Integral equations
 for composite structures

MATHmONDES 2012

X.Claeys, Université de Toulouse, ISAE
joint work with R.Hiptmair, SAM, ETH Zürich

Multi-subdomain scattering problem

Geometry
$\Omega_{j}=$ Lipschitz open set with $\Omega_{j} \cap \Omega_{k}=\emptyset$ si $j \neq k$ and Ω_{j} borné si $j \neq 0$
$\mathbb{R}^{d}=\cup_{j=0}^{n} \bar{\Omega}_{j}$
$\Gamma=\cup_{j=0}^{n} \partial \Omega_{j} \quad$ (skeleton)

Important: different from the case of an homogeneous scatterer

- 3 subdomains (or more) may be adjacent to each other.
- the skeleton Γ is not an orientable surface.

Multi-subdomain scattering problem

Notations

$\kappa_{j}, \mu_{j} \in \mathbb{R}_{+}^{*}$ material carac. in Ω_{j}
$n_{j}=$ normal to $\partial \Omega_{j}$ toward the exterior of Ω_{j}

Transmission problem (well posed):

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Find } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { such that } \\
\Delta u+\kappa_{j}^{2} u=0 \text { in } \Omega_{j}, j=0, \ldots n \\
u-u_{\mathrm{inc}} \quad \text { outgoing in } \Omega_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\mu_{j}^{-1} \partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\mu_{k}^{-1} \partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\text { on } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
\end{aligned}
$$

Multi-subdomain scattering problem

Notations

$\kappa_{j}, \mu_{j} \in \mathbb{R}_{+}^{*}$ material carac. in Ω_{j}
$n_{j}=$ normal to $\partial \Omega_{j}$ toward the exterior of Ω_{j}

Transmission problem (well posed):
$\left\{\begin{array}{l}\text { Find } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { such that } \\ \Delta u+\kappa_{j}^{2} u=0 \quad \text { in } \Omega_{j}, j=0, \ldots n \\ u-u_{\mathrm{inc}} \quad \text { outgoing in } \Omega_{0}\end{array}\right.$

In this talk we
assume
$\mu_{0}=\cdots=\mu_{n}=1$

Multi-subdomain scattering problem

Notations

$\kappa_{j}, \mu_{j} \in \mathbb{R}_{+}^{*}$ material carac. in Ω_{j}
$n_{j}=$ normal to $\partial \Omega_{j}$ toward the exterior of Ω_{j}

Transmission problem (well posed):

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Find } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { such that } \\
\Delta u+\kappa_{j}^{2} u=0 \quad \text { in } \Omega_{j}, j=0, \ldots n \\
u-u_{\mathrm{inc}} \quad \text { outgoing in } \Omega_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\text { on } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
\end{aligned}
$$

Multi-subdomain scattering problem

Notations

$\kappa_{j}, \mu_{j} \in \mathbb{R}_{+}^{*}$ material carac. in Ω_{j}
$n_{j}=$ normal to $\partial \Omega_{j}$ toward the exterior of Ω_{j}

Transmission problem (well posed):

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Find } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { such that } \\
\Delta u+\kappa_{j}^{2} u=0 \quad \text { in } \Omega_{j}, j=0, \ldots n \\
u-u_{\mathrm{inc}} \quad \text { outgoing in } \Omega_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\text { on } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
\end{aligned}
$$

We want to solve this problem by means of a boundary element method (BEM) constructed upon a suitable integral equation.

Preconditionning issue with integral equations

The preconditionning issue

Boundary element methods imply the inversion of fully populated linear systems. For industrial applications, iterative solvers become mandatory. Unfortunately, high resolution BEM induce poorly conditionned matrices (except with 2nd kind integral equations...), so that iterative solvers turn inefficient unless some preconditionner is used.

The Calderón preconditionner

In the case of homogeneous scatterers treated with 1st kind boundary integral equations, the Calderón preconditionner has emerged as a popular and efficient preconditionning strategy for a reasonable frequency range.
[Steinbach \& Wendland, 1998], [Christiansen \& Nédélec, 2000], [Antoine \& Boubendir, 2008], [Cools, Andriulli \& Olyslager, 2009],...

Main idea: the 1st kind integral operator A of the scattering pb satisfies

$$
\mathrm{A} \cdot \mathrm{~A} \simeq \mathrm{Id}+\text { compact } \quad \text { (due to Calderón formula). }
$$

As Id + compact ="easy to solve with an iterative solver" (in many cases. . .), this suggests A as preconditionner for itslef.

Main difficulty and literature

Main objective: Devise an accurate boundary element method posed on Γ that lends itself to the Calderón preconditionning strategy.

Main difficulty: In the case of homogeneous scatterer, the derivation of classical integral equations relies on some orientation of interfaces. In our case, the skeleton Γ is not orientable.

Already available:

- Rumsey principle/PMCHWT = "single trace formulation"
- Boundary element tearing and interconnecting method (BETI) [Steinbach \& Windisch, 2010], [Langer \& Steinbach, 2003], [Hsiao, Steinbach \& Wendland, 2000], ...
- Local multi-trace formulation [Jerez \& Hiptmair, 2011].

We present the global multi-trace formulation, another formulation where Calderón preconditionning is applicable.

