Finite set of isolated λ ∈ (−k2
sup,−k2

∞) associated with evanescent Φ
(as |z| → +∞).

=⇒ Guided modes Φ(z) e±
√

λx.

Continuous set λ ∈ [−k2
∞,+∞) associated with oscillating Φ (as

|z| → +∞)

=⇒ Radiation modes

{
propagative as x → ±∞ if λ < 0,
exponentially ր or ց if λ > 0.

About trapped modes in open waveguides



Modal analysis
Proof of the absence of trapped modes

Spectral interpretation

The unbounded operator A defined in L2(R2) by

Aϕ := −∆zϕ− k2
uni ϕ ∀ϕ ∈ D(A) := H2(R2)

is selfadjoint. Its spectrum Λ is composed of two parts:

A finite point spectrum Λp = {eigenvalues} ⊂ (−k2
sup,−k2

∞).
=⇒ Associated Φ ∈ L2(R2) : eigenfunctions.

A continuous spectrum Λc = [−k2
∞,+∞).

=⇒ Associated Φ /∈ L2(R2) : generalized eigenfunctions.
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A natural question

Can we find a family of eigenfunctions and generalized eigenfunctions such
that

any ϕ ∈ L2(R2) can be represented by a discrete + continuous
superposition, and

A becomes diagonal in this “basis”?
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A natural question

Can we find a family of eigenfunctions and generalized eigenfunctions such
that

any ϕ ∈ L2(R2) can be represented by a discrete + continuous
superposition, and

A becomes diagonal in this “basis”?

YES !

easy for the eigenfunctions, but . . .

more involved for the generalized eigenfunctions
(=⇒ scattering theory).
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A generalized spectral basis

A family of eigenfunctions (guided modes):
For λ ∈ Λp, choose an orthonormal basis {Φλ,κ; κ = 1, . . . ,mλ} of the
associated eigenspace (mλ = multiplicity of the eigenvalue λ).

A family of generalized eigenfunctions (radiation modes):
For λ ∈ Λc = [−k2

∞,+∞) and κ ∈ S1 (= unit circle),

Φλ,κ := Φ∞
λ,κ︸︷︷︸

incident plane wave

of direction κ

+ Φsc
λ,κ︸︷︷︸

outgoing scattered wave

A key property of generalized eigenfunctions: analyticity

For all fixed κ ∈ S1 and z ∈ R
2, the function λ 7→ Φλ,κ(z) extends to a

meromorphic function of λ in the complex half plane Reλ > −k2
∞.
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The generalized Fourier transform

The operator of decomposition on the family {Φλ,κ} :

(Fϕ)(λ, κ) :=

∫

R2

ϕ(z) Φλ,κ(z) dz ∀λ ∈ Λ, ∀κ ∈
{

1, . . . ,mλ if λ ∈ Λp

S1 if λ ∈ Λc

defines (by density) a unitary transformation from L2(R2) to the spectral
space

Ĥ := Ĥp ⊕ Ĥc where Ĥp := ⊕λ∈ΛpC
mλ and Ĥc := L2(Λc × S1).

It diagonalizes A in the sense that A = F−1λF .
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Getting rid of the defect!

If u ∈ H2(R3) satisfies

(H) −∆u− k2 u = 0 in R
3,

then

(LS) −∆u−k2
uni u = f(u) in R

3,

where f(u) := (k2 − k2
uni)u is com-

pactly supported.

Proof of the absence of trapped modes

1) Prove: (LS) =⇒ u = 0 outside the support of f(u).
2) Conclude by the unique continuation principle for (H).
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Main theorem

Let f ∈ L2(R3) compactly supported. If u ∈ H2(R3) satifies

−∆u− k2
uni u = f in R

3,

then u = 0 outside the support of f.

Proof: 3 steps . . .
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Step 1: Using F

Let f ∈ L2(R3) compactly supported and u ∈ H2(R3) solution to

−∆u− k2
uni u = f in R

3.

In other words,

−∂2u

∂x2
+Au = f in R.

Setting ûλ,κ(x) := (Fu(x, ·))(λ, κ) and f̂λ,κ(x) := (Ff(x, ·))(λ, κ) (which
makes sense since u, f ∈ L2(R3)), we have

−∂2ûλ,κ

∂x2
+ λ ûλ,κ = f̂λ,κ in R, for a.e. λ and κ.
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Step 1: Using F (contd)

Any solution to −∂2ûλ,κ

∂x2
+ λ ûλ,κ = f̂λ,κ reads as

ûλ,κ = ûgen
λ,κ + ûpart

λ,κ

where

ûgen
λ,κ(x) = α̂+

λ,κ e−
√

λx + α̂−
λ,κ e+

√
λx,

and

ûpart
λ,κ (x) =

∫

R

γλ(x− x′) f̂λ,κ(x
′) dx′,

where γλ(x) :=
e−

√
λ |x|

2
√
λ

is a Green’s function of − ∂2

∂x2
+ λ (choose

√
λ such

that
√
λ ∈ R

+ if λ ∈ R
+).
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Step 1: Using F (contd)

Outside the x-support of f,

ûpart
λ,κ (x) = β̂±

λ,κ e−
√
λ |x| as x → ±∞,

where

β̂±
λ,κ :=

∫

x-supp f

e±
√

λx′

2
√
λ

f̂λ,κ(x
′) dx′.