OUTLINE

I. A single subdomain: integral representation results
II. Two subdomains: the gap idea
III. General case: Rumsey principle
IV. Global multi-trace formulation
V. Numerical results

OUTLINE

I. A single subdomain: integral representation results
II. Two subdomains:
the gap idea
III. General case: Rumsey principle
IV. Global multi-trace formulation
V. Numerical results

Notations for traces

$\Omega=$ open Lipschitz set
$\mathbb{H}(\partial \Omega):=\mathrm{H}^{\frac{1}{2}}(\partial \Omega) \times \mathrm{H}^{-\frac{1}{2}}(\partial \Omega)$.

Trace operator
$\gamma(v):=\left[\begin{array}{c}\left.v\right|_{\partial \Omega} ^{\text {int }} \\ \left.\partial_{n} v\right|_{\partial \Omega} ^{\text {int }}\end{array}\right], \quad \gamma_{c}(v):=\left[\begin{array}{c}\left.v\right|_{\partial \Omega} ^{\text {ext }} \\ \left.\partial_{n} v\right|_{\partial \Omega} ^{\text {ext }}\end{array}\right]$,

$\{\gamma\}:=\frac{1}{2}\left(\gamma+\gamma_{c}\right) \quad$ and $\quad[\gamma]:=\gamma-\gamma_{c}$.

Representation theorem

Potential operator

$\mathscr{G}_{\kappa}(\mathbf{x}):=\exp (i \kappa|\mathbf{x}|) /(4 \pi|\mathbf{x}|)=$ is the outgoing Green kernel for Helmholtz eq.
$\mathrm{G}_{\kappa}\left(\left[\begin{array}{l}v \\ q\end{array}\right]\right)(\mathbf{x}):=\int_{\partial \Omega} q(\mathbf{y}) \mathscr{G}_{\kappa}(\mathbf{x}-\mathbf{y})-v(\mathbf{y}) n(\mathbf{y}) \cdot \nabla_{\mathbf{y}}\left(\mathscr{G}_{\kappa}(\mathbf{x}-\mathbf{y})\right) d \sigma(\mathbf{y})$

Theorem

If $u \in \mathrm{H}_{\mathrm{loc}}^{1}(\bar{\Omega})$ such that $\Delta u+\kappa^{2} u=0$ in Ω ($+u$ outgoing if Ω unbounded) then

$$
\mathrm{G}_{\kappa}(\gamma(u))(\mathbf{x})=\left\{\begin{array}{cl}
u(\mathbf{x}) & \text { if } \mathbf{x} \in \Omega \\
0 & \text { if } \mathbf{x} \in \mathbb{R}^{3} \backslash \bar{\Omega}
\end{array}\right.
$$

Remark

$\mathrm{G}_{\kappa}(V)(\mathbf{x})$ is solution to Helmholtz equation in $\mathbb{R}^{d} \backslash \partial \Omega$, for any $V=(v, q)$.

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$
If v is a solution to the Helmholtz equation in Ω then

$$
\gamma(v) \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longrightarrow \quad v=\quad \mathrm{G}_{\kappa}(\gamma(v)) \text { in } \Omega
$$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$
If v is a solution to the Helmholtz equation in Ω then

$$
\gamma(v) \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longrightarrow \quad \gamma(v)=\gamma \cdot \mathrm{G}_{\kappa}(\gamma(v))
$$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$
If v is a solution to the Helmholtz equation in Ω then

$$
V \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longrightarrow \quad V=\gamma \cdot G_{\kappa}(V)
$$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$

Caracterization of Cauchy data

The operator $\gamma \cdot \mathrm{G}_{\kappa}: \mathbb{H}(\partial \Omega) \rightarrow \mathscr{C}_{\kappa}(\partial \Omega) \subset \mathbb{H}(\partial \Omega)$ is a continuous projector called Calderón projector interior to Ω. We have

$$
V \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longleftrightarrow \quad V=\gamma \cdot \mathrm{G}_{\kappa}(V)
$$

Jump formula: $\quad[\gamma] \cdot \mathrm{G}_{\kappa}=\mathrm{Id}$
Calderón identity: $\left(2 \mathrm{~A}_{\kappa}\right)^{2}=\mathrm{Id}$ with $\mathrm{A}_{\kappa}=\{\gamma\} \cdot \mathrm{G}_{\kappa}$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$

Caracterization of Cauchy data

The operator $\gamma \cdot \mathrm{G}_{\kappa}: \mathbb{H}(\partial \Omega) \rightarrow \mathscr{C}_{\kappa}(\partial \Omega) \subset \mathbb{H}(\partial \Omega)$ is a continuous projector called Calderón projector interior to Ω. We have

$$
V \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longleftrightarrow \quad V=\gamma \cdot \mathrm{G}_{\kappa}(V)
$$

Jump formula: $\quad[\gamma] \cdot \mathrm{G}_{\kappa}=\mathrm{Id}$
Calderón identity: $\left(2 \mathrm{~A}_{\kappa}\right)^{2}=\mathrm{Id} \quad$ with $\quad \mathrm{A}_{\kappa}=\{\gamma\} \cdot \mathrm{G}_{\kappa}$

$$
\{\gamma\} \cdot \mathrm{G}_{\kappa}(V)+\frac{1}{2}[\gamma] \cdot \mathrm{G}_{\kappa}(V)
$$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in $\Omega(+u$ outgoing if Ω unbounded) $\}$

Caracterization of Cauchy data

The operator $\gamma \cdot \mathrm{G}_{\kappa}: \mathbb{H}(\partial \Omega) \rightarrow \mathscr{C}_{\kappa}(\partial \Omega) \subset \mathbb{H}(\partial \Omega)$ is a continuous projector called Calderón projector interior to Ω. We have

$$
\begin{aligned}
& V \in \mathscr{C}_{\kappa}(\partial \Omega) \\
& \Longleftrightarrow
\end{aligned}
$$

Jump formula: $\quad[\gamma] \cdot \mathrm{G}_{\kappa}=\mathrm{Id}$
Calderón identity: $\quad\left(2 \mathrm{~A}_{\kappa}\right)^{2}=\mathrm{Id} \quad$ with $\quad \mathrm{A}_{\kappa}=\{\gamma\} \cdot \mathrm{G}_{\kappa}$

$$
\begin{gathered}
\square \\
\{\gamma\} \cdot \mathrm{G}_{\kappa}(V)+\frac{1}{2}[\gamma] \cdot \mathrm{G}_{\kappa}(V)
\end{gathered}
$$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$

Caracterization of Cauchy data

The operator $\gamma \cdot \mathrm{G}_{\kappa}: \mathbb{H}(\partial \Omega) \rightarrow \mathscr{C}_{\kappa}(\partial \Omega) \subset \mathbb{H}(\partial \Omega)$ is a continuous projector called Calderón projector interior to Ω. We have

$$
V \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longleftrightarrow \quad V \underset{\sim}{f} \begin{gathered}
1---G_{\kappa}(V) \\
1-1
\end{gathered}
$$

Jump formula: $\quad[\gamma] \cdot \mathrm{G}_{\kappa}=\mathrm{Id}$
Calderón identity: $\left(2 \mathrm{~A}_{\kappa}\right)^{2}=\mathrm{Id} \quad$ with $\quad \mathrm{A}_{\kappa}=\{\gamma\} \cdot \mathrm{G}_{\kappa}$
I
$\left(A_{\kappa}+I d / 2\right) V$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$

Caracterization of Cauchy data

The operator $\gamma \cdot \mathrm{G}_{\kappa}: \mathbb{H}(\partial \Omega) \rightarrow \mathscr{C}_{\kappa}(\partial \Omega) \subset \mathbb{H}(\partial \Omega)$ is a continuous projector called Calderón projector interior to Ω. We have

$$
V \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longleftrightarrow \quad V=\left(\mathrm{A}_{\kappa}+\mathrm{Id} / 2\right) V
$$

Jump formula: $\quad[\gamma] \cdot \mathrm{G}_{\kappa}=\mathrm{Id}$
Calderón identity: $\left(2 \mathrm{~A}_{\kappa}\right)^{2}=\mathrm{Id}$ with $\mathrm{A}_{\kappa}=\{\gamma\} \cdot \mathrm{G}_{\kappa}$

Calderón projector

Cauchy data local to Ω :
$\mathscr{C}_{\kappa}(\partial \Omega):=\left\{\gamma(u) \mid \Delta u+\kappa^{2} u=0\right.$ in Ω ($+u$ outgoing if Ω unbounded) $\}$

Caracterization of Cauchy data

The operator $\gamma \cdot \mathrm{G}_{\kappa}: \mathbb{H}(\partial \Omega) \rightarrow \mathscr{C}_{\kappa}(\partial \Omega) \subset \mathbb{H}(\partial \Omega)$ is a continuous projector called Calderón projector interior to Ω. We have

$$
V \in \mathscr{C}_{\kappa}(\partial \Omega) \quad \Longleftrightarrow \quad 0=\left(\mathrm{A}_{\kappa}-\mathrm{Id} / 2\right) V
$$

Jump formula: $\quad[\gamma] \cdot \mathrm{G}_{\kappa}=\mathrm{Id}$
Calderón identity: $\left(2 \mathrm{~A}_{\kappa}\right)^{2}=\mathrm{Id}$ with $\mathrm{A}_{\kappa}=\{\gamma\} \cdot \mathrm{G}_{\kappa}$

OUTLINE

I. A single subdomain:
 integral representation results

II. Two subdomains:
the gap idea
III. General case: Rumsey principle
IV. Global multi-trace formulation
V. Numerical results

The gap idea

The gap idea

$\mathbb{H}\left(\partial \Omega_{j}\right)=\mathrm{H}^{+\frac{1}{2}}\left(\partial \Omega_{j}\right) \times \mathrm{H}^{-\frac{1}{2}}\left(\partial \Omega_{j}\right)$
$\gamma^{j}=$ trace interior to $\partial \Omega_{j}$
$\mathrm{G}_{\kappa_{j}}^{j}, \mathrm{~A}_{\kappa_{j}}^{j}=$ operators associated to Ω_{j}

To gain some insight, J-C. Nédélec proposed to slightly perturbed the problem introducing a small gap of Ω_{0}-material in between other subdomains.

In the perturbed geometry, all interfaces become orientable anew, and usual techniques become applicable.