So

ûλ,κ(x) =





α̂+
λ,κ e−

√
λx +

(
α̂−
λ,κ + β̂−

λ,κ

)
e+

√
λx as x → −∞,

(
α̂+
λ,κ + β̂+

λ,κ

)
e−

√
λx + α̂−

λ,κ e+
√
λx as x → +∞.
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Step 2: Solutions with finite energy

Recall that F is unitary, hence

u ∈ L2(R3) =⇒ ûλ,κ ∈ L2(R) for a.e. λ and κ.

Among the possible ûλ,κ = ûgen
λ,κ + ûpart

λ,κ , which ones belong to L2(R) ?

Propagative modes: λ < 0.
As x → ±∞, ûλ,κ = linear combination of oscillating exp. functions

=⇒
{

α̂+
λ,κ = α̂−

λ,κ + β̂−
λ,κ = 0,

α̂+
λ,κ + β̂+

λ,κ = α̂−
λ,κ = 0,

=⇒ α̂±
λ,κ = β̂±

λ,κ = 0.

Evanescent modes: λ > 0.
As x → ±∞, only decreasing exp. functions are allowed
=⇒ α̂+

λ,κ = α̂−
λ,κ = 0.
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Step 2: Solutions with finite energy (contd)

To sum up:

The only solutions with finite energy write as

ûλ,κ(x) = ûpart
λ,κ (x) =

∫

R

γλ(x− x′) f̂λ,κ(x
′) dx′

with the condition

ûλ,κ(x) = 0 for λ < 0, κ ∈ S1 and x outside the x-support of f.

(i.e., the modal components of u associated with propagative modes vanish).
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Step 3: Analyticity of the modal components

ûλ,κ(x) =

∫

R

e−
√
λ |x−x′|

2
√
λ

f̂λ,κ(x
′) dx′

=

∫

R

e−
√
λ |x−x′|

2
√
λ

∫

R2

f(x′, z) Φλ,κ(z) dz dx
′

Noticing that

For all fixed κ ∈ S1 and z ∈ R
2, the function λ 7→ Φλ,κ(z) extends to a

meromorphic function of λ in the complex half plane Reλ > −k2
∞,

λ 7→
√
λ is analytic outside the branch cut,

f is compactly supported,

we deduce that

for all fixed κ ∈ S1 and x ∈ R, the function λ 7→ ûλ,κ(x) extends to a
meromorphic function of λ in the complex half plane Reλ > −k2

∞ outside
the branch cut of

√
λ.
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Step 3: Analyticity of the modal components (contd)

We already know that the modal components of u associated with
propagative modes vanish:

ûλ,κ(x) = 0 for λ < 0 , κ ∈ S1 and x outside the x-support of f.

The analyticity of λ 7→ ûλ,κ(x) then shows that this holds for λ ∈ Λc, i.e.,

the modal components of u associated with evanescent modes also vanish.

Finally:

u(x, z) = 0 for all x outside the x-support of f and all z ∈ R
2.
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Conclusion

Note that our method does not apply for closed waveguides because the
transverse spectrum is discrete.

The idea to remember:

Energy deals with propagative modes,
whereas analyticity takes care of evanescent modes.

Here, analyticity means that propagative and evanescent components of a
radiating wave are connected in a subtle but strong way in an open
waveguide (whereas they are independent in a closed waveguide).
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Conclusion (contd)

The same result holds for the junction of two semi-infinite uniform open
waveguides:

Theorem (absence of trapped modes)

The only solution u ∈ H2(R3) to the Helmholtz equation

−∆u− k2 u = 0 in R
3,

is u ≡ 0.

Proof: sames ideas as for the defect, but... far more intricate!
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Conclusion (contd)

What about scattering in open waveguides?

Case of 2D step-index waveguides:

Bonnet-Ben Dhia, Chorfi, Dakia, H. (2009) = defect

Bonnet-Ben Dhia, Goursaud, H. (2011) = junction

Use of F =⇒ Modal radiation condition + well-posedness.

More general waveguides?
Main difficulty: extension of the generalized Fourier transform to
slowly decreasing functions (not in L2(R2)).
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Thank you for your (trapped?) attention !
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