The gap idea

$\mathbb{H}\left(\partial \Omega_{j}\right)=\mathrm{H}^{+\frac{1}{2}}\left(\partial \Omega_{j}\right) \times \mathrm{H}^{-\frac{1}{2}}\left(\partial \Omega_{j}\right)$
$\gamma^{j}=$ trace interior to $\partial \Omega_{j}$
$\mathrm{G}_{\kappa_{j}}^{j}, \mathrm{~A}_{\kappa_{j}}^{j}=$ operators associated to Ω_{j}

To gain some insight, J-C. Nédélec proposed to slightly perturbed the problem introducing a small gap of Ω_{0}-material in between other subdomains.

In the perturbed geometry, all interfaces become orientable anew, and usual techniques become applicable.

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=0,1,2$ such that
$U_{1}=\left.Q \cdot U_{0}\right|_{\partial \Omega_{1}}$
$U_{2}=Q \cdot U_{0} \mid \partial \Omega_{1}$
$U_{2}$$\quad$ where $Q=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\left(\mathrm{A}_{\kappa_{2}}^{2}-\mathrm{Id} / 2\right) U_{2}=0$
$\left(\mathrm{A}_{\kappa_{1}}^{1}-\mathrm{Id} / 2\right) U_{1}=0$
$\left(\mathrm{A}_{\kappa_{0}}^{0}-\mathrm{Id} / 2\right) U_{0}=\gamma^{0}\left(u_{\mathrm{inc}}\right)$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=0,1,2$ such that

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=0,1,2$ such that
$U_{1}=\left.Q \cdot U_{0}\right|_{\partial \Omega_{1}}$
$U_{2}=Q \cdot U_{0} \mid \partial \Omega_{1}$
$U_{2}$$\quad$ where $Q=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\left(\mathrm{A}_{\kappa_{2}}^{2}-\mathrm{Id} / 2\right) U_{2}=0$
$\left(\mathrm{A}_{\kappa_{1}}^{1}-\mathrm{Id} / 2\right) U_{1}=0$
$\left(\mathrm{A}_{\kappa_{0}}^{0}-\mathrm{Id} / 2\right) U_{0}=\gamma^{0}\left(u_{\mathrm{inc}}\right)$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=0,1,2$ such that
$U_{1}=\left.Q \cdot U_{0}\right|_{\partial \Omega_{1}}$
$U_{2}=\left.Q \cdot U_{0}\right|_{\partial \Omega_{2}}$ where $Q=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\left(\mathrm{A}_{\kappa_{2}}^{2}-\mathrm{Id} / 2\right) U_{2}=0$
$\left(\mathrm{A}_{\kappa_{1}}^{1}-\mathrm{Id} / 2\right) U_{1}=0$

$\left(\mathrm{A}_{\kappa_{0}}^{0}-\mathrm{Id} / 2\right) U_{0}=\gamma^{0}\left(u_{\mathrm{inc}}\right)$
Plugging transmission conditions in the 3rd Calderón identity yields:

$$
\left[\begin{array}{cc}
\mathrm{A}_{\kappa_{0}}^{1}+\mathrm{Id} / 2 & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{0}}^{2}+\mathrm{Id} / 2
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
\gamma^{1}\left(u_{\mathrm{inc}}\right) \\
\gamma^{2}\left(u_{\mathrm{inc}}\right)
\end{array}\right]
$$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=1,2$ such that

$$
\begin{aligned}
& \left(\mathrm{A}_{\kappa_{2}}^{2}-\mathrm{Id} / 2\right) U_{2}=0 \\
& \left(\mathrm{~A}_{\kappa_{1}}^{1}-\mathrm{Id} / 2\right) U_{1}=0
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\mathrm{A}_{\kappa_{0}}^{1}+\mathrm{Id} / 2 & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{0}}^{2}+\mathrm{Id} / 2
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
\gamma^{1}\left(u_{\text {inc }}\right) \\
\gamma^{2}\left(u_{\text {inc }}\right)
\end{array}\right]
$$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=1,2$ such that

$$
\begin{align*}
& \left(\mathrm{A}_{\kappa_{2}}^{2}-\mathrm{Id} / 2\right) U_{2}=0 \tag{1}\\
& \left(\mathrm{~A}_{\kappa_{1}}^{1}-\mathrm{Id} / 2\right) U_{1}=0 \tag{2}
\end{align*}
$$

$$
\left[\begin{array}{cc}
\mathrm{A}_{\kappa_{0}}^{1}+\mathrm{Id} / 2 & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \tag{3}\\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{0}}^{2}+\mathrm{Id} / 2
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
\gamma^{1}\left(u_{\text {inc }}\right) \\
\gamma^{2}\left(u_{\text {inc }}\right)
\end{array}\right]
$$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=1,2$ such that

$$
\left[\begin{array}{l}
\left(\mathrm{A}_{\kappa_{2}}^{2}-\mathrm{Id} / 2\right) U_{2}=0 \tag{1}\\
\left(\mathrm{~A}_{\kappa_{1}}^{1}-\mathrm{Id} / 2\right) U_{1}=0
\end{array}\right.
$$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=1,2$ such that

$$
\left[\begin{array}{cc}
\mathrm{A}_{\kappa_{1}}^{1}+\mathrm{A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{2}}^{2}+\mathrm{A}_{\kappa_{0}}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
\gamma^{1}\left(u_{\mathrm{inc}}\right) \\
\gamma^{2}\left(u_{\mathrm{inc}}\right)
\end{array}\right]
$$

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=1,2$ such that

$$
\left[\begin{array}{cc}
\mathrm{A}_{\kappa_{1}}^{1}+\mathrm{A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{2}}^{2}+\mathrm{A}_{\kappa_{0}}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
\gamma^{1}\left(u_{\mathrm{inc}}\right) \\
\gamma^{2}\left(u_{\mathrm{inc}}\right)
\end{array}\right]
$$

Observation 1

The pair of traces U_{0} does not come into play anymore, and U_{1}, U_{2} are independent to each other (transmission conditions do not appear explicitely).

Observation 2

This formulation satisfies a Garding inequality, and a generalized Calderón identity when $\kappa_{0}=\kappa_{1}=\kappa_{2}$

$$
\left[\begin{array}{cc}
2 \mathrm{~A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & 2 \mathrm{~A}_{\kappa_{0}}^{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
2 \mathrm{~A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & 2 \mathrm{~A}_{\kappa_{0}}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{Id} & 0 \\
0 & \mathrm{Id}
\end{array}\right]
$$

Observation 3

Without any gap, this formulation remains meaningful (every operators are well defined). However the derivation we have presented does not hold anymore.

The gap idea

Find $U_{j}=\gamma^{j}(u) \in \mathbb{H}\left(\partial \Omega_{j}\right), j=1,2$ such that

$$
\left[\begin{array}{cc}
\mathrm{A}_{\kappa_{1}}^{1}+\mathrm{A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{2}}^{2}+\mathrm{A}_{\kappa_{0}}^{2}
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{c}
\gamma^{1}\left(u_{\mathrm{inc}}\right) \\
\gamma^{2}\left(u_{\mathrm{inc}}\right)
\end{array}\right]
$$

Observation 1

The pair of traces U_{0} does not come into play anymore, and U_{1}, U_{2} are independent to each other (transmission conditions do not appear explicitely).

Observation 2

This formulation satisfies a Garding inequality, and a generalized Calderón identity when $\kappa_{0}=\kappa_{1}=\kappa_{2}$

$$
\left[\begin{array}{cc}
2 \mathrm{~A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & 2 \mathrm{~A}_{\kappa_{0}}^{2}
\end{array}\right] \cdot\left[\begin{array}{cc}
2 \mathrm{~A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & 2 \mathrm{~A}_{\kappa_{0}}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{Id} & 0 \\
0 & \mathrm{Id}
\end{array}\right]
$$

Observation 3

Without any gap, this formulation remains meaningful (every operators are well defined). However the derivation we have presented does not hold anymore.

OUTLINE

I. A single subdomain: integral representation results
II. Two subdomains: the gap idea
III. General case: Rumsey principle
IV. Global multi-trace formulation
V. Numerical results

Back to the general problem...

General transmission problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Find } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { such that } \\
\Delta u+\kappa_{j}^{2} u=0 \quad \text { in } \Omega_{j}, j=0, \ldots n \\
u-u_{\mathrm{inc}} \quad \text { outgoing in } \Omega_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\text { on } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
\end{aligned}
$$

Notations

$\gamma^{j}=\left[\begin{array}{l}\gamma_{\mathrm{D}}^{j} \\ \gamma_{\mathrm{N}}^{j}\end{array}\right]=$ Dirichlet and Neumann traces on $\partial \Omega_{j}$
$n_{j}=$ normal to $\partial \Omega_{j}$.

Multi/Single trace spaces

Multi-trace space:
$\mathbb{H}(\Gamma):=\mathbb{H}\left(\partial \Omega_{0}\right) \times \cdots \times \mathbb{H}\left(\partial \Omega_{n}\right) \quad$ with $\quad \mathbb{H}\left(\partial \Omega_{j}\right)=H^{\frac{1}{2}}\left(\partial \Omega_{j}\right) \times \mathrm{H}^{-\frac{1}{2}}\left(\partial \Omega_{j}\right)$

Duality pairing on $\mathbb{H}(\Gamma)$:
$\mathrm{B}(U, V)=\sum_{j=0}^{n} \mathrm{~B}_{j}\left(\left[\begin{array}{l}u_{j} \\ p_{j}\end{array}\right],\left[\begin{array}{l}v_{j} \\ q_{j}\end{array}\right]\right)=\sum_{j=0}^{n} \int_{\partial \Omega_{j}} u_{j} q_{j}-p_{j} v_{j} d \sigma$,

Multi/Single trace spaces

Multi-trace space:
$\mathbb{H}(\Gamma):=\mathbb{H}\left(\partial \Omega_{0}\right) \times \cdots \times \mathbb{H}\left(\partial \Omega_{n}\right) \quad$ with $\quad \mathbb{H}\left(\partial \Omega_{j}\right)=H^{\frac{1}{2}}\left(\partial \Omega_{j}\right) \times H^{-\frac{1}{2}}\left(\partial \Omega_{j}\right)$

Duality pairing on $\mathbb{H}(\Gamma)$:
$\mathrm{B}(U, V)=\sum_{j=0}^{n} \mathrm{~B}_{j}\left(\left[\begin{array}{c}u_{j} \\ p_{j}\end{array}\right],\left[\begin{array}{c}v_{j} \\ q_{j}\end{array}\right]\right)=\sum_{j=0}^{n} \int_{\partial \Omega_{j}} u_{j} q_{j}-p_{j} v_{j} d \sigma$,

Single trace space:
$\mathbb{X}(\Gamma)=$ closure of $\left\{\left(\gamma^{j}(v)\right)_{j=0 \ldots n} \mid v \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right), \Delta v \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right)\right\}$ for $\left\|\|_{\mathbb{H}(\Gamma)}\right.$
$\mathbb{X}(\Gamma)=$ elements of $\mathbb{H}(\Gamma)$ that satisfy transmission conditions.

Multi/Single trace spaces

Multi-trace space:
$\mathbb{H}(\Gamma):=\mathbb{H}\left(\partial \Omega_{0}\right) \times \cdots \times \mathbb{H}\left(\partial \Omega_{n}\right) \quad$ with $\quad \mathbb{H}\left(\partial \Omega_{j}\right)=H^{\frac{1}{2}}\left(\partial \Omega_{j}\right) \times \mathrm{H}^{-\frac{1}{2}}\left(\partial \Omega_{j}\right)$

Duality pairing on $\mathbb{H}(\Gamma)$:
$\mathrm{B}(U, V)=\sum_{j=0}^{n} \mathrm{~B}_{j}\left(\left[\begin{array}{l}u_{j} \\ p_{j}\end{array}\right],\left[\begin{array}{l}v_{j} \\ q_{j}\end{array}\right]\right)=\sum_{j=0}^{n} \int_{\partial \Omega_{j}} u_{j} q_{j}-p_{j} v_{j} d \sigma$,

Single trace space:
$\mathbb{X}(\Gamma)=$ closure of $\left\{\left(\gamma^{j}(v)\right)_{j=0 \ldots n} \mid v \in \mathrm{H}^{1}\left(\mathbb{R}^{d}\right), \Delta v \in \mathrm{~L}^{2}\left(\mathbb{R}^{d}\right)\right\}$ for $\left\|\|_{\mathbb{H}(\Gamma)}\right.$
$\mathbb{X}(\Gamma)=$ elements of $\mathbb{H}(\Gamma)$ that satisfy transmission conditions.

Lemma:
For $U \in \mathbb{H}(\Gamma)$, we have: $\quad U \in \mathbb{X}(\Gamma) \Longleftrightarrow \mathrm{B}(U, V)=0 \forall V \in \mathbb{X}(\Gamma)$.

Reformulation the scattering problem

General transmission problem

$$
\left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\quad \operatorname{sur} \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\text { Trouver } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { tel que } \\
\Delta u+\kappa_{j}^{2} u=0 \text { in } \Omega_{j}, \forall j \\
u-u_{\mathrm{inc}} \quad \text { sortant dans } \Omega_{0}
\end{array}\right.
$$

Reformulation the scattering problem

General transmission problem

$$
\left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\quad \text { sur } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
$$

$$
\Longleftrightarrow U=\left(U_{j}\right):=\left(\gamma^{j}(u)\right)_{0 \leq j \leq n} \in \mathbb{X}(\Gamma)
$$

$$
\left\{\begin{array}{l}
\text { Trouver } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { tel que } \\
\Delta u+\kappa_{j}^{2} u=0 \text { in } \Omega_{j}, \forall j \\
u-u_{\mathrm{inc}} \quad \text { sortant dans } \Omega_{0}
\end{array}\right.
$$

Reformulation the scattering problem

General transmission problem

$$
\left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\quad \text { sur } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
$$

$$
\Longleftrightarrow U=\left(U_{j}\right):=\left(\gamma^{j}(u)\right)_{0 \leq j \leq n} \in \mathbb{X}(\Gamma)
$$

$$
\left\{\begin{array}{l}
\text { Trouver } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { tel que } \\
\Delta u+\kappa_{j}^{2} u=0 \text { in } \Omega_{j}, \forall j \\
u-u_{\mathrm{inc}} \quad \text { sortant dans } \Omega_{0}
\end{array}\right.
$$

$$
\begin{aligned}
\Longleftrightarrow & \left(-\operatorname{Id} / 2+\mathrm{A}_{\kappa_{j}}^{j}\right)\left(U_{j}-U_{j}^{\mathrm{inc}}\right)=0, \forall j \\
& \text { with } U_{j}^{\mathrm{inc}}=\gamma^{j}\left(u_{\mathrm{inc}}\right)
\end{aligned}
$$

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
\quad\left(-\operatorname{Id} / 2+\mathbf{A}_{\kappa}\right) U \quad=\quad F
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
\mathrm{B}\left(\left(-\operatorname{Id} / 2+\mathbf{A}_{\kappa}\right) U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{H}(\Gamma)
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
\mathrm{B}\left(\left(-\mathrm{Id} / 2+\mathbf{A}_{\kappa}\right) U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{X}(\Gamma)
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

[VonPetersdorff, 1989]

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
-\frac{1}{2} \mathrm{~B}(U, V)+\mathrm{B}\left(\mathbf{A}_{\kappa} U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{X}(\Gamma)
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
-\frac{1}{2} \mathrm{~B}(U, V)+\mathrm{B}\left(\mathbf{A}_{\kappa} U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{X}(\Gamma)
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
\left.-\frac{1}{2} \mathrm{~B} \quad V\right)+\mathrm{B}\left(\mathbf{A}_{\kappa} U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{X}(\Gamma)
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

Reformulation the scattering problem

$$
\left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
\mathrm{B}\left(\mathbf{A}_{\kappa} U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{X}(\Gamma)
\end{array}\right.
$$

with

$$
\mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
$$

Rumsey principle/PMCHWT

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Find } U \in \mathbb{X}(\Gamma) \\
\mathrm{B}\left(\mathbf{A}_{\kappa} U, V\right)=\mathrm{B}(F, V) \quad \forall V \in \mathbb{X}(\Gamma)
\end{array}\right. \\
& \mathbf{A}_{\kappa}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{0}}^{0} & 0 & \cdots & 0 \\
0 & \mathrm{~A}_{\kappa_{1}}^{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \mathrm{~A}_{\kappa_{n}}^{n}
\end{array}\right]
\end{aligned}
$$

We obtain our formulation as a modified Rumsey principle by eliminating the contributions associated to Ω_{0}.

OUTLINE

I. A single subdomain:
 integral representation results

II. Two subdomains: the gap idea
III. General case: Rumsey principle
IV. Global multi-trace formulation
V. Numerical results

Global multi-trace formulation

Theorem

$U=\left(U_{0}, \widehat{U}\right) \in \mathbb{X}(\Gamma)$ is solution to Rumsey principle if and only if $\widehat{U} \in \widehat{\mathbb{H}}(\Gamma)$ satisfies

$$
\left\{\begin{array}{l}
\widehat{U} \in \widehat{\mathbb{H}}(\Gamma) \text { such that } \\
\widehat{\mathrm{B}}\left(\widehat{\mathrm{~A}}_{k} \widehat{U}, \widehat{V}\right)=\widehat{B}(\widehat{F}, \widehat{V}) \quad \forall \widehat{V} \in \widehat{\mathbb{H}}(\Gamma) .
\end{array}\right.
$$

with

$$
\begin{aligned}
& \widehat{\mathbb{H}}(\Gamma)=\left[\mathrm{H}^{\frac{1}{2}}\left(\partial \Omega_{1}\right) \times \mathrm{H}^{-\frac{1}{2}}\left(\partial \Omega_{1}\right)\right] \times \cdots \times\left[\mathrm{H}^{\frac{1}{2}}\left(\partial \Omega_{n}\right) \times \mathrm{H}^{-\frac{1}{2}}\left(\partial \Omega_{n}\right)\right] \\
& \widehat{\mathrm{B}}(\widehat{U}, \widehat{V})=\sum_{j=1}^{n} \mathrm{~B}_{j}\left(U_{j}, V_{j}\right)
\end{aligned}
$$

and

$$
\widehat{\mathrm{A}}_{\kappa} \widehat{U}=\left[\begin{array}{cccc}
\mathrm{A}_{\kappa_{1}}^{1}+\mathrm{A}_{\kappa_{0}}^{1} & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{2} & \cdots & \gamma^{1} \cdot \mathrm{G}_{\kappa_{0}}^{n} \\
\gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \mathrm{~A}_{\kappa_{2}}^{2}+\mathrm{A}_{\kappa_{0}}^{2} & \cdots & \gamma^{2} \cdot \mathrm{G}_{\kappa_{0}}^{n} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma^{n} \cdot \mathrm{G}_{\kappa_{0}}^{1} & \gamma^{n} \cdot \mathrm{G}_{\kappa_{0}}^{2} & \cdots & \mathrm{~A}_{\kappa_{n}}^{n}+\mathrm{A}_{\kappa_{0}}^{n}
\end{array}\right] \cdot\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{n}
\end{array}\right]
$$

Three key results for the proof

Recall that:
$\mathrm{G}_{\kappa_{0}}^{j}\left(\left[\begin{array}{l}v \\ q\end{array}\right]\right)(\mathbf{x}):=\int_{\partial \Omega_{j}} q(\mathbf{y}) \mathscr{G}_{\kappa}(\mathbf{x}-\mathbf{y})-v(\mathbf{y}) n(\mathbf{y}) \cdot \nabla_{\mathbf{y}}\left(\mathscr{G}_{\kappa}(\mathbf{x}-\mathbf{y})\right) d \sigma(\mathbf{y})$

Proposition

$\sum_{j=0}^{n} \mathrm{G}_{\kappa_{0}}^{j}\left(U_{j}\right)(\mathbf{x})=0 \quad \forall \mathbf{x} \in \mathbb{R}^{d}, \quad \forall U=\left(U_{0}, \ldots, U_{n}\right) \in \mathbb{X}(\Gamma)$.

Theorem
$\mathbb{H}(\Gamma)=\mathbb{X}(\Gamma) \oplus \mathscr{C}_{\kappa}(\Gamma) \quad$ where $\quad \mathscr{C}_{\kappa}(\Gamma)=\mathscr{C}_{\kappa_{0}}\left(\partial \Omega_{0}\right) \times \cdots \times \mathscr{C}_{\kappa_{n}}\left(\partial \Omega_{n}\right)$

Proposition

For $U \in \mathbb{H}(\Gamma)$ we have: $\quad U \in \mathscr{C}_{\kappa}(\Gamma) \Longleftrightarrow \mathrm{B}(U, V)=0 \quad \forall V \in \mathscr{C}_{\kappa}(\Gamma)$

Remarkable properties

Notation:

$$
\Theta\left(\binom{u_{j}}{p_{j}}_{1 \leq j \leq n}\right)=\binom{-\bar{u}_{j}}{\bar{p}_{j}}_{1 \leq j \leq n}
$$

Generalized Gårding inequality

For any $\kappa_{0}, \ldots, \kappa_{n} \in \mathbb{R}_{+}$, the operator $\widehat{\mathrm{A}}_{\kappa}: \widehat{\mathbb{H}}(\Gamma) \rightarrow \widehat{\mathbb{H}}(\Gamma)$ is an isomorphism and $\exists C>0$ and $\exists \mathrm{K}: \widehat{\mathbb{H}}(\Gamma) \rightarrow \widehat{\mathbb{H}}(\Gamma)$ compact such that

$$
\Re e\left\{\widehat{\mathrm{~B}}\left(\left(\widehat{\mathrm{~A}}_{\kappa}+\mathrm{K}\right) \widehat{U}, \Theta(\widehat{U})\right)\right\} \geq C\|\widehat{U}\|_{\widehat{\mathbb{H}}}^{2} \quad \forall \widehat{U} \in \widehat{\mathbb{H}}(\Gamma)
$$

Consequence:
Quasi-optimal convergence of conforming Galerkin discretizations.

Calderón identity

If $\kappa_{0}=\cdots=\kappa_{n}$ we have: $\left(\widehat{\mathrm{A}}_{\kappa}\right)^{2}=\mathrm{Id}$.

OUTLINE

I. A single subdomain: integral representation results

II. Two subdomains: the gap idea
III. General case: Rumsey principle
IV. Global multi-trace formulation
V. Numerical results

Model problem

Propagation medium

$\bar{\Omega}_{1} \cup \bar{\Omega}_{2}=\overline{\mathrm{D}}(0,1)$

Transmission problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { Find } u \in \mathrm{H}_{\mathrm{loc}}^{1}\left(\Delta, \bar{\Omega}_{j}\right) \text { such that } \\
\Delta u+\kappa_{j}^{2} u=0 \quad \text { in } \Omega_{j} \\
u-u_{\text {inc }} \quad \text { outgoing in } \Omega_{0}
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.u\right|_{\partial \Omega_{j}}-\left.u\right|_{\partial \Omega_{k}}=0 \\
\left.\mu_{j}^{-1} \partial_{n_{j}} u\right|_{\partial \Omega_{j}}+\left.\mu_{k}^{-1} \partial_{n_{k}} u\right|_{\partial \Omega_{k}}=0 \\
\text { on } \partial \Omega_{j} \cap \partial \Omega_{k}, \forall j, k
\end{array}\right.
\end{aligned}
$$

Reference solution:

we solve numerically both our formulation and Rumsey principle.

Consistency result

Relative error $\left\|U_{h}^{\mathrm{MTF}}-U_{h}^{\text {Rumsey }}\right\| /\left\|U_{h}^{\text {Rumsey }}\right\|$ versus step of the mesh h

Discretization: continuous piecewise linear for both Dirichlet and Neumann traces

Convergence history of GMRES

Quadratic norm of the residue of GMRES (without restart) versus number of iterations for $\omega=2$.

We took $\mathrm{M}_{h}^{-1} \mathrm{~A}_{h} \mathrm{M}_{h}^{-1}$ as a preconditionner for A_{h} where
$\mathrm{A}_{h}=$ Galerkin matrix of $\widehat{\mathrm{A}}_{\kappa}$,
$\mathrm{M}_{h}=$ mass matrix associated to $\widehat{\mathrm{B}}($,$) .$

Location of eigenvalues $(h=0.02, \omega=1)$

Condition number

Condition number versus step of the mesh
with $\mu_{0}=\mu_{1}=\mu_{2}$ and $\kappa_{0}=1, \kappa_{1}=2, \kappa_{2}=3$

Conclusion

Possible extensions

- $\Im m\left\{\kappa_{j}\right\} \neq 0$
as long as the transmission problem remains well posed (true if $\Im m\left\{\kappa_{j}\right\} \geq 0$, $\Re e\left\{\kappa_{j}\right\} \geq 0$ and $\left.\kappa_{j} \neq 0, \forall j=0 \ldots n\right)$.
Consequence: no spurious mode!
- Any values of $\mu_{0}, \ldots, \mu_{n} \in \mathbb{R}_{+}$

For Calderón identity we still need $\mu_{0}=\cdots=\mu_{n}$.

- Maxwell equations

We have proved a counterpart of every results for Maxwell. The proof of quasi-optimal convergence makes use of the framework developped in [Buffa,2005].

References

X.Claeys, "A single trace integral formulation of the second kind for acoustic scattering", SAM Report No.2011-14, ETH Zürich, 2011.
X.Claeys \& R.Hiptmair, "Boundary integral formulation of the first kind for acoustic scattering by composite structures", accepted in Comm. Pure Appl. Math.
X.Claeys \& R.Hiptmair, "Electromagnetic Scattering at Composite Objects: A Novel Multi-trace Boundary Integral Formulation", M2AN, 46 (2012) 1421-1445.

Future work: multi-screens

Thank you

for your attention